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OPTIMAL CONTROL OF A QUASI-VARIATIONAL OBSTACLE
PROBLEM

S. ADLY∗ , M. BERGOUNIOUX† , AND M. AIT MANSOUR‡

Abstract. We consider an optimal control where the state-control relation is given by a quasi-
variational inequality, namely a generalized obstacle problem. We give an existence result for solutions to
such a problem. The main tool is a stability result, based on the Mosco-convergence theory, that gives the
weak closeness of the control-to-state operator. We end the paper with some examples.
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1. Introduction. Optimal control of problems governed by PDE’s have been exten-
sively studied for many years. Then people investigated problems governed by variational
inequalities (see [3] for example) from many points of view. Next challenge is the opti-
mal control of problems whose state “equation” is a quasi-variational inequality (QVI). A
first step has been done, considering problems where the control function is part of the
variational inequality [5]. Now we are interested in the following

(P) min{J(y, f), y ∈ T (f), f ∈ Uad ⊂ U},

where T is a set-valued operator which associates to f , the set of elements y solution(s)
to

∀z ∈ K(y, f), 〈A(y, f), z − y〉 ≥ 0;

here K is a set-valued application from X × U to 2X , X and U are Banach and Hilbert
spaces respectively. Let us give an example: let Y be a Banach space and A a differential
operator (linear or not), parabolic or elliptic from Y to the dual space Y ′, and Ξ an
application from R × R × R to R. We identify Ξ and the associated Nemitsky operator.
The differential equation that relates the control f to the state function y (i.e., the state
“equation”) is

〈Ay, z − y〉Y,Y ′ + Ξ(y, z, f) − Ξ(z, z, f) ≥ (f, z − y) ∀z ∈ Y,

where, for example

1. Ξ(y, z, f) = Ξ(z) gives the classical variational inequalities;

2. Ξ(y, z, f) = Ξ(f, z) gives (for example) obstacle problems (where the obstacle is
the control) as in [5];
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The full dependence of Ξ with respect to (y, z, f) leads to quasi-variational inequalities:
this is the problem we are interested in.

To get existence results for solutions to problem (P) we need continuity/stability prop-
erties for the state-control operator T . So, we have to study precisely the quasi-variational
inequalities from this point of view.

Let us mention that few people has been investigating optimal control problems for
quasi-variational inequalities. H. Dietrich [8] has been considering problems where Ξ(y, z, f)
is the value at z of the indicatrix function of a set K(y) = g(y) + C where C is constant
and g is a C1 function, using a smooth dual gap function [7]. In our paper, we adopt an
abstract point of view and give generic assumptions to get existence in a general context.

The paper is organized as follows. We first present the problem and recall classical
tools and definitions. In Section 3, we give an existence result for solution to the quasi-
variational inequality. Next Section is devoted to stability results that allow to give a
weak closeness property of the the state-control operator T . In last section we prove that
the optimal control problem has at least one optimal solution and give many examples.

2. The basic quasi-variational inequality problem. In this section we present
the QVI and recall some classical definitions. Then we give an existence result for this
QVI.

2.1. Setting the QVI problem. Let us recall what a quasi-variational inequality
is in an abstract setting. Given a closed convex set D of a vector topological space X, a
real-valued function ϕ : D × D → R and an extended real-valued function Σ : D × D →
R ∪ {+∞}, we introduce the following abstract quasi-variational inequality: find x̄ ∈ D

such that

(2.1) ϕ(x̄, y) + Σ(x̄, y) − Σ(x̄, x̄) ≥ 0 ∀y ∈ D.

In the present paper, having in mind some applications, we focus on the so-called “obstacle
problem” : given K : D ⇒ X, find ȳ ∈ K(ȳ) such that

(2.2) ϕ(x̄, y) + Φ(y) − Φ(x̄) ≥ 0, ∀ y ∈ K(x̄),

where K : D ⇒ X, is a multivalued application from D to 2X (this is the meaning of the
notation “D ⇒ X”) and Φ is an extended real-valued function from D to R∪{+∞}; here
we have set Σ(x̄, y) = 1K(x̄) +Φ(y), where 1C denotes the indicatrix function of the set C:

1C(x) =

{

0 if x ∈ C ,

+∞ else.

