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Polymer collapse is known to be mediated by the formation of pearls. These intermediate struc-
tures behave as small globules under tension. The globule size is studied by molecular dynamic
simulations as a function of the strength of an external stretching force applied to its ends, for
different values of the chain length. A very strong first-order-like transition from a compact globule
state to a stretched one is observed. A model of this transition in terms of a globule-chain system
is presented. The critical force, above which the globule unwinds, is shown to satisfy a power law
scaling like N1/3 in the number of monomers.
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Proteins are synthesized as flexible polypeptides and
they collapse into a specific compact form called the na-
tive form. The kinetics of the folding process is amazingly
complex and an understanding of this folding process to-
wards the native state is an important challenge [1–3]. In
parallel, stretching experiments on single biomolecules [4]
is now a rapidly developing field and may provide infor-
mation on the elastic behaviour of the molecules that take
place during protein folding and give as well some insight
into biological function. Even though single homopoly-
mer chain are structurally simpler than proteins, the
study of their elastic properties at equilibrium in a bad
solvent [5–9], and the study of the dynamical behaviour
of the collapse from an extended shape to a compact glob-
ule during a rapid quench below the theta point [10–18],
are active areas of research. Experimental investigations
of the collapse or of the stretching of a homopolymer
are sparse due to the enormous difficulty of following the
folding of a single chain in a bad solvent at low con-
centration [19–22]. The picture that has now emerged,
however, from these experimental and mainly from nu-
merical studies is that the collapse process, is mediated
by the presence of small pearls (a cluster of monomers)
linked to one another by a fluctuating stretched chain.
Therefore the full dynamics of the collapsing polymer is
a complex process which depends in particular on the
elastic response of each globule under tension, and on
the quench history.

The problem of globule under a stretching force was
previously addressed theoretically [5–9] and numerically
[7, 9]. These works showed that the behaviour of a glob-
ule under the theta point share some similarities with
a first order transition. Below a critical stretching force
the globule remains compact, and above the critical force
the globule unwinds into a stretched chain. In this Letter
we investigate, theoretically and numerically, the mecha-
nisms involved in this first order-like transition, in order
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to clarify the origin of the critical force and their scaling
properties with respect to the number of monomers. In
the first part we describe the collapse from an extended
shape to a compact globule using molecular dynamics in
the canonical ensemble [23], and we discuss briefly the
influence of the quench depth. In the second part, we
study a single pearl under tension at equilibrium, and we
derive the force-extension relation.

We developed an efficient code to perform off lattice
three dimensional molecular dynamics simulations of a
homopolymer at finite temperature neglecting hydrody-
namic effects. This approach allows us to study very
long chains, and to follow their evolution using conser-
vative dynamics in the canonical ensemble. In contrast
to other methods there is no need to introduce arbi-
trary phenomenological parameters on which time scales
will depend. We investigated in particular the collapsing
transition of a N = 3000 polymer (N is the number of
monomers), previous studies were conducted by different
methods for smaller values of N (Monte-Carlo methods
[13, 14, 17], Langevin methods [18]).

The numerical simulations were performed using the
Nosé-Hoover method which permits us to work in the
canonical ensemble (fixed temperature). The polymer
chain contains N molecules interacting through a clas-
sical long-range van der Waals force. The connectivity
of the chains is respected by using a strong anharmonic
potential for neighboring monomers. The Nosé-Hoover
equations for the monomer i are

ṙi = pi/mi , (1)

ṗi = −∂Vi

∂ri
− ξpi , (2)

τ2
ξ ξ̇ =

2K

kBT
− (3N − 6) . (3)

Here ri and pi are the position and momentum, ξ is the
“friction” variable, T the temperature (kB the Boltz-
mann constant), τξ = 2Q/kBT is the time constant of
the heat bath (Q = const.), and K =

∑N
i=1 p2

i /2mi

is the kinetic energy. The total number of degrees of
freedom is 3N − 6 since we subtracted the translation
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FIG. 1: Molecular dynamics simulation of a N = 3000 homopolymer. (a) A self-avoiding random walk generated by a Monte-
Carlo method (t = 0). (b) Nucleation centers appear (t = 3 104∆t), this state is characterized by a set of pearls separated
by stretched chains. (c) Merging of pearls accompanied by a shrinking of the polymer size (t = 3 105∆t). (d) Globular state
(t = 6105∆t).

and rotation of the center of mass. Over dots repre-
sent time derivatives. The potential Vi is the interaction
energy of monomer i with all other monomers, it has
two contributions V = V1(r) + V2(r) (r is the distance
between monomers): (i) the valence interaction between
two neighboring monomers V1(r) = a(r−d0)2+b(r−d0)4,
where d0 is the equilibrium distance and a, b are con-
stants characterizing the anharmonic interaction; (ii)
the Lenard-Jones interaction between non-neighboring
monomers, V2(r) = η[(σ/r)12 − (σ/r)6] where η is the

potential depth and σ the van der Waals radius. Molec-
ular dynamic simulations were performed using an im-
plicit Verlet-Newton-Raphson method for time stepping
[23]. The parameters used are: d0 = σ = 1.0, η = 0.9,
a = 30, b = 100, Q = 10, the time step is ∆t = 10−3, and
kBT = 0.2. The Θ-point is about Θ ≈ 0.7, as obtained
numerically for the chosen parameters. Units are based
on d0 for lengths, kBT for energies and ∆t for time.

In the Fig. 1 we present the time evolution of a ho-
mopolymer (N = 3000) from an initial “swollen coil”
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state to the final (equilibrium) “globule” state. Similar
results were obtained by another methods, Monte-Carlo
and Langevin simulations, by different groups [13, 14, 17]
The initial state is a self-avoiding random walk model-
ing a polymer in a good solvent. The gyration radius Rg

in the swollen coil state scales as N3/5. At time t = 0
we quench the polymer below the theta point, in order
to trigger the polymer collapse (Fig. 1a). One can dis-
tinguish during the collapse different regimes: the initial
‘pearl formation’ stage, the subsequent stretching of the
linking chains accompanied by the pearl growth (‘tension
regime’), and finally, the pearl ‘coalescence regime’ which
drives the polymer towards the globule state. Among
these stages, the tension dominated regime is the longest
one. We observe the creation of many pearls which start
to grow by adsorbing monomers form the neighboring
chains (Fig. 1b). At this stage the total size of the poly-
mer decreases slowly, showing that the clustering is es-
sentially a local process. The interaction between pearls
is carried by the linking chains which stretch as pearls
grow. Next, the pearls move towards each other and fi-
nally coalesce (Fig. 1c). In this regime the strong tension
created in the chains leads to a reduction of their thermal
fluctuations. The final state consists of a compact globule
with a gyration radius scaling as N1/3 (Fig. 1d). Because
of the existence of different regimes, each one having its
own time scale, and a typical dependence on the thermo-
dynamical variables N and T [12], one must rule out a
simple description of the collapsing process. The different
kinetic regimes with their characteristic time scales were
extensively discussed in the literature [12, 24]. These
numerical results show that the collapse is largely domi-
nated by the growth of pearls, their properties basically
depend on the tension exerted by the neighboring chains.
Moreover, each pearl evolves almost independently of
others, as long as they are far apart. Therefore, it is
interesting to study the behavior of a single pearl under
tension, which constitutes a necessary step towards a full
description of polymer collapse.

We have also studied the influence of the depth of
the quench, here the temperature difference to the theta
point. We found that as the quench depth increase, the
pearls tends to transform into sausage like objects, which
were predicted theoretically by de Gennes [10]. A de-
tailed account of this result will be published elsewhere,
but the main effect can be explained in terms of the
competition between the kinetic energy (slowing down of
monomer mobility) and neighboring monomer attractive
interactions.

In order to reproduce the behavior of a single pearl
we use a short chain, N < 500 typically, and we apply
to its ends a constant tension f . We use as initial con-
dition a well equilibrated globule (Fig. 1d). The force
applied to both ends is equal in magnitude and of op-
posite signs. We measure the mean end-to-end distance
L, and the mean gyration radius Rg as a function of the
force. The mean quantities are obtained by temporal
averaging over large times at equilibrium. The results of
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FIG. 2: End-to-end distance as a function of the tension L =
L(f). (a) N = 100; (b) N = 200. The points A, B, C, and D
show the hysteresis cycle.

Fig. 2 show that two well defined states can be identified:
a low tension state, for which the globule is only slightly
deformed; and a high tension state for which the original
pearl is stretched into a chain. Figure 3 shows the typi-
cal configuration of the polymer in the initial state, and
below and above the critical force. As we increase the
tension from zero the globule deforms elastically until a
critical value fA = fB for which the globule is suddenly
stretched out (Fig. 2). Above fA the system, a stretched
coil, is described by the near rod limit. When we de-
crease the tension, we observe that the length diminishes
slowly, passes through the fB point, and at fC = fD

jumps back to the globule state. As fC is smaller than
fA the transition between the two states is first-order-like
and we have a hysteresis cycle.

Another quantity of interest is the gyration radius,
which characterizes the globule size, and follows the same
behavior as L. We observe (Figs. 3ab, and 4) that the
globule, in response to a small tension, slightly swells
out. This elastic behavior results from the attractive in-
teraction between monomers. It is dominated by internal
energy and not by pure entropic effects. A simple the-
oretical explanation of this phenomenon is given by a
model of a globule in equilibrium with a stretched chain
(the globule-chain configuration of Fig. 3b). The globule
of Ng monomers is described by a free energy,

Fg = kBT

(
−
|B|N2

g

R3
+

CN3
g

R6

)
, (4)

where the entropic and surface terms were neglected, R
is the globule size, it is related to the globule density
n, R ∼ Rg ∼ n−1/3; B = B(T ) and C = C(T ) are
the second and third virial coefficients respectively (up
to a geometrical factor); below the Θ temperature B < 0
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FIG. 3: Typical configurations of a N = 200 chain under tension. (a) the globule state for f = 0; (b) the globule-chain state,
below the transition d0f/kBT = 3.5 (f < fA); and (c) the stretched chain state for d0f/kBT = 7.5 (f > fA).

[25]. In the absence of tension the globule radius is simply
given by Re = (2CNg/|B|)1/3. The free energy of a freely
joined chain under tension (the configuration of Fig. 3c)
is given by the Langevin formula [25],

Fc = −kBTNc ln
(

4π sinh y

y

)
, y =

d0f

kBT
(5)

where Nc is the number of monomers in the chain, and

f the applied force; here Fc is an implicit function of
the chain length Rc = Ncd0(coth y − 1/y). When a
force is applied to the globule an exchange of monomers
with the chain is produced. The equilibrium state is
established when the chemical potentials of the globule
and the chain are identical. The chemical potential of
the globule is: µg − µg0 = (∂Fg/∂R)(∂R/∂Ng), where
µg0 = (∂Fg/∂Ng)|R=Re

= −kBTB2/4C is the chemical
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FIG. 4: Mean gyration radius Rg/Rg0 as a function of the

normalized tension N−1/3f/kBT , for various values of N .
The solid line is the theoretical result from equation (6) (with
β = 1.7); the horizontal dashed line represent the critical ra-

dius RA/Re = (7/4)1/3, and the vertical one is the critical
normalized force f∗A.

potential for f = 0. Analogously, the chemical poten-
tial of the chain is: µc − µc0 = (∂Fc/∂Rc)(∂Rc/∂Nc),
where µc0 = (∂Fc/∂Nc)|f=0 = −kBT ln(4π). From
these two relations, and taking into account that dNg =
−dNc, one obtains the equilibrium condition between
the globule and the chain in the form: (∂Fg/∂R) =
−(∂Fc/∂Rc)|dRc/dR|. As the tension is constant along
the polymer, the globule density slightly diminishes,
while the globule size R increases (see Figs. 3(b) and
4). As long as the number of monomers in the chain
satisfies Nc � Ng ≈ N , the chain-globule interac-
tions are negligible, and one may assume that ∆R and
∆Rc are proportional: |dRc/dR| ≡ 1/α, where α is
independent of Ng. Moreover, in the regime of inter-
est (globule-chain coexistence), the tension is large, so
that y � 1. These conditions ensure that the globule-
chain coupling is weak. From the equilibrium condi-
tion, and using that the chain length, for fixed Nc, is
Rc = Ncd0(coth y − 1/y) ≈ Ncd0(1− 1/y), one obtains,

N−1/3 d0f

kBT
= β

[(
Re

R

)4

−
(

Re

R

)7
]1/2

, (6)

where β = (3αd0|B|N4/3/R4
e)

1/2, is independent of N
since Re ∼ N1/3. To fit the numerical results with (6)
we used β = 1.7. From this value of β one can compute
the free parameter α, which is found to be of order one
α = 0.4.[26]

Equation (6) describes the elastic properties of the

globule-chain system. Taking into account that the glob-
ule radius varies as Re ∼ N1/3, the tension on the glob-
ule satisfies f ∼ N1/3 in contrast to the N−1 behavior of
the Gaussian coil. It is worth mentioning that this scal-
ing law of the critical force with respect to the number
of monomers was not obtained in previous works [5–9].
This may be due in part because most numerical stud-
ies dealt with the end-to-end distance, which is a highly
fluctuating quantity.

We represented in Fig. 4 the graph of the Rg = Rg(f)
function (normalized by Rg0 = Rg(0)), using the scal-
ing suggested by (6) for various values of N . With the
N1/3 scaling, the curves for different N appear to follow
a single tendency. In particular, it is worth noting that
the normalized critical force, f∗A = N−1/3d0fA/kBT , is
the same for all N . The theoretical result (6) also pre-
dicts a critical force above which the globule cannot ex-
ist. At the critical point dR/df ∼ ∞ and the relation
Rg = Rg(f) cannot be satisfied. A simple computation
gives d0fA(N)/kBT = 0.45βN1/3 for the critical force,
and RA/Re = (7/4)1/3 for the corresponding radius of
the globule. These theoretical results are in good agree-
ment with the numerical results obtained for N = 50 to
N = 300, in the region of validity of the approximations,
near the critical force (y � 1).

In conclusion, we have presented a theoretical model
for the unwinding of a globule under tension and com-
pared it with numerical simulations. The critical force,
above which the globule unwinds, is shown to satisfy a
power law N1/3 in the number of monomers. One imme-
diate consequence of the elastic properties of globules is
that two neighboring pearls separated by a well stretched
chain, and having different sizes cannot be in equilibrium.
The larger pearl exerts an attractive force on the smaller
one, inducing a drift of the smaller pearl. Another ef-
fect, related to the critical force, is that during the initial
stages of collapse, small pearls may easily unwind, if the
local value of the tension is larger than the critical value.
Furthermore, the process of pearl initial size selection,
and the coalescence of small pearls into larger ones, may
drive the system to a dynamical state characterized by a
tension which is throughout near its own critical value.

It would be interesting to study experimentally the
influence of the depth of the quench on the collapse. An-
other interesting issue would be to experimentally mea-
sure the force-extension relation, in order to detect the
jump in the pearl size (end-to-end distance, gyration or
hydrodynamic radius) in large biomolecules, polymers,
DNA or proteins, under appropriated conditions.
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