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Abstract We consider an optimal control where the state-control relation is given

by a quasi-variational inequality, namely a generalized obstacle problem. We give an

existence result for solutions to such a problem. The main tool is a stability result, based

on the Mosco-convergence theory, that gives the weak closeness of the control-to-state

operator. We end the paper with some examples.
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1 Introduction

Optimal control of problems governed by PDE’s have been extensively studied for

many years. Then people investigated problems governed by variational inequalities

(see [5] for example) from many points of view. Next challenge is the optimal control

of problems whose state “equation” is a quasi-variational inequality (QVI). A first

step has been done, considering problems where the control function is part of the

variational inequality [7]. Now we are interested in the following

(P) min{J(y, f), y ∈ T (f), f ∈ Uad ⊂ U},

where T is a set-valued operator which associates to f , the set of elements y solution(s)

to

∀z ∈ K(y, f), 〈A(y, f), z − y〉 ≥ 0;
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here K is a set-valued application from X×U to 2X , X and U are Banach and Hilbert

spaces respectively. Let us give an example: let Y be a Banach space and A a differential

operator (linear or not), parabolic or elliptic from Y to the dual space Y ′, and Ξ an

application from R×R×R to R. We identify Ξ and the associated Nemitsky operator.

The differential equation that relates the control f to the state function y (i.e., the

state “equation”) is

〈Ay, z − y〉Y,Y ′ + Ξ(y, z, f)− Ξ(z, z, f) ≥ (f, z − y) ∀z ∈ Y,

where, for example

1. Ξ(y, z, f) = Ξ(z) gives the classical variational inequalities;

2. Ξ(y, z, f) = Ξ(f, z) gives (for example) obstacle problems (where the obstacle is

the control) as in [7];

The full dependence of Ξ with respect to (y, z, f) leads to quasi-variational inequalities:

this is the problem we are interested in.

To get existence results for solutions to problem (P) we need continuity/stability

properties for the state-control operator T . So, we have to study precisely the quasi-

variational inequalities from this point of view.

Let us mention that few people has been investigating optimal control problems

for quasi-variational inequalities. H. Dietrich [10] has been considering problems where

Ξ(y, z, f) is the value at z of the indicatrix function of a set K(y) = g(y) +C where C

is constant and g is a C1 function, using a smooth dual gap function [9]. In our paper,

we adopt an abstract point of view and give generic assumptions to get existence in a

general context.

The paper is organized as follows. We first present the problem and recall classical

tools and definitions. In Section 3, we give an existence result for solution to the quasi-

variational inequality. Next Section is devoted to stability results that allow to give a

weak closeness property of the the state-control operator T . In last section we prove

that the optimal control problem has at least one optimal solution and give many

examples.

2 The basic quasi-variational inequality problem

In this section we present the QVI and recall some classical definitions. Then we give

an existence result for this QVI.

2.1 Setting the QVI problem

Let us recall what a quasi-variational inequality is in an abstract setting. Given a closed

convex set D of a vector topological space X, a real-valued function ϕ : D×D → R and

an extended real-valued function Σ : D ×D → R ∪ {+∞}, we introduce the following

abstract quasi-variational inequality: find x̄ ∈ D such that

ϕ(x̄, y) +Σ(x̄, y)−Σ(x̄, x̄) ≥ 0 ∀y ∈ D. (2.1)

In the present paper, having in mind some applications, we focus on the so-called

“obstacle problem” : given K : D ⇒ X, find ȳ ∈ K(ȳ) such that

ϕ(x̄, y) + Φ(y)− Φ(x̄) ≥ 0, ∀ y ∈ K(x̄), (2.2)
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where K : D ⇒ X, is a multivalued application from D to 2X (this is the meaning of

the notation “D ⇒ X”) and Φ is an extended real-valued function from D to R∪{+∞};
here we have set Σ(x̄, y) = 1K(x̄) + Φ(y), where 1C denotes the indicatrix function of

the set C:

1C(x) =


0 if x ∈ C ,

+∞ else.

Problem (2.1) was considered earlier by Mosco and Joly [17] in regard to existence

theory in the coercive setting, and recently studied by Bazán [13] again from the point

of view existence in the noncoercive framework. Problem (2.1) covers other problems

more than those quoted in these previous works: it still therefore deserves a further

treatment. We have to notice that the function Σ in (2.1) has been introduced to

reflect the dependence with respect to the constraints on the solutions while the term

Φ(y) − Φ(x̄) can not be contained in ϕ since Φ may takes the infinity as a value.

As confirmed by the existing literature, from the stability point of view, only few

efforts have been dedicated to quasi-variational inequalities. Some qualitative results

were established by Morgan and Lignola in [21] for the case Φ = 0 and the obtained

properties can be regarded as a closeness of the solution map, which is intimately

related to upper approximation of solutions.

In [20] QVI solutions existence was considered via Tychonov well-posedness tool.

The paper is henceforth devoted to the well-posedness properties of QVI. This leads to

existence/uniqueness results but assumptions and techniques are quite different from

ours. From another point of view, in [3] the authors focus on the (differential) set-valued

operator (say T ) defining the QVI. They investigate quasi-monotonicity properties that

we do not consider in this paper. We assume (in as standard way) that the operator

(A) is single-valued and monotone.

Note that results of [1] cannot be applied here since the framework is completely

different. We deal with a general constraint set-valued operatorK and look for existence

results (via stability) in infinite dimensional spaces, that is not the case in [1] .

Throughout this paper V will be a reflexive Banach space whose topological dual,

duality pairing and norm are denoted by V ′, 〈., .〉 and ‖.‖ respectively. The norm of

V ′ will be denoted by ‖.‖∗. The symbol → (resp. ⇀) will stand for the strong (resp.

weak) convergence. The control function (that is fixed in a first step ) u belongs to an

Hilbert space U . Let us give

– operators A : V → V ′ and B : U → V ′

– a set-valued map K : V ⇒ V with nonempty closed convex values. Note that K

may involve a “constant” part that may represent classical state constraints. For

example, K(y) = K̃(y)∩C where K̃ : V ⇒ V and C is a non empty, convex subset

of V .

– a convex extended real-valued function Φ : V × U → R ∪ {+∞}, whose properties

will be made precise in the sequel. Note that the convex C mentioned above can

be the domain of Φ.

The corresponding quasi-variational inequality problem, QVI (A, u, Φ,K), is to find

ȳ ∈ K(ȳ) such that

〈Aȳ −Bu, y − ȳ〉+ Φ(y, u)− Φ(ȳ, u) ≥ 0, ∀ y ∈ K(ȳ), (2.3)

Many problems arising in optimization, economic equilibrium [14], calculus of varia-

tions, free boundary problems [4], feasibility in optimal control as well as in mechanic
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[12] can be modelled by (2.3). We shall assume that

∀x ∈ V 0 ∈ K(x) (2.4)

This assumption is consistent with the applications we present at the end of this paper.

We recall now some variational analysis basic concepts, that we need in the sequel.

2.2 Hemicontinuity, semicontinuity and monotonicity

Let X and Y be two Hausdorff topological spaces and let Γ : X ⇒ Y be a set-valued

map. Recall that the domain of Γ is Dom (Γ) = {x ∈ X|Γ(x) 6= ∅}. Its graph is the set

graph (Γ) = {(x, y) ∈ X×Y| x ∈ Dom (Γ), y ∈ Γ(x)}.

– If graph (Γ) is closed (resp. convex), we say that Γ is closed (resp. convex).

– Γ is upper (resp. lower) semicontinuous at x ∈ X if for any open U in Y

with Γ (x) ⊂ U (resp. Γ (x) ∩ U 6= ∅) the set {x ∈ X |Γ (x) ⊂ U} (resp. {x ∈
X |Γ (x) ∩ U 6= ∅}) is open in X.

– Γ is said to be continuous at x if it is both upper and lower semicontinuous at x.

Let us mention that if Γ is upper semicontinuous, then it is closed. If in addition,

the range of Γ is compact, then Γ is upper semicontinuous if and only if Γ is closed.

For a discussion on this topic and related continuity properties we refer for example to

[2], [8] and references cited therein.

A single valued operator A : X → X ′ is said to be hemicontinuous [5] if, for all

u, v ∈ X,

w − lim
λ→0

A(u+ λv) = Au .

An operator A : X → X ′ is said to be monotone if

〈A(u)−A(v), u− v〉 ≥ 0 ∀u, v ∈ X (2.5)

and M -strongly monotone if there is some M > 0 such that

〈A(u)−A(v), u− v〉 ≥M‖u− v‖2 ∀u, v ∈ X. (2.6)

Most of existence schemes of solutions to quasi-variational inequalities use the

recurrent tool : define a suitable set-valued map related to the data of the problem

and look for its fixed points. There are many results of fixed points of set-valued maps

e.g. the Kakutani-Ky Fan’s result which is an extension of the topological Brouwer’s

fixed point: any self upper semicontinuous set-valued map with nonempty compact and

convex values has a fixed point, (see [4,?] for example).