Problem (2.1) was considered earlier by Mosco and Joly [13] in regard to existence theory
in the coercive setting, and recently studied by Bazán [11] again from the point of view
existence in the noncoercive framework. Problem (2.1) covers other problems more than
those quoted in these previous works: it still therefore deserves a further treatment. We
have to notice that the function Σ in (2.1) has been introduced to reflect the dependence
with respect to the constraints on the solutions while the term Φ(y) − Φ(x̄) can not be
contained in ϕ since Φ may takes the infinity as a value. As confirmed by the existing
literature, from the stability point of view, only few efforts have been dedicated to quasi-
variational inequalities. Some qualitative results were established by Morgan and Lignola
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in [16] for the case Φ = 0 and the obtained properties can be regarded as a closeness of
the solution map, which is intimately related to upper approximation of solutions.

Throughout this paper V will be a reflexive Banach space whose topological dual,
duality pairing and norm are denoted by V ′, 〈., .〉 and ‖.‖ respectively. The norm of V ′

will be denoted by ‖.‖∗. The symbol → (resp. ⇀) will stand for the strong (resp. weak)
convergence. The control function (that is fixed in a first step ) u belongs to an Hilbert
space U . Let us give

• operators A : V → V ′ and B : U → V ′

• a set-valued map K : V ⇒ V with nonempty closed convex values. Note that K

may involve a “constant” part that may represent classical state constraints. For
example, K(y) = K̃(y)∩C where K̃ : V ⇒ V and C is a non empty, convex subset
of V .

• a convex extended real-valued function Φ : V ×U → R ∪ {+∞}, whose properties
will be made precise in the sequel. Note that the convex C mentioned above can
be the domain of Φ.

The corresponding quasi-variational inequality problem, QVI (A, u, Φ,K), is to find ȳ ∈
K(ȳ) such that

(2.3) 〈Aȳ − Bu, y − ȳ〉 + Φ(y, u) − Φ(ȳ, u) ≥ 0, ∀ y ∈ K(ȳ),

Many problems arising in optimization, economic equilibrium [12], calculus of variations,
free boundary problems [2], feasibility in optimal control as well as in mechanic [10] can
be modelled by (2.3). We shall assume that

(2.4) ∀x ∈ V 0 ∈ K(x)

This assumption is consistent with the applications we present at the end of this paper.
We recall now some variational analysis basic concepts, that we need in the sequel.

2.2. Hemicontinuity, semicontinuity and monotonicity . Let X and Y be two
Hausdorff topological spaces and let Γ : X ⇒ Y be a set-valued map. Recall that the
domain of Γ is Dom (Γ) = {x ∈ X|Γ(x) 6= ∅}. Its graph is the set

graph (Γ) = {(x, y) ∈ X × Y| x ∈ Dom (Γ), y ∈ Γ(x)}.

• If graph (Γ) is closed (resp. convex), we say that Γ is closed (resp. convex).

• Γ is upper (resp. lower) semicontinuous at x ∈ X if for any open U in
Y with Γ(x) ⊂ U (resp. Γ(x) ∩ U 6= ∅) the set {x ∈ X |Γ(x) ⊂ U} (resp.
{x ∈ X |Γ(x) ∩ U 6= ∅}) is open in X.

• Γ is said to be continuous at x if it is both upper and lower semicontinuous at x.

Let us mention that if Γ is upper semicontinuous, then it is closed. If in addition, the
range of Γ is compact, then Γ is upper semicontinuous if and only if Γ is closed. For a
discussion on this and topic and related continuity properties we refer for example to [1],
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[6] and references cited therein.
A single valued operator A : X → X ′ is said to be hemicontinuous [3] if, for all u, v ∈ X,

w − lim
λ→0

A(u + λv) = Au .

An operator A : X → X ′ is said to be monotone if

(2.5) 〈A(u) − A(v), u − v〉 ≥ 0 ∀u, v ∈ X

and M -strongly monotone if there is some M > 0 such that

(2.6) 〈A(u) − A(v), u − v〉 ≥ M‖u − v‖2 ∀u, v ∈ X.

Most of existence schemes of solutions to quasi-variational inequalities use the recurrent
tool : define a suitable set-valued map related to the data of the problem and look for its
fixed points. There are many results of fixed points of set-valued maps e.g. the Kakutani-
Ky Fan’s result which is an extension of the topological Brouwer’s fixed point: any self
upper semicontinuous set-valued map with nonempty compact and convex values has a
fixed point, (see [2, 22] for example).

2.3. Mosco convergence. Let (Kn)n be a sequence of subsets of V. We recall basic
definitions on set convergence:

Definition 2.1. Let (Kn)n be a sequence of nonempty closed convex subsets of V .
We say that Kn converges to K (a closed closed convex subset of V ) in the sense of Mosco
if the following two assumptions are satisfied

(i) If (vn)n weakly converges to v with vn ∈ Kn for n large enough, then the weak limit
v ∈ K;

(ii) For any v ∈ K, there exists a sequence (vn)n strongly converging to v such that
vn ∈ Kn for every n large enough.

Remark 2.2. The above assumptions (i) and (ii) in Definition 2.1 can be summarized
as

(2.7) w − lim sup
n

Kn ⊆ K and s − lim inf
n

Kn ⊇ K,

where s − lim inf and w − lim sup denotes the inferior strong limit and the superior weak
limit respectively in the sense of Kuratowski-Painlevé. We note also that, since strong
convergence implies weak convergence, (i) and (ii) are equivalent to

w − lim sup
n

Kn ⊆ K ⊆ w − lim inf
n

Kn and s − lim sup
n

Kn ⊆ K ⊆ s − lim inf
n

Kn.

We can find some further characterizations of the Mosco-convergence by using projections,
distance functions and the convergence of Yosida approximations in [9], [21], [19].

In the very case where the sequence Kn is related to a set-valued application we may
formulate the Mosco-convergence as follows :

Definition 2.3. Let K : V ⇒ V a set-valued application. For any v ∈ V and any
sequence (vn)n∈N (weakly) converging to v, we say that the sequence of sets K(vn) Mosco-
converges to K(v) if and only if :
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(i) For every sequence yn ∈ K(vn) such that yn weakly converges to y , then y ∈ K(v).
(ii) For every y ∈ K(v), there exists yn ∈ K(vn) (for n large enough) such that yn strongly
converges to y.

In Section 5. we give an example of Mosco-convergence related to the control problem
we study in the sequel.

3. Existence of solutions to QIV Problem (2.3). In what follows the control
function u is fixed and we set f = Bu ∈ V ′ in the sequel. For the sake of simplicity, we do
not indicate the dependence of Φ with respect to u and denote Φ(., u) := Φ for the fixed
value of the control parameter u.
Let us introduce the map S : V ⇒ V defined by

(3.1) S(x) = {y ∈ V | 〈Ay − f, z − y〉 + Φ(z) − Φ(y) ≥ 0, ∀ z ∈ K(x)},

or equivalently

S(x) =
⋂

z∈K(x)

Fx(z),

where Fx(z) = {y ∈ V | 〈Ay − f, z − y〉 + Φ(z) − Φ(y) ≥ 0}.
Clearly, the solutions of problem (2.3) are fixed points of the map S. Therefore, the scheme
of existence of solutions to this problem is based on the two following essential steps:

• S is nonempty-valued i.e.,
⋂

z∈K(x)

Fx(z) 6= ∅ for every x;

• S admits at least a fixed point.

When it is nonempty, the set of fixed points of S will be denoted by FP(S). The
operator A, a closed convex subset D of V and f ∈ V ′ being given, we call S(D) the
solutions set to the following variational inequality VI(D): find y ∈ D such that

(3.2) 〈Ay − f, z − y〉 + Φ(z) − Φ(y) ≥ 0, ∀ z ∈ D.

We look for the fixed points of S where S(x) = S(K(x)). If monotonicity and convexity
assumptions occur , a classical tool is to consider the Minty’s variational inequality : find
y ∈ D such that

(3.3) 〈Az − f, z − y〉 + Φ(z) − Φ(y) ≥ 0, ∀ z ∈ D.

Let us call SM (D) the solutions set of (3.3).
Lemma 3.1. If Φ is proper, convex and lower-semicontinuous, then for every x ∈ V,

SM (K(x)) is closed and convex, possibly empty. In addition, if A is monotone, hemicon-
tinuous then
(i) S(K(x)) = SM (K(x)).
(ii) S is closed and convex valued on its domain.

Proof. The first point is a classical result ( see [2, 6] for example) . Point (ii) is a direct
consequence of point (i).

We turn now our attention to existence results for problem (2.3) when the operator A

is strongly monotone and hemicontinuous.
Theorem 3.1. Assume the following holds:
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(i) A : V → V ′ is hemicontinuous and M -strongly monotone;

(ii) A is bounded and

∀yn → y, ∀zn ⇀ z 〈A(y), z − y〉 ≤ lim inf
n

〈A(yn), zn − yn〉.

(iii) For all (xn)n in V such that xn ⇀ x, then K(xn) Mosco-converges to K(x);

(iv) We assume that Φ : V → R is convex and continuous and either

(a) Φ is L-Lipschitz continuous with L > 0
or

(b) Φ satisfies
min
v∈V

Φ(v) = Φ(0).

Then problem (2.3) admits at least one solution.
Proof. • We first prove that S is (graph) weakly- closed, that is :

(3.4) if (xn, yn) ⇀ (x, y) with yn ∈ S(xn) then y ∈ S(x) .

Let (xn)n∈N be a sequence weakly convergent to x ∈ V. Thanks to assumptions (i) and
(iv) we know that

∀n S(K(xn)) 6= ∅,

(one can refer to [3] for example). The strong monotonicity of A ensures the uniqueness
of the solution to VI (A, f,Φ,K(xn)) for every n so that

S(xn) = {yn} .

We assume that yn ⇀ y; we have to prove that y ∈ S(x). Let z be an arbitrary point of
K(x). From (iii) there exists zn ∈ K(xn) such that zn → z. As yn ∈ S(K(xn)) we get

〈Ayn − f, zn − yn〉 + Φ(zn) − Φ(yn) ≥ 0.

In addition yn ∈ SM (K(xn)) (cf. Lemma 3.1) so that

〈Azn − f, yn − zn〉 + Φ(yn) − Φ(zn) ≤ 0.

Moreover Φ is continuous and convex, so it is weakly continuous. Using (ii) this yields
that

〈Az − f, y − z〉 + Φ(y) − Φ(z) ≤ lim inf
n

〈Azn − f, yn − zn〉 + lim
n

(Φ(yn) − Φ(zn)) ≤ 0.

So
〈Az − f, z − y〉 + Φ(z) − Φ(y) ≥ 0 , ∀z ∈ K(x) .

This means that y ∈ SM (K(x)) = S(K(x)) = S(x).
• We prove now that S has at least a fixed point. We have shown at the beginning of the
proof that

∀x ∈ V S(K(x)) = S(x) = {yx} .
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Therefore S is single-valued. Moreover, 0 ∈ K(x) (assumption (2.4) ) implies that

〈Ayx − f,−yx〉 + Φ(0) − Φ(yx) ≥ 0.

Therefore, with the strong monotonicity of A, we obtain

(3.5) M‖yx‖
2 ≤ 〈Ayx − A(0), yx〉 ≤ Φ(0) − Φ(yx) + 〈f − A(0), yx〉.

If assumption (iv)-(a) is satisfied, then using (3.5), we get

M‖yx‖
2 ≤ L‖yx‖ + 〈f − A(0), yx〉 .

Thus, ‖yx‖ ≤ c‖f‖∗ with c = cf,L,M =
‖f − A(0)‖∗ + L

M
(c is independent of x).

If assumption (iv)-(b) is satisfied, then using (3.5), we have

M‖yx‖
2 ≤ 〈f − A(0), yx〉 .

Thus, ‖yx‖ ≤ c‖f‖∗ with c = cf,M =
‖f − A(0)‖∗

M
(c is independent of x).

Consider the convex weakly compact C0 := B(0, c) of V : we observe that S(C0) ⊂ C0. As
S is single valued and weakly closed we may use Schauder’s Theorem [2, 22] which ensures
the existence of a fixed point of S in C0.

Remark 3.2. The above result is a general existence result. In particular the assump-
tion (iii) is a strong assumption which involves compactness of K. Many other existence
results can be found in the literature without such hypothesis but only for some specific
situations; as often the underlying compactness assumption is replaced by monotonicity
assumptions. We refer to [4] for more details.

4. Stability results for problem (2.3) with respect to f perturbations. Al-
though the generality is of great interest, we consider now the classical functional frame-
work for PDE’s control.
Let V, H be Hilbert spaces such that V ⊂ H with continuous, compact and dense em-
bedding. V ′ denotes the dual of V . The control space U is an Hilbert space as well and
Uad is the set of admissible control functions : it a non empty, convex closed subset of U .
The quasi-variational problems: QVI(A,u,Φ, K) turns to be:

(4.1) find yu ∈ K(yu) : 〈Ayu − Bu, y − yu〉 + Φ(y, u) − Φ(yu, u) ≥ 0, ∀ y ∈ K(yu).

In the previous section, we proved that for every u ∈ U the set of solutions to QVI(A,u, Φ,K)
is non empty (under assumptions of Theorem 3.1). So we may define the solution map of
problem (4.1) that we denote by

T : u 7→ T (u)

which is set-valued. We now establish the weak sequential closeness of T .
Theorem 4.1. Let be u ∈ U and (un)n∈N ∈ U a sequence weakly convergent to u in

U . Assume the following:

(i) The set-valued map K is closed and convex valued, i.e. K(w)is closed and convex
for all w ∈ V ;



8 S. ADLY, M. AIT MANSOUR AND M. BERGOUNIOUX

(ii) A : V → V ′ is hemicontinuous, strongly monotone and bounded;

(iii) for every sequence (yn)n∈N strongly convergent to y in V and (zn)n∈N weakly con-
vergent to z in V ,

〈A(y), z − y〉 ≤ lim inf
n

〈A(yn), zn − yn〉.

(iv) B : U → V ′ is a compact operator;

(v) For every xn such that xn weakly converges to x in V , then K(xn) Mosco-
converges to K(x).

(vi) Φ : V × U → R, is continuous and convex with respect to y ∈ V and either,
• Φ is L-Lipschitz continuous with respect to y ∈ V uniformly with respect to u

i.e.

(4.2) ∀u ∈ U |Φ(y, u) − Φ(z, u)| ≤ L ‖y − z‖ ,

where L > 0 is independent on u,
or
•

(4.3) ∀u ∈ U min
y∈V

Φ(y, u) = Φ(0, u) .

Moreover it must satisfies

(a) For every xn ∈ T (un) such that: xn ⇀ x (weakly in V )

Φ(x, u) ≤ lim inf
n

Φ(xn, un).

(b) For every xn ∈ T (un) such that: xn → x (strongly in V ), there are subse-
quences (xnk

) and (unk
) of (xn) and (un) respectively such that

lim sup
k

Φ(xnk
, unk

) ≤ Φ(x, u).

Then
1. There exists a constant κu depending on u such that

(4.4)
⋃

n∈N

T (un) ⊂ B(0, κu) ,

where B(0, κu) is the V -ball of radius κu.
2. For every yn ∈ T (un), the sequence yn weakly converges (up to a subsequence) to some
y ∈ T (u).

Remark 4.1. Note that
- assumptions (i)-(v) are global assumptions on operators A, K and B while (vi) is a local
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one depending on u as a limit point of a sequence (un)n∈N.
- assumptions of Theorem 3.1 have been involved in those of Theorem 4.1 so that

∀u ∈ U T (u) 6= ∅ .

Proof. We first prove (4.4).
With (2.4) and the convexity of K(yn) we claim that for any t ∈ [0, 1[ then tyn ∈ K(yn).
As yn ∈ T (un) we get

(4.5) ∀ y ∈ K(yn) 〈Ayn − Bun, y − yn〉 + Φ(y, un) − Φ(yn, un) ≥ 0,

so that (with y = tyn)

∀n ∈ N,∀t ∈ [0, 1] (t − 1)〈Ayn − Bun, yn〉 + Φ(tyn, un) − Φ(yn, un) ≥ 0 .

Now we use the first part of assumption (vi). Assuming (4.2), we obtain

|Φ(tyn, un) − Φ(yn, un)| ≤ L(1 − t)‖yn‖ ;

so

∀n ∈ N,∀t ∈ [0, 1] (t − 1)〈Ayn − Bun, yn〉 + L(1 − t)‖yn‖ ≥ 0 ,

and

∀n ∈ N, 〈Ayn − A(0), yn〉 + 〈A(0) − Bun, yn〉 − L‖yn‖ ≤ 0 .

We conclude with the strong monotonicity of A that

(4.6) M‖yn‖
2 ≤ (‖A(0)‖∗ + L + ‖Bun‖)‖yn‖ .

Alternatively, let us assume (4.2b); with (4.5) an y = 0 we get

∀n ∈ N, 〈Ayn − Bun,−yn〉 ≥ Φ(yn, un) − Φ(0, un) ≥ 0 ,

∀n ∈ N, 〈Ayn − Bun, yn〉 ≤ 0 ,

∀n ∈ N, 〈Ayn − A(0), yn〉 + 〈A(0) − Bun, yn〉 ≤ 0 ,

Once again the strong monotonicity of A yields

(4.7) M‖yn‖
2 ≤ (‖A(0)‖∗ + ‖Bun‖)‖yn‖ .

As the sequence (un) is bounded and B is compact we get (with (4.6) (respectively (4.7) )

‖yn‖ ≤ κ(u) ,

where κ is a constant depending on u.
We now show point 2: let (yn)n∈N be a sequence in T (un) such that yn ⇀ y in V. We have
to prove that y ∈ T (u)).
First, observe that yn ∈ K(yn): so with (v) , y is an element of K(y). Now, consider an
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arbitrary point z in K(y). Since K(y) is convex, for all t ∈]0, 1], zt := tz+(1− t)y ∈ K(y).
We claim that

(4.8) 〈A(zt) − Bu, y − zt〉 + Φ(y, u) − Φ(zt, u) ≤ 0 .

Indeed, according to (v) one can find a sequence (zn)n (strongly) converging to zt such
that zn ∈ K(yn) , ∀n ≥ 1. Since yn ∈ T (un), for every n ≥ 1, we have

〈A(yn) − Bun, zn − yn〉 + Φ(zn, un) − Φ(yn, un) ≥ 0 .

Using the monotonicity of A it follows that

〈A(zn) − Bun, zn − yn〉 + Φ(zn, un) − Φ(yn, un) ≥ 0.

The operator B : U → V ′ is compact, so (Bun)n strongly converging to Bu in V ′( up to a
subsequence). Using hypothesis (iii) and (vi), up to subsequences if necessary, we obtain

〈A(zt) − Bu, y − zt〉 + Φ(y, u) − Φ(zt, u) ≤ lim inf
n

〈A(zn) − Bun, yn − zn〉

+ lim inf
n

Φ(yn, un) − lim sup
n

Φ(zn, un) ≤ 0.

So, we have proved relation (4.8). We conclude that,

〈A(zt) − Bu, zt − y〉 + Φ(zt, u) − Φ(y, u) ≥ 0.

Using the convexity of Φ with respect to the first variable, we get

〈A(zt) − Bu, t(z − y)〉 + t[Φ(z, u) − Φ(y, u)] ≥ 0;

this gives

(4.9) ∀t ∈]0, 1] 〈A(zt) − Bu, z − y〉 + Φ(z, u) − Φ(y, u) ≥ 0,

We conclude with the hemicontinuity of A that

(4.10) 〈A(y)−Bu, z − y〉 + Φ(z, u)−Φ(y, u) ≥ 0

As the inequality (4.10) holds for any z ∈ K(y), we conclude that y ∈ T (u); this achieves
the proof.

Example 4.2. Let us give a simple case where assumption (v) of Theorem 4.1 is
satisfied . We define the set-valued mapping K : V ⇒ V by

(4.11) K(v) = Ko + m(v)

where Ko is a fixed closed convex and nonempty subset of V and m : V → V is a compact
map ( or equivalently weakly - strongly continuous ).

Proposition 4.3. For any sequence (vn) weakly convergent to v in V , then K(vn)
Mosco-converges to K(v), where K is given by (4.11).

Proof. Let (vn) be a sequence of V such that vn ⇀ v, we have to prove that K(vn)
Mosco-converges to K(v). Let wn ∈ K(vn) such that wn ⇀ w in V . Since the operator
v 7→ m(v) is compact m(vn) ⇀ m(v). Since Ko is weakly closed then, w − m(v) ∈ Ko.
Hence, w ∈ K(v).
Let w ∈ K(v), then ