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Slow relaxation and solvent effects in the collapse of a polymer

Thomas Frisch* and Alberto Vergal
Institut de Recherche sur les Phénoménes Hors E‘quilibre,
UMR 6594, CNRS, Université d’Aiz-Marseille, 49,
rue F. Joliot-Curie, BP 146, 13384 Marseille, France
(Dated: June 4, 2002)

Using molecular dynamic simulations we study the quench of a homopolymer chain into a poor
solvent at finite temperature. We show that, depending on the quench depth, there are different

relaxation pathways to the collapsed state.

Solvent effects are introduced through an effective

Lennard-Jones potential depending on the local monomer density. The various relaxation regimes are
characterized by the contact correlation function. As the quench depth increases, the system evolves
towards a glassy state, and the relaxation dynamics continuously changes from an exponential to a
stretched exponential law. The characteristic relaxation time diverges at low temperature following
an Arrhenius law, like in the case of strong glasses. We found that the stretching exponent depends
on aging in a non-universal way. The solvent modifies the globular state by diminishing the effects

of frustration and glassy behavior.

PACS numbers: 61.41.4-€,87.15.A4a,36.20.Ey

I. INTRODUCTION

When an unfolded polymer chain is quenched into a
poor solvent it collapses to form a compact globule. This
phenomenon has received in recent years a lot of atten-
tion in the literature from both theoretical and experi-
mental points of view, due mainly to its application in
protein folding and in basic polymer science [1-9]. How-
ever, the physical characterization of the relaxation dy-
namics as a function of the quench depth and the slow
evolution of the globular metastable states still remain
to be thoroughly investigated [10]. Moreover, experimen-
tal results on single polymer chains in the globular state
are still scarce because of the difficulty in avoiding ag-
gregation [3, 4, 11]. Indeed, it was recently shown that
the homopolymer globular state shares many properties
with amorphous materials like glasses [12-14]. Relax-
ation becomes exceedingly slow at low temperatures and
aging effects appear, in practice glassy systems may never
reach equilibrium on laboratory times scales [15, 16]. The
glassy behavior of a homopolymer quenched below the ©-
point was recently addressed numerically in [14], where
it was shown that a close resemblance exists between the
correlation or structure functions measured in glasses and
in single polymer chains. The usual picture of polymer
collapse when quenched below the ©-point [9, 17-24],
shows that non-equilibrium effects are important, espe-
cially the influence of the solvent, the relaxation path-
ways and the glassy properties of the globular state.

The effect of a solvent on the polymer collapse path-
ways was recently studied numerically [10, 25, 26]. Sim-
ple Langevin dynamics and molecular dynamics includ-
ing Lennard-Jones solvent molecules were compared [10].
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It was shown that the main differences between Langevin
dynamics and molecular with solvent is that in this last
case the polymer does not get trapped in local minima
as observed with Langevin dynamics. Although the evo-
lution to the globular state is similar in both cases, the
effect of frustration is greatly diminished in the presence
of solvent. The main effect of the solvent is then to reduce
the attractive interactions between monomers inside the
globular state, facilitating the escape from local energy
minima.

We address the question of the quench depth influence
on the relaxation dynamics using molecular dynamics in
a canonical ensemble and we introduce a simplified de-
scription of the polymer interactions with the solvent.
We use an effective many particle interaction (at variance
to the usual binary Lennard-Jones potential) through a
local density dependent potential: the interaction be-
tween two separated monomers depends on the number
of their neighbors. Our simplified solvent model neglects
the hydrodynamic effects (long range interactions). This
approach is somewhat different to usual models of hy-
drophobic interactions based on the accessible surface
area (see for instance Ref. [27] where a many-body in-
teraction was proposed to describe the hydrophobic ef-
fect in protein folding). We find that the qualitative
features of the chain-globule transition depend on the
quench depth. For small values of the temperature dif-
ference AT = |T — ©|, below the ©-point, the polymer
collapses isotropically. For larger values of AT, initial
density fluctuations grow to form clusters (also referred
as to pearls [19, 20, 28]), or, at higher values of |AT]|, to
form sausage like structures as predicted by de Gennes
[2]. For large values of |AT| solvent effects are neglected
the globular density may be non-uniform, the topological
chain constraint imposing frustration. We observe that
these metastable states tend to disappear in the pres-
ence of solvent interactions. The polymer does not get
trapped in high energy metastable states (high energy



minima) even if the quench amplitude is very strong [10].
These results are presented in section §II together with
the numerical scheme and the solvent model.

The description of the glassy behavior of the globular
state is presented in section §III. Previous studies of this
problem where done using hard sphere potentials [14].
In order to investigate quantitatively the glassy dynamics
we must take into account the fact that a polymer, in con-
trast to usual glasses, is formed by a chain of monomers
and not of free molecules. It is then desirable to introduce
specific quantities that incorporates this topological con-
straint. We study the relaxation dynamics by means of a
contact correlation function. This function characterizes
the surroundings of a given monomer and the duration
of the contact with its neighbors. A related quantity,
the cage correlation function, was introduced by Rabani
et al. for Lennard-Jones systems [29]. We show that as
one varies the depth of the quench below the ©-point
the monomer-monomer contact correlation function goes
from a classical exponential decay to a stretched expo-
nential decay. The stretched exponential relaxation is
characterized by two parameters, a relaxation time t.
and an exponent 5. We found that these parameters de-
pend not only on the temperature but also on the system
age. These aging effects appear to be very complex and
escape a simple description in terms of universal power
laws. Finally, we discuss the effects of the solvent on the
polymer relaxation. We show that, in the presence of
a solvent, the exponent (3 approaches one, even for low
temperatures, and aging effects almost disappear. Con-
clusions are drawn in section IV.

II. COLLAPSE PATHWAYS AND SOLVENT
MODEL

A. The numerical method

The numerical simulations were performed using the
Nosé-Hoover algorithm of molecular dynamics in the
canonical ensemble (with fixed temperature and fluctu-
ating energy) [28, 30, 31]. The polymer chain contains
N monomers interacting through a classical long-range
van der Waals forces. The connectivity of the chain was
implemented by using a strong anharmonic potential for
neighboring molecules. Most of the results presented here
were obtained with N = 400. The Nosé-Hoover equa-
tions for the ¢ monomer are
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where r; = (x;,y;,2;) and p; are the position and mo-
mentum; over dots represent time derivatives. In order
to control the mean kinetic energy K = Zfil p?/2m;

a “friction” variable £, and a characteristic time of the
heat bath exchanges 7z = 2Q/kgT are introduced (Q =
const. = 0.1). The total number of degrees of freedom is
3N — 6 since we subtracted the translation and rotation
of the center of mass.

The potential V; = Ejvzl V(r;;) is the interaction en-
ergy of monomer ¢ with all other monomers (r;; being the
distance between monomers ¢ and j, we always assume
i # 7). It has two contributions V' = V; + Va: (i) the
valence interaction between two neighboring monomers

‘/1(’1“1‘]‘) = a(rij — d0)2 -I-b(TZ‘j — d0)4 , fori= jx1, (4)

where dy = 1 is the equilibrium distance (used as the
length unit) and a = 30, b = 100 are constants char-
acterizing the harmonic and anharmonic interactions
(measured in energy units to be specified below); (ii)
the Lennard-Jones interaction between non-neighboring
monomers
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where 17 = 1.0 is the potential depth (chosen as the unit
of energy) and o = 1.0 the van der Waals radius (note
that we chose dg = o but neighboring monomers i = j+1
do not interact with V4). In the numerical computations
a cut-off of the long range attractive force at r. = 2.5¢
was used in order to introduce the Verlet list algorithm
to efficiently compute the force term in (2). To compute
the Verlet list we defined two characteristic distances, an
inner radius r = r, and an outer one r = r, = 2.70
[30, 31]. Time stepping was performed using an implicit
Verlet-Newton-Raphson method [31]. The time step was
fixed at At = 0.21073. We used 1000At as the unit of
time. The initial state consists in a self-avoiding walk
generated by a Monte-Carlo method. This state is ap-
propriated as an initial condition for a polymer above the
O-point (see below Fig. 1a).

The ©-point was found at the temperature © = 0.45,
for the above set of numerical parameters. This value
was obtained by two equivalent methods, using the gyra-
tion radius and the specific heat as functions of the tem-
perature. A solid state transition, also identified with
the specific heat, is located about Ts = 0.1. In the nu-
merical simulations we explored the temperature range
T = 0.05-0.35, which lies below the ©-point.

B. The solvent model

Fully explicit simulations with solvent particles are still
very expensive numerically in three dimensions [10, 25].
However, as recently shown by Chang and Yethiraj [10],
the numerical simulations of a polymer in a solvent reveal
that the collapse pathways change when polymer-solvent
interactions are taken into account. They used Lennard-
Jones potentials to describe solvent-solvent and solvent-
polymer interactions. In the case of a strong quench,



they observed that the polymer collapses by forming first
a sausage like structure, but instead of getting trapped in
high potential energy states, it slowly evolves towards an
isotropic distribution. The main effect of the solvent is
to enhance the mobility of monomers inside the globule
by an effective reduction of the attractive interactions,
and simultaneously to increase the attraction between
monomers exposed to the solvent. This is the usual “hy-
drophobic effect” that was also modeled in terms of the
“accessible surface area,” or similarly in terms of the lo-
cal density of monomers using a non-additive attractive
potential [27]. The interest of these methods is their re-
duced computational cost, since the solvent degrees of
freedom are not explicitly computed, but the solvent ac-
tion is modeled by hydrophobic interactions. However,
the potential used is phenomenological and its physical
origin remains to be investigated.

In order to describe the hydrophobic effect we propose
a method based on the idea that the van der Waals in-
teractions (long range attraction) are modified by the
presence of the solvent, or equivalently by the number of
neighbors of a given monomer. We assume that the at-
tractive interactions between monomers are modulated
by their local density (proportional to the number of
neighbors). This assumption is compatible with a virial
development in powers of the polymer density, and with
the effective solvent-mediated interaction measured by
Chang and Yethiraj [10]. The form of the interaction
remains of the Lennard-Jones form,

Va(riz) =n [(;)12 — Cij <:j>6] : (6)

but its intensity is a functional of the number of
monomers surrounding a given one,

cijzl—)\(ni+n]——4)/2, (7)

where n; is the number of monomers within a sphere of
radius r,, around monomer ¢ (as given by the Verlet list
in our algorithm), and ¢;; is proportional to the mean
number of neighbors of the (i, j) pair (excluding the near
neighbors, as indicated by the term -4). The coefficient
A measures the strength of the hydrophobic effect, and is
chosen small enough to ensure that 0 < ¢;; < 1 even in
the high density state (with A = 0.01). As the number
of monomers surrounding the two monomers increases,
¢;; decreases and Va(r) becomes less attractive. As a re-
sult, inside the globule, where the numbers n; are large,
monomer interactions becomes only slightly attractive al-
lowing for a high monomer mobility. In contrast, the sur-
face monomers would have a smaller value of n;, thus a
larger c;;, and stronger attractive interactions. Exten-
sions of this model may be considered in order to ac-
count for example, for a concentration dependent Flory-
Huggins parameter x, or for more complex effective po-
tential forms (multiple minima and energy barriers be-
tween stable states).

FIG. 1: Molecular dynamic simulation of a N = 400 ho-
mopolymer for 7' = 0.35. (a) A self-avoiding random walk
generated by a Monte-Carlo method (¢ = 0); (b) the final
isotropic globular state t = 150.

C. The collapse pathways

Experimental observation of the collapse (coil to glob-
ule transition) in synthetic polymers is difficult be-
cause at concentrations accessible to experiments, the
intramolecular collapse of single chains competes with
the intermolecular aggregation of chains. Consequently
there has been only a few studies on the kinetics of the
collapse transition. These studies are too scarce to con-



FIG. 2: Molecular dynamic simulation of a N = 400 ho-
mopolymer for T' = 0.25. (a) The pearls regime ¢t = 10; (b)
globule ¢ = 100.

firm or infirm the possible theoretical pictures predicted
for the collapse. However, the main picture that has
emerged from different numerical simulations is that col-
lapse proceed following a series of steps, first the rapid
formation of blobs (also referred as pearls) that grow and
then merge, then the formation of a globular state [19].
In [10] the importance of the quench depth on the col-
lapse was also underlined, and it was noted that there ex-
ists a low temperature regime (strong quench) for which
the sausage-like structures can be observed after a rapid
transitory stage of blob formation.

We study the collapse pathways as a function of the
quench depth AT, for the polymer without solvent (5)
and also for the polymer in a solvent (6). We start the

FIG. 3: Molecular dynamic simulation of a N = 400 ho-
mopolymer for T' = 0.05. (a) Sausage regime ¢ = 20; (b) non
spherical globule trapped in a high potential energy meta-
stable state t = 200.

simulation from an initial polymer in the coil state ob-
tained using a self-avoiding random walk generated above
the ©-point (Fig. 1a). We consider first the case of small
quench below the ©-point AT = 0.1 corresponding to
T = 0.35. In this regime the mobility of each monomer
is quite high and monomer position fluctuations are so
large that density correlations disappear. The polymer
collapses towards a homogeneous final state in the form
of a spherical globule (Fig. 1b). The collapse evolution
could in principle be described by a simple mean field



theory [1].

We then decrease the temperature (increase the quench
depth) to AT = 0.2,7 = 0.25. In this regime the at-
tractive interactions are sufficiently strong so that small
clusters of monomers forming from initial density fluc-
tuations (pearls) can survive and grow (Fig. 2a). This
regime is thus characterized by the formation of pearls
that have been first observed in numerical simulations
[19, 20, 22, 23] and described theoretically in [17] and
[18]. The numerical results have shown that the collapse
is largely dominated by the growth of pearls. Pearls
nucleate with more ease from the ends of the polymer
or from regions of high curvature. During the collapse
process, pearls are locally in quasi-equilibrium, linked
to one another by a fluctuating stretched chain. The
entropic tension exerted on the chain can significantly
reduce thermal fluctuations of the linking chain. The
behavior of a single pearl under tension has been inves-
tigated [11, 28, 32-39], where it was shown that above
a critical tension pearls unwind. The equilibrium states
attained after successive generations of pearl merging is
a well mixed globule whose state is liquid like. The final
condensed state (Fig. 2b) consists in a compact globule
with a gyration radius scaling as N'/3.

For a very strong quench, for which the resulting tem-
perature lies below the solidification point AT = 0.4,
T = 0.05, the kinetic energy of each monomer is so small
that the system is dominated by monomer—-monomer in-
teractions. As a result, monomers tend to accrete rapidly
to their second neighbors which then accrete to their next
neighbors triggering a cascade of long-lived attractive in-
teractions. The resulting collapsing object has a sausage
like shape [2, 10] (Fig. 3a). In this case, the relaxation
dynamics is complex and very slow. The equilibrium
states cannot be reached within reasonable time scales.
We observed, in the case of long chains (N > 500), that
different sausages form along the chain linked by more
flexible regions. The chain bending around these regions
allow the sausages to aggregate in a random way. This
process leads to the formation of a compact set of disor-
dered sausages resulting in a highly frustrated state. The
quasi-equilibrium attained is an inhomogeneous glassy
state sharing some similarities with an amorphous solid
(Fig. 3b).

It is important to note out that there is not a well de-
fined temperature transition between this three regimes
but rather a smooth transition from the isotropic regime
to the sausage regime. Therefore, it is possible to observe
a coexistence of sausage and pearls at a given quench
depth. As a consequence of the existence of the different
regimes described above, each one having its own time
scale, and a typical dependence on the thermodynamical
variables N and T [18, 40], one must rule out a simple
description of the collapsing process.

We now focus our attention on the collapse pathway for
a polymer in a solvent using the model introduced in (6).
We are specifically interested in the effect of the solvent
on the sausage regime AT = 0.4, T = 0.05, described

FIG. 4: Solvent effects in a N = 400 homopolymer for T" =
0.05, and A = 0.01. a) the sausage regime t = 20; (b) the
globular state is spherical and liquid-like ¢ = 200.

just above. Since the effect of the solvent is proportional
to the density of the polymer we expect that in the first
step of the collapse the solvent has only a very small ef-
fect. As a consequence, the second neighbors attraction is
dominant and we recover the sausage like structure (4 a).
However, as the polymer collapses its density increases so
that the attractive forces between monomers slightly de-
crease, as seen from Eq. (6). The monomers inside the
globule do not get trapped in high energy meta-stable
states owing to the monomer high mobility. The final
state is thus a liquid globule with less monomer mobility
on its periphery (Fig. 4b). This effect may also increase
the effective surface tension. The final globular state is
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FIG. 6: Sketch of a polymer illustrating the definition of the
contact correlation function. Time ¢1, the two monomers (in
black) i and j are in contact: both are inside the sphere of
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FIG. 5: Gyration radius R, versus time ¢; o:
A = 0; + with solvent A = 0.01.

rather spherical, in contrast to the case without solvent
interactions for which we observed irregular forms.

One possible experimental technique to follow the
polymer collapse is to measure the time evolution of the
gyration radius by light scattering of a highly dilute so-
lution (in order to get single molecule properties). We
compared the evolution of the gyration radius with and
without solvent effects (see Fig. 5) for the same temper-
ature (T' = 0.05, strong quench) starting from the same
initial conditions.

In absence of solvent effects, the gyration radius di-
minishes first rapidly until ¢ = 50 and then decreases
irregularly to its quasi-equilibrium value. This function
is clearly not smooth revealing the signature of a complex
process associated with the aggregation of sausages. It is
hard to define a precise value for the collapse time since
the ultimate asymptotic value may not be known a priori.
Moreover, the functional form of the time dependency of
the gyration radius differs with varying temperature, im-
pending to find a simple scaling law. However, a simple
examination of Fig. 5, reveals that a “characteristic” col-
lapse time may be defined as for instance the time for
which the gyration radius reaches its equilibrium value.
In the present case it is of order ¢t ~ 70. Other numerical
computations show that the collapse time decrease we
the raise of the temperature, as long as we remain below
the ©-point.
In presence of solvent effects, the time evolution of the

gyration radius is much more smooth, reflecting a lower

frustration of compact regions. We observe in Fig. 5,

that the collapse time is now of the order of ¢ ~ 150,
greater than in absence of solvent. The value reached
by the gyration radius is larger in presence of solvent
interactions than without solvent effects. Indeed, on one
hand with solvent, the effective intensity of the attractive
forces is diminished. On the other hand, the form of the
globule in absence of solvent is not spherical, and the

radius . around monomer i. Time t2, monomers i and j are
still in contact. Time t3, monomers ¢ and j (now in gray) are

no more in contact, the distance between them became larger
then [..

without solvent

actual value of the gyration radius varies significantly

with the initial condition and the relaxation pathway.
The observed final state (as shown in Fig. 4b), charac-

terized by a high mobility of monomers and high density,

is reminiscent of the molten globular state often found in
the context of protein folding.

III. THE GLASSY STATE

The globular state dynamics has been studied using
different numerical methods [41, 42] (Monte-Carlo), and
[43] (molecular dynamics with hard sphere interactions).
It has been reported a slowing down of the evolution
characteristic of glasses [41, 42], and an order-disorder
transition inside the globule [43]. As we increase the
quench depth, we also noticed that the dynamics inside
the globule slows down and became more complex with a

very large relaxation time. Homopolymer transition are
classically characterized by the behavior of the mean-
squared gyration radius R, as a function of the tempera-
ture. However, the gyration radius does not provide use-
ful information on the internal structure of the globule
and more appropriate quantities need to be introduced.
In order to investigate quantitatively the glassy dynamics
we must take into account the fact that a polymer, in con-
trast to usual glasses, is formed by a chain of monomers
and not of free molecules. It is then desirable to intro-
duce a specific quantity that incorporates this topological
constraint in order to study the relaxation dynamics.

We introduce the contact correlation function P(t,,t)
that characterizes the surroundings of a given monomer
and the duration of the contact with its neighbors. It is
a function of two variables, the waiting time t,, and time
t; P(ty,t) represents a mean probability of persistence
of the contact of two monomers between time ¢, and
tw +t. We assume that two monomers are in “contact”
if their distance is smaller than the length I, = 2'/%¢,

the equilibrium point of the van der Waals forces, Fig. 6.
(We checked that our results do not depend on the pre-



cise value of I..) A related quantity, the cage correla-
tion function, has been introduced by Rabani et al. for
Lennard-Jones systems [29] in another context. The con-
tact correlation function can be explicitly written as

P(ty,t) = <nc(1tw) ZXi,j(twvt)> ; (8)

with

[t/61]
Xij(tw ) = [ Hlle — dij(tw + k)], (9)
k=0

where H is the Heaviside function and d;;(t) = |r;(¢) —
r;(t)| is the distance between non-neighboring monomers
7 and j. The function nc(t,,) is the number of contacts
at time t,,. The double sum is on all indexes ¢ and j
except @ = j and ¢ = j & 1. The sampling time 6t is
chosen small enough, ¢t = 100At so that our result do
not depend on the sampling time. Brackets denote an
average over ten independent runs with different initial
conditions. (An average over five runs leads already to
sensibly the same results.) We finally normalized the
contact correlation function to unity by dividing it by
the number of contacts n.(t,,) at time t,,,

nc(ty) = in,j(tw,O) (10)

thus with this normalization P(t,,,0) = 1 for all waiting
times. Therefore, the function P(t,,t) in Eq. (8) mea-
sures the mean probability for two non-bonding neigh-
bors in contact at time t,, to be still in contact at time
ty, + t and to have remained in contact between time %,
and time t,, + t. One important property of P(t,,t) is
that it is insensitive to the number of monomers provided
that N is large enough, this results from the fact that P
is an average over pairs of monomers (we verified this
property for the N = 400 simulations).

A. Numerical results

The contact correlation function is also a function of
the temperature. We have measured its time evolution
during the collapse process for a large range of temper-
atures below the ©-point. The origin of the waiting
time ¢,, = 0 is taken to correspond to the instant of the
quench. We computed P(t,,,t) for a large range of ¢,, and
t values with their maximum values chosen longer then
the maximum characteristic time of the collapse men-
tioned in the end of IIC. We observed on one hand for
all cases we considered below the ©-point, a relaxation
of P(t,,t) towards zero as a function of £. On the other
hand, the t,, dependence of P(¢,t,,) is very small at high
temperature and becomes more important as we lower
the temperature. Figure 7 is a surface plot in the (t,,, )

FIG. 7: Contact correlation function P(tw,t) for T'=0.1.

FIG. 8: Contact correlation function P(t.w,t) for T = 0.05.

space, of the contact correlation function at a tempera-
ture T' = 0.1, its t,, dependance is quasi-absent and the
relaxation is quite smooth. However, at a lower tem-
perature T' = 0.05, as shown in Fig. 8, the relaxation is
much slower than at 7' = 0.1. Moreover, there is clear t,,
dependance signaling the onset of aging phenomena.

1. The long waiting time behavior

We shall first investigate the long waiting time be-
havior of the contact correlation function. We observed
that for waiting times larger than t,, = 200, the system
is in a quasi-equilibrium state, except for low tempera-
tures. Indeed, for low temperatures the system sets in a
metastable state and shows glassy behavior. For larger
temperatures, the ¢,, dependence of P(t,,,t) vanishes, as
long as t,, is large enough, and thus P(t,,t) becomes a
function of ¢ which we denote by P.,(t). We were able
to obtain quasi-equilibrium states down to temperature
T = 0.07. Below this temperature the dynamic is too
slow, so that an equilibrium cannot be attained in a rea-
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P(200,t)

0.4r
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FIG. 9: The equilibrium contact correlation function for three
different temperatures: bottom 7' = 0.3, middle 7' = 0.15 and
top T' = 0.07. Data is fitted solid curves) with formula (11),
with (from bottom to top) 8 = 1, 0.87, 0.5, and t. = 0.7, 2,
23.

sonable computer time. We show in Fig. 9, the time
behavior of the equilibrium correlation function for three
different temperatures. Dots on Fig. 9 correspond to raw
data which are fitted by a stretched exponential function,

B8(T)
Poylt) = exp [— (i) ] T

represented by a continuous line. This function contains
two free parameters ¢.(7'), related to the relaxation time,
and the stretching exponent 5(7"), which can be precisely
determined by an error minimization routine. For a small
quench at T = 0.3, the relaxation is very rapid while
for T'= 0.15 and T' = 0.07 the relaxation time is much
longer. Fitting these curves allows us to determine the
two parameters G(T) and t.(T). The data was fitted
using the whole range ¢ = [0, 200]. These two parameters
depend in a non-trivial way on the temperature T'.

The origin of the stretched exponential behavior is at
this moment not fully understood since there does not
exist yet a simple theory of the glass transition for a poly-
mer. The well known mode coupling theory [44, 45], ap-
plicable to supercooled liquids, does not take into account
the topological constraint of the polymer chain. This con-
straint introduces spatial frustration and density inhomo-
geneities that are neglected by the mode-coupling theory.
However, it is worthy adding that stretched exponen-
tial evolution laws are now common in condensed matter
(glasses, electrical conductivity, random walk in disor-
dered media) and are sometimes referred as Kohlrausch-
Williams-Watts laws [45]. Stretched exponential laws are
often the signature of hoping processes with a continuous
distribution of trapping times [46].

Let us first examine the temperature behavior of .
The stretching exponent 3(7T) decreases continuously

0.1 0.15 0.2 0.25 0.3

20 N

151 N

ot [ I | L 13
0.1 0.15 0.2 0.25 0.3

T (b)

FIG. 10: Stretched exponential parameters in the steady
state. (a) B, and (b) t. versus T

from 1 at high temperature, to 0.5 at low temperature,
as seen in Fig. 10a. We thus recover the classical expo-
nential relaxation law for temperatures above T & 0.25,
for lower temperatures the relaxation is anormal. The
parameter t.(T'), as shown in Fig. 10b, increases when
the temperature is lowered. Below T' = 0.07, the aging
effects become dominant, and we found that a fit of the
contact correlation function similar to the one used for
the quasi-equilibrium state (11), gives a very high value
of the characteristic time ¢.(t,,T) ~ 110 (at ¢, = 200
and T' = 0.05), showing the slow down of the relaxation
in the globular state.

From Eq. (11) one may define a characteristic relax-
ation time 7 (7 and t¢. are of the same order of magni-
tude), using the relation,

;= /Oo P (dt = = 1(1/8), (12)
0 B

here I is the Euler gamma function. The characteristic
relaxation time 7 is shown in Fig. 11. It has an Arrhenius



log()

[N
T

4 5 6 7 8 10 11 12 13 14

9
uT

FIG. 11: Relaxation time as a function of the temperature:
log(7) versus 1/T. The straight line corresponds to the Ar-
rhenius law.

behavior,

AFE
7 =10.233 exp (T) , (13)

with an activation energy AE = 0.210. This divergence
of the relaxation time at low temperatures is character-
istic of strong glasses [45]. It is well known that for
polymer melts there exists a critical temperature T, re-
lated to the glassy transition, for which the relaxation
time, as derived from the structure function, diverges
algebraically [47, 48]. In the case of single molecules,
finite size effects are important, and no definite transi-
tion temperature was identified in our simulations. In
the recent work [14] an extrapolation to lower tempera-
tures was used to estimate the structure function relax-
ation time, and fitted with a power law using a very low
value of T, =~ 0.03 £ 0.01 (their ©-point is higher than
ours by a factor 3, since their interaction potential is
different). The principal manifestation of slowing down
in the system was given by the change from exponential
to stretched exponential relaxation. However, deviation
from the Arrhenius law were not found for the relaxation
time computed using the contact probability, as in for-
mula (12). This may be related to the fact that the con-
tact correlation function is an average over all monomers,
irrespective of their spatial position (in this sense it is in-
dependent of N for N large enough). At variance, the
structure function explicitly depends on the spatial dis-
tribution (through the wavevector). Therefore, the re-
laxation times deduced from the structure function are
sensitive to the spatial inhomogeneities, and eventually
to finite size effects.

FIG. 12: Contact correlation function P(t.,t) for T = 0.05
and A = 0.01.

P(200,t)

FIG. 13: The contact correlation function at ¢,, = 200, sol-
vent effects. Top: data for T = 0.05 without solvent, the
fit corresponds to a stretched exponential with § = 0.44 and
tc = 110. Bottom: same as top in the solvent case with
A=0.01 (8=0.95and t. = 1.2).

2. The effect of the solvent

We also looked at the effect of the solvent on the con-
tact correlation function (c.f. section IIB). We show
in Fig. 12 a surface plot of P(t,,t) at a temperature of
T = 0.05 (it can be compared with Fig. 8), revealing
that the relaxation is quite fast and that aging effects
are negligible. A one-dimensional cut of this surface plot
at t, = 200 is shown in Fig. 13 (together with a similar
curve in the no solvent case), a time at which the globule
is in quasi-equilibrium. The curve P4(t), fitted as before
by formula (11), shows that the relaxation law is now
nearly exponential. We found t. = 1.2 and § = 0.94.
This should be contrasted with the results obtained at
the same temperature without the effect of the solvent
for which ¢, = 110 and = 0.44 (at comparable t,,).
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FIG. 14: Aging effects without solvent. (a)  as a function of
ty for T = 0.05; (b) t. as a function of t,, for T' = 0.05.

It is also interesting to compare these results with the
evolution of the radius of gyration that was presented in
figure 5. The collapse characteristic time scale increased
in the presence of the solvent up to t = 150, this is a
factor 2 larger than without solvent. At variance, t. is
strongly reduced, by a factor 50. This means that, while
the dynamics of collapse is slowed down (weaker effective
attraction), the contact correlations are highly reduced
as a consequence of the increased mobility of monomers
(the effect of the solvent).

3. The effect of aging

Aging effects are characteristic of the time evolution of
glassy systems after a temperature quench, like polymers
melts, spin glasses or supercooled liquids [15]. They may
reveal the non-equilibrium aspects of a system relaxing
towards equilibrium. We thus studied the behavior of the
contact correlation function as a function of the variable
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FIG. 15: Aging effects with solvent with A = 0.01. (a) § as
a function of t,, for T' = 0.05; (b) ¢. as a function of ¢, for
T = 0.05.

t, at a fixed temperature T = 0.05 with and without
the solvent. Here again, we obtained a very good fit of
P(ty,t) given by a stretched exponential function of the
following form

B(T\tw)
P(ty,t) =exp [— (tc(Tt, t'w)) ] ) (14)

where the exponent 3, which is positive and smaller than
1, explicitly depends on t,,. This form has again only two
free parameters t. and 3 that both depend on t¢,, and on
T.

In the absence of solvent, the exponent (3 decreases
continuously as t,, increases (Fig. 14a) and the character-
istic time ¢, increases as t,, increases (Fig. 14b). The de-
pendence of the exponent 3 on the waiting times t,, might
be related to the fact that the system has a complex
energy landscape which is slowly organizing. This may
gives rise to a stretched exponential behavior. The simple
scaling form obtained in [14] for the dynamic structure



factor is not verified in our case.

In the presence of solvent effects, the behavior of the
characteristic time t. and the exponent ( completely
change, as we can see comparing Fig. 14 with Fig. 15.
The exponent 3, which in the no solvent case differed sig-
nificantly from unity, remained quasi-constant and nearly
equal to one (Fig. 15a), showing that the relaxation is al-
most exponential, as in simple systems. We noted that
t. first slightly decreases as t,, increases, and then reach
its asymptotic value (Fig. 15b). These properties are
compatible with the reduction of monomer attraction in
the globular state. The solvent effects render the glob-
ule fluid-like, eliminating the frustration which is at the
origin of the glassy-like behavior.

IV. CONCLUSIONS

We have studied the effect of the quench depth on
the collapse of a homopolymer using molecular dynamics
with the Nosé-Hoover thermostat. We have shown that
depending on the quench depth, the polymer collapse fol-
lowing different pathways. For intermediate values of the
quench depth, pearl like structures arising from initial
density fluctuations are favored. For a strong quench,
sausage like structures are privileged during the initial
stage of the collapse, and the polymer is trapped in high
energy meta-stable states. In fact, as the quench depth
increases the frustration also increases and the globular
state become more anisotropic, with freezed density in-
homogeneities.

We have introduced an implicit solvent model in or-
der to mimic the hydrophobic effect. In this model, the
depth of the Lennard-Jones potential is modulated by
the local density of monomers and no extra computa-
tional work is required. It contains one free parameter A
allowing for a reduction of the monomer attraction; for
large values of A monomer interactions become repulsive
(in the condensed phase). We observed in the framework
of this model that for strong quench, the polymer does
not get stuck in a meta-stable state. It folds from the
initial coil state, to a spherical molten globule, through a
series of stages characterized by sausage-like structures.
Even though these structures are similar to the ones en-
countered in the absence of solvent effects, the collapse
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relaxation is slower (as measured by the decay of the
gyration radius), and the final state more homogenous.
Most of solvent effects are related to the enhanced mo-
bility of monomers, as the local density (the number of
neighbors of a given monomer) increases.

We also studied quantitatively the collapse of the poly-
mer by introducing a contact correlation function which
exhibits non-classical relaxation behavior at low temper-
ature. For inhomogeneous systems like a single poly-
mer chain this quantity, based on the persistence of con-
tacts between neighboring monomers, is more useful than
the dynamic structure function (as applied to liquids or
polymer melts). The contact correlation function can be
fitted by a stretched exponential. We showed that the
stretching exponent 3 decreases when the temperature
decreases and that the characteristic relaxation time 7
displays classical Arrhenius behavior. We also found that
aging effects are important at low temperatures (strong
quench). The characteristic exponent § and the relax-
ation time 7, depend in a non trivial way on the wait-
ing time, different to the self-similar law used in specific
glassy systems [15].

The presence of a solvent strongly modifies the collapse
process. Aging and anormal relaxation almost disappear.
At very low temperatures we found that the characteris-
tic exponent is slightly smaller than one. For such a low
temperatures, in the absence of solvent, a steady state
was not attained, and aging effects persisted. In con-
trast, the solvent permits a normal stationary relaxation
process, and the system rapidly approaches an equilib-
rium state. The relaxation time, which diverges without
solvent effects, becomes very short. A possible develop-
ment of this work may be a comparison of the results
obtained with our solvent model, with explicit solvent
simulations.

The presence of stretched exponential relaxation in
simple single homopolymer molecules, shows that a com-
plex behavior already appears even in the absence of a
diversity of monomer interactions or sequence effects spe-
cific to proteins. Therefore, it would be interesting to
study the link between this complex dynamics and the
reduction in the number of meta-stable states, character-
istic of protein folding, through a self-organisation pro-
cess driving the system to its native state.
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