2.3 Mosco convergence

Let (Kn)n be a sequence of subsets of V. We recall basic definitions on set convergence:

Definition 1 Let (Kn)n be a sequence of nonempty closed convex subsets of V . We

say that Kn converges to K (a closed closed convex subset of V ) in the sense of Mosco

if the following two assumptions are satisfied
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(i) If (vn)n weakly converges to v with vn ∈ Kn for n large enough, then the weak

limit v ∈ K;

(ii) For any v ∈ K, there exists a sequence (vn)n strongly converging to v such that

vn ∈ Kn for every n large enough.

Remark 1 The above assumptions (i) and (ii) in Definition 1 can be summarized as

w − lim sup
n

Kn ⊆ K and s− lim inf
n

Kn ⊇ K, (2.7)

where s − lim inf and w − lim sup denotes the inferior strong limit and the superior

weak limit respectively in the sense of Kuratowski-Painlevé. We note also that, since

strong convergence implies weak convergence, (i) and (ii) are equivalent to

w − lim sup
n

Kn ⊆ K ⊆ w − lim inf
n

Kn and s− lim sup
n

Kn ⊆ K ⊆ s− lim inf
n

Kn.

We can find some further characterizations of the Mosco-convergence by using projec-

tions, distance functions and the convergence of Yosida approximations in [11], [26],

[24].

In the very case where the sequence Kn is related to a set-valued application we

may formulate the Mosco-convergence as follows :

Definition 2 Let K : V ⇒ V a set-valued application. For any v ∈ V and any

sequence (vn)n∈N (weakly) converging to v, we say that the sequence of sets K(vn)

Mosco-converges to K(v) if and only if :

(i) For every sequence yn ∈ K(vn) such that yn weakly converges to y , then y ∈ K(v).

(ii) For every y ∈ K(v), there exists yn ∈ K(vn) (for n large enough) such that yn
strongly converges to y.

In Section 5. we give an example of Mosco-convergence related to the control prob-

lem we study in the sequel.

3 Existence of solutions to QIV Problem (2.3)

In what follows the control function u is fixed and we set f = Bu ∈ V ′ in the sequel.

For the sake of simplicity, we do not indicate the dependence of Φ with respect to u

and denote Φ(., u) := Φu for the fixed value of the control parameter u ∈ U .

Let us introduce the map Su : V ⇒ V defined by

Su(x) = {y ∈ V | 〈Ay − f, z − y〉+ Φu(z)− Φu(y) ≥ 0, ∀ z ∈ K(x)}, (3.1)

or equivalently

Su(x) =
\

z∈K(x)

Fx(z),

where Fx(z) = {y ∈ V | 〈Ay − f, z − y〉+ Φu(z)− Φu(y) ≥ 0}.
Clearly, the solutions of problem (2.3) are fixed points of the map Su. Therefore, the

scheme of existence of solutions to this problem is based on the two following essential

steps:

– Su is nonempty-valued i.e.,
\

z∈K(x)

Fx(z) 6= ∅ for every x;
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– Su admits at least a fixed point.

When it is nonempty, the set of fixed points of Su will be denoted by FP(Su). The

operator A, a closed convex subset D of V and f ∈ V ′ being given, we call Su(D) the

solutions set to the following variational inequality VI(D): find y ∈ D such that

〈Ay − f, z − y〉+ Φu(z)− Φu(y) ≥ 0, ∀ z ∈ D. (3.2)

We look for the fixed points of Su where Su(x) = Su(K(x)). If monotonicity and

convexity assumptions occur, a classical tool is to consider the Minty’s variational

inequality : find y ∈ D such that

〈Az − f, z − y〉+ Φu(z)− Φu(y) ≥ 0, ∀ z ∈ D. (3.3)

Let us call SMu (D) the solutions set of (3.3).

Lemma 1 If Φu is proper, convex and lower-semicontinuous, then for every x ∈ V,
SMu (K(x)) is closed and convex, possibly empty. In addition, if A is monotone, hemi-

continuous then

(i) Su(K(x)) = SMu (K(x)).

(ii) Su is closed and convex valued on its domain.

Proof.- The first point is a classical result ( see [4,?] for example) . Point (ii) is a

direct consequence of point (i). �
We turn now our attention to existence results for problem (2.3) when the operator

A is strongly monotone and hemicontinuous and u ∈ U is fixed.

Theorem 1 Let be u ∈ U Assume the following holds:

(i) A : V → V ′ is hemicontinuous and M-strongly monotone;

(ii) A is bounded and

∀yn → y, ∀zn ⇀ z 〈A(y), z − y〉 ≤ lim inf
n
〈A(yn), zn − yn〉.

(iii) For all (xn)n in V such that xn ⇀ x, then K(xn) Mosco-converges to K(x);

(iv) We assume that Φu : V → R is convex and continuous and either

(a) Φu is L-Lipschitz continuous with L > 0

or

(b) Φu satisfies

min
v∈V

Φu(v) = Φu(0).

Then problem (2.3) admits at least one solution.

Proof.- • We first prove that Su is (graph) weakly- closed, that is :

if (xn, yn) ⇀ (x, y) with yn ∈ Su(xn) then y ∈ Su(x) . (3.4)

Let (xn)n∈N be a sequence weakly convergent to x ∈ V. Thanks to assumptions (i) and

(iv) we know that

∀n Su(K(xn)) 6= ∅,

(one can refer to [5] for example). The strong monotonicity of A ensures the uniqueness

of the solution to VI (A, f, Φu,K(xn)) for every n so that

Su(xn) = {yn} .
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We assume that yn ⇀ y; we have to prove that y ∈ Su(x). Let z be an arbitrary point

of K(x). From (iii) there exists zn ∈ K(xn) such that zn → z strongly in V . This

implies that lim
n→+∞

Φu(zn) = Φu(z). As yn ∈ Su(K(xn)) we get

〈Ayn − f, zn − yn〉+ Φu(zn)− Φu(yn) ≥ 0.

In addition yn ∈ SMu (K(xn)) (cf. Lemma 1) so that

〈Azn − f, yn − zn〉+ Φu(yn)− Φu(zn) ≤ 0.

Moreover Φu is continuous and convex, so it is weakly lower semi-continuous so that

Φu(y) ≤ lim inf
n

Φu(yn). Using (ii) this yields that

〈Az−f, y−z〉+Φu(y)−Φu(z) ≤ lim inf
n
〈Azn−f, yn−zn〉+lim inf

n
(Φu(yn)−lim

n
Φu(zn)) ≤ 0.

So

〈Az − f, z − y〉+ Φu(z)− Φu(y) ≥ 0 , ∀z ∈ K(x) .

This means that y ∈ SMu (K(x)) = Su(K(x)) = Su(x).

• We prove now that Su has at least a fixed point. We have shown at the beginning of

the proof that

∀x ∈ V Su(K(x)) = Su(x) = {yx} .

Therefore Su is single-valued. Moreover, 0 ∈ K(x) (assumption (2.4) ) implies that

〈Ayx − f,−yx〉+ Φu(0)− Φu(yx) ≥ 0.

Therefore, with the strong monotonicity of A, we obtain

M‖yx‖2 ≤ 〈Ayx −A(0), yx〉 ≤ Φu(0)− Φu(yx) + 〈f −A(0), yx〉. (3.5)

If assumption (iv)-(a) is satisfied, then using (3.5), we get

M‖yx‖2 ≤ L‖yx‖+ 〈f −A(0), yx〉 .

Thus, ‖yx‖ ≤ c‖f‖∗ with c = cf,L,M =
‖f −A(0)‖∗ + L

M
(c is independent of x).

If assumption (iv)-(b) is satisfied, then using (3.5), we have

M‖yx‖2 ≤ 〈f −A(0), yx〉 .

Thus, ‖yx‖ ≤ c‖f‖∗ with c = cf,M =
‖f −A(0)‖∗

M
(c is independent of x).

Consider the convex weakly compact C0 := B(0, c) of V : we observe that Su(C0) ⊂ C0.

As Su is single valued and weakly closed we may use Schauder-Tychonoff theorem (see

e.g. [15] page 147 Theorem 1.10 ) to ensure the existence of a fixed point of S in C0. �

Remark 2 The above result is a general existence result. In particular the assumption

(iii) is a strong assumption which involves compactness of K. Many other existence

results can be found in the literature without such hypothesis but only for some specific

situations; as often the underlying compactness assumption is replaced by monotonicity

assumptions. We refer to [6] for more details.



8

4 Stability results for problem (2.3) with respect to f perturbations

Although the generality is of great interest, we consider now the classical functional

framework for PDE’s control.

Let V, H be Hilbert spaces such that V ⊂ H with continuous, compact and dense

embedding. V ′ denotes the dual of V . The control space U is an Hilbert space as well

and Uad is the set of admissible control functions : it a non empty, convex closed subset

of U . The quasi-variational problems: QVI(A, u,Φ,K) turns to be:

find yu ∈ K(yu) : 〈Ayu −Bu, y − yu〉+ Φ(y, u)− Φ(yu, u) ≥ 0, ∀ y ∈ K(yu). (4.1)

In the previous section, we proved that for every u ∈ U the set of solutions to

QVI(A, u,Φ,K) is non empty (under assumptions of Theorem 1). So we may define

the solution map of problem (4.1) that we denote by

T : u 7→ T (u)

which is set-valued. We now establish the weak sequential closeness of T .

Theorem 2 Let be u ∈ U and (un)n∈N ∈ U a sequence weakly convergent to u in U .

Assume the following:

(i) The set-valued map K is closed and convex valued, i.e. K(w)is closed and convex

for all w ∈ V ;

(ii) A : V → V ′ is hemicontinuous, strongly monotone and bounded;

(iii) for every sequence (yn)n∈N strongly convergent to y in V and (zn)n∈N weakly con-

vergent to z in V ,

〈A(y), z − y〉 ≤ lim inf
n
〈A(yn), zn − yn〉.

(iv) B : U → V ′ is a compact operator;

(v) For every xn such that xn weakly converges to x in V , then K(xn) Mosco-converges

to K(x).

(vi) Φ : V × U → R, is continuous and convex with respect to y ∈ V and either,

• Φ is L-Lipschitz continuous with respect to y ∈ V uniformly with respect to u i.e.

∀u ∈ U |Φ(y, u)− Φ(z, u)| ≤ L ‖y − z‖ , (4.2)

where L > 0 is independent on u,

or

•
∀u ∈ U min

y∈V
Φ(y, u) = Φ(0, u) . (4.3)

Moreover it must satisfies

(a) For every xn ∈ T (un) such that: xn ⇀ x (weakly in V )

Φ(x, u) ≤ lim inf
n

Φ(xn, un).

(b) For every xn ∈ T (un) such that: xn → x (strongly in V ), there are subsequences

(xnk ) and (unk ) of (xn) and (un) respectively such that

lim sup
k

Φ(xnk , unk ) ≤ Φ(x, u).
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Then

1. There exists a constant κu depending on u such that[
n∈N
T (un) ⊂ B(0, κu) , (4.4)

where B(0, κu) is the V -ball of radius κu.

2. For every yn ∈ T (un), the sequence yn weakly converges (up to a subsequence) to

some y ∈ T (u).

Remark 3 Note that

- assumptions (i)-(v) are global assumptions on operators A, K and B while (vi) is a

local one depending on u as a limit point of a sequence (un)n∈N.

- assumptions of Theorem 1 have been involved in those of Theorem 2 so that

∀u ∈ U T (u) 6= ∅ .

Proof.- We first prove (4.4).

With (2.4) and the convexity ofK(yn) we claim that for any t ∈ [0, 1[ then tyn ∈ K(yn).

As yn ∈ T (un) we get

∀ y ∈ K(yn) 〈Ayn −Bun, y − yn〉+ Φ(y, un)− Φ(yn, un) ≥ 0, (4.5)

so that (with y = tyn)

∀n ∈ N, ∀t ∈ [0, 1] (t− 1)〈Ayn −Bun, yn〉+ Φ(tyn, un)− Φ(yn, un) ≥ 0 .

Now we use the first part of assumption (vi). Assuming (4.2), we obtain

|Φ(tyn, un)− Φ(yn, un)| ≤ L(1− t)‖yn‖ ;

so

∀n ∈ N, ∀t ∈ [0, 1] (t− 1)〈Ayn −Bun, yn〉+ L(1− t)‖yn‖ ≥ 0 ,

and

∀n ∈ N, 〈Ayn −A(0), yn〉+ 〈A(0)−Bun, yn〉 − L‖yn‖ ≤ 0 .

We conclude with the strong monotonicity of A that

M‖yn‖2 ≤ (‖A(0)‖∗ + L+ ‖Bun‖)‖yn‖ . (4.6)

Alternatively, let us assume (4.2b); with (4.5) an y = 0 we get

∀n ∈ N, 〈Ayn −Bun,−yn〉 ≥ Φ(yn, un)− Φ(0, un) ≥ 0 ,

∀n ∈ N, 〈Ayn −Bun, yn〉 ≤ 0 ,

∀n ∈ N, 〈Ayn −A(0), yn〉+ 〈A(0)−Bun, yn〉 ≤ 0 ,

Once again the strong monotonicity of A yields

M‖yn‖2 ≤ (‖A(0)‖∗ + ‖Bun‖)‖yn‖ . (4.7)

As the sequence (un) is bounded and B is compact we get (with (4.6) (respectively

(4.7) )

‖yn‖ ≤ κ(u) ,
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where κ is a constant depending on u.

We now show point 2: let (yn)n∈N be a sequence in T (un) such that yn ⇀ y in V. We

have to prove that y ∈ T (u)).

First, observe that yn ∈ K(yn): so with (v) , y is an element of K(y). Now, consider

an arbitrary point z in K(y). Since K(y) is convex, for all t ∈]0, 1], zt := tz+(1− t)y ∈
K(y).

We claim that

〈A(zt)−Bu, y − zt〉+ Φ(y, u)− Φ(zt, u) ≤ 0 . (4.8)

Indeed, according to (v) one can find a sequence (zn)n (strongly) converging to zt such

that zn ∈ K(yn) , ∀n ≥ 1. Since yn ∈ T (un), for every n ≥ 1, we have

〈A(yn)−Bun, zn − yn〉+ Φ(zn, un)− Φ(yn, un) ≥ 0 .

Using the monotonicity of A it follows that

〈A(zn)−Bun, zn − yn〉+ Φ(zn, un)− Φ(yn, un) ≥ 0.

The operator B : U → V ′ is compact, so (Bun)n strongly converging to Bu in V ′( up

to a subsequence). Using hypothesis (iii) and (vi), up to subsequences if necessary, we

obtain

〈A(zt)−Bu, y − zt〉+ Φ(y, u)− Φ(zt, u) ≤ lim inf
n
〈A(zn)−Bun, yn − zn〉

+ lim inf
n

Φ(yn, un)− lim sup
n

Φ(zn, un) ≤ 0.

So, we have proved relation (4.8). We conclude that,

〈A(zt)−Bu, zt − y〉+ Φ(zt, u)− Φ(y, u) ≥ 0.

Using the convexity of Φ with respect to the first variable, we get

〈A(zt)−Bu, t(z − y)〉+ t[Φ(z, u)− Φ(y, u)] ≥ 0;

this gives

∀t ∈]0, 1] 〈A(zt)−Bu, z − y〉+ Φ(z, u)− Φ(y, u) ≥ 0, (4.9)

We conclude with the hemicontinuity of A that

〈A(y)−Bu, z − y〉+ Φ(z, u)−Φ(y, u) ≥ 0 (4.10)

As the inequality (4.10) holds for any z ∈ K(y), we conclude that y ∈ T (u); this

achieves the proof. �

Example 1 Let us give a simple case where assumption (v) of Theorem 2 is satisfied .

We define the set-valued mapping K : V ⇒ V by

K(v) = Ko +m(v) (4.11)

where Ko is a fixed closed convex and nonempty subset of V and m : V → V is a

compact map ( or equivalently weakly - strongly continuous ).

Proposition 1 For any sequence (vn) weakly convergent to v in V , then K(vn) Mosco-

converges to K(v), where K is given by (4.11).
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Proof.- Let (vn) be a sequence of V such that vn ⇀ v, we have to prove that K(vn)

Mosco-converges to K(v). Let wn ∈ K(vn) such that wn ⇀ w in V . Since the operator

v 7→ m(v) is compact m(vn) ⇀m(v). Since Ko is weakly closed then, w−m(v) ∈ Ko.
Hence, w ∈ K(v).

Let w ∈ K(v), then ∃k ∈ Ko such that: w = k+m(v). We set wn = k+m(vn) ∈ K(vn).

It is clear that wn → k +m(v) = w. Therefore, K(vn) Mosco-converges to K(v). �
We will give in section 5, some examples of such set-valued mapping K.

5 The optimal control problem

5.1 Existence result

Now we turn back to problem (P) mentioned in Section 1. We suppose that assumptions

of Theorem 1 are satisfied so that the set-valued operator T (defined in the previous

sections) is well defined on U .

Consider a cost functional J : V × U → R ∪ {+∞}, we set

(P) min{J(y, u), y ∈ T (u), u ∈ Uad,⊂ U},

where Uad is a non-empty, convex and closed subset of the (Hilbert) space U .

Theorem 3 Assume J is convex and lower-semicontinuous and either Uad is bounded

or J is coercive with respect to u. Assume assumptions of Theorem 2 are satisfied for

every cluster point of minimizing sequences of problem (P). Then problem (P) has at

least one optimal solution.

Proof.-The proof is straightforward. Let (un)n∈N ∈ Uad be a minimizing sequence.

The boundedness of Uad or the coercivity of J implies that un is bounded in U . Let u be

a weak-cluster point of (un)n∈N and denote the corresponding subsequence similarly.

Assumptions of Theorem 2 are satisfied so that for every yn ∈ T (un), yn is a bounded

sequence and weakly converges (up to a subsequence) to y ∈ V . Moreover y ∈ T (u).

We end the proof with the lower semi-continuity of J �
In the sequel, using [22] formalism we choose J as follows :

– N : U → U is a linear, symmetric continuous and coercive operator i.e.

∃κ > 0 : 〈Nv, v〉 ≥ κ‖v‖2, ∀v ∈ U

– H is a Hilbert space of observations and C ∈ L(V,H) be a given continuous operator.

– The desired state is zd ∈ H

We associate the following cost functional J : V × U → R defined by

J(y, u) = 〈Nu, u〉U + ‖Cy − zd‖2H. (5.1)

5.2 Some relevant examples

In this subsection, we will give some simple examples to support our theoretical results.

Example 2 Implicit Signorini problem
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Let Ω ⊂ Rn an open bounded connected set with a regular boundary ∂Ω = Γ . Let

us consider the following implicit Signorini problem
Find y ∈ K(y) such that

a(y, z − y) ≥ 〈u, z − y〉, ∀z ∈ K(y)
(5.2)

with the following data

V = {y ∈ H1(Ω) | ∆y ∈ L2(Ω)} ,

for each y ∈ V , we associate the closed convex non empty set of H1(Ω) defined by

K(y) = {z ∈ H1(Ω) | z|Γ ≥ h−
Z
Γ
ϕ
∂y

∂n
dσ a.e. on Γ},

with h, ϕ ∈ H
1
2 (Γ ) and h ≥ 0 on Γ .

a(y, z) =

Z
Ω

“
∇y · ∇z + y z

”
dx

〈u, z〉 =

Z
Ω
u z dx, u ∈ L2(Ω) .

It is known that the solution y of (5.2) ( Implicit Signorini problem) is characterized

by 8>><>>:
−∆y + y = u a.e. in Ω

y ≥
“
h−

Z
Γ
ϕ
∂y

∂n
dσ
”
,
∂y

∂n
≥ 0,

h
y −

“
h−

Z
Γ
ϕ
∂y

∂n
dσ
”i ∂y
∂n

= 0 on Γ.

We have to verify assumptions of Theorem 2:

– Assumption (i) is satisfied (we refer to [17] p.130) .

– It is clear that , (ii) and (iii) are ensured (with A = −∆+ Id).

– U = H = L2(Ω) and B : H → V ′ is the canonical (compact) embedding, so we get

(iv).

– Let us show that (v) is satisfied. We first note that K is defined by (4.11) with

Ko = {z ∈ H1(Ω) | z|Γ ≥ h a.e. on Γ }

and m : V → V is given by m(y) = −
Z
Γ
ϕ
∂y

∂n
dσ , (here real numbers are identified

to constant functions). We have to prove that m is compact. Let yk be a sequence of

V weakly convergent to y. The normal derivative trace operator is linear, continuous

(and thus weakly continuous) from V to H−
1
2 (Γ )([23] ) so that m(yk)→ m(y) in

R. As the constant functions space (identified to R) is (compactly) embedded in V

this gives the strong convergence of m(yk) to m(y) in V .

– Φ = 0 so that (vi) is fulfilled.

We may summarize :
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Theorem 4 Assume α > 0. Then the optimal control problem8>>>>>>><>>>>>>>:

min ‖y − zd‖2L2(Ω) + α‖u‖2L2(Ω)

−∆y + y = u a.e. in Ω

y ≥
“
h−

Z
Γ
ϕ
∂y

∂n
dσ
”
,
∂y

∂n
≥ 0,

h
y −

“
h−

Z
Γ
ϕ
∂y

∂n
dσ
”i ∂y
∂n

= 0 on Γ.

u ∈ Uad

has (at least) one optimal solution.

Example 3

Let Ω ⊂ Rn an open bounded connected set with a regular boundary ∂Ω = Γ . We

consider (5.2) with

V = H1(Ω)

a(y, z) =

Z
Ω

h nX
i,j=1

aij(x)
∂y

∂xi
(x)

∂z

∂xj
(x) + b(x)y(x)z(x)

i
dx,

where the functions x 7→ aij(x) and x 7→ b(x) satisfy the following classical assump-

tions:

aij ∈ L∞(Ω), 1 ≤ i, j ≤ n, b ∈ L∞(Ω), b ≥ 0 a.e. on Ω

and

∃β > 0, ∀ξi, 1 ≤ i ≤ n,
nX

i,j=1

aijξiξj ≥ β
nX
i=1

ξ2
i a.e. on Ω.

K(y) = {z ∈ H1(Ω) |
Z
Ω

(z − y)(x) dx ≥ 0 }.

It is easy to check all assumptions of Theorem 2 except (v). Assume that yk is a

sequence of H1(Ω) weakly convergent to y. Let us prove that K(yn) Mosco-converges

to K(y):

(i) Assume that zn ∈ K(yn) weakly converges to z in H1(Ω). So (zn− yn, 1)L2(Ω) ≥ 0

and obviously converges to (z − y, 1)L2(Ω). Therefore

Z
Ω

(z − y)(x) dx ≥ 0 that is z ∈

K(y).

(ii) Let z ∈ K(y). We set zn = z +
R
Ω(yn − y)(x)dx. Obviously zn strongly converges

to z in H1(Ω). MoreoverZ
Ω

(zn − yn)(x) dx = (zn − yn, 1)L2(Ω)

= (z+(yn−y, 1)L2(Ω)−yn, 1)L2(Ω) = (z−yn, 1)L2(Ω)+(yn−y, 1)L2(Ω) = (z−y, 1)L2(Ω) ≥ 0 ,

that is zn ∈ K(yn).

Now it is easy to conclude as previously.

Example 4 Implicit Obstacle problem with friction
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Let Ω ⊂ R2 be the section of a tube with infinity length Ω×] −∞,+∞[ and a thin

membrane spanned in the tube held by a thin elastic wire. We assume that Ω is an open

bounded connected set with a regular boundary ∂Ω. The membrane deforms under the

action of a surface density force f acting in the axe-direction and is required to stay

on or above an obstacle m(u) where m : H1(Ω)→ H1(Ω) is a compact operator. The

forces f are balanced by the force that the obstacle exerts on when the membrane is in

contact with it. The displacement of the membrane is governed by the quasi-variational

inequality (5.2) where

V = H1(Ω) , K(y) = {z ∈ V | z ≥ m(y)} , a(y, z) =

Z
Ω

“
∇y · ∇z + y z

”
dx

〈f, y〉 =

Z
Ω
fy dx and Φ(y) =

Z
Γ
g |y| dσ,

with g ∈ L∞(Γ ), g ≥ 0 on Γ a given friction bound.

Assumptions of Theorem 2 are satisfied. The function Φ is convex and Lipschitz con-

tinuous and it is easy to see that

K(y) = Ko +m(y) ,

as in (4.11) with

Ko = {z ∈ H1(Ω) | z ≥ 0 a. e. in Ω } ,

So we conclude that Theorem 2 applies.

6 Conclusion

We have given an abstract framework that allows to consider optimal control problems

governed by Quasi-Variational Inequalities. The strong monotonicity of the operator

A and the Mosco-convergence of the set-valued application K involved in the QVI are

key assumptions in the proofs presented in this paper. Since in some applications the

operator A is only semi-coercive and since the underlying compactness assumption (in-

volved in the Mosco-convergence of K) does not allow to deal with “usual ” constraints

as pointwise constraints for example. It would be be very interesting to obtain similar

results with only a monotonicity assumption insteact of a compactness one. This is out

of the scope of the present manuscript and will be the subject of another work.
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certaines inéquations quasi-variationnelles, J. Func. Anal. , 34, 107-137, 1979

18. D. Kinderlehrer and G. Stampacchia, An introduction to Variational Inequalities and
Their Applications. Academic Press, New York, 1980

19. M. Kunze and J.F. Rodrigues, An elliptic quasi-variational inequality with gradient
constraints and some of its applications, Math. meth. Appl. Sci 897-908, 2000

20. M. B. Lignola , Well posedness and L-wellposedness for quasivariational inequalities,
Journal of Optimization Theory and Applications, Vol. 128, 1, pp 119-138, 2006.

21. M. B. Lignola and J. Morgan, Convergence of solutions of Quasi-Variational Inequal-
ities and Applications, Topological Methods in Nonlinear Analysis, Vol. 10., 1997

22. J.L Lions, Contrle optimal de systmes gouvernés par des équations aux dérivées partielles,
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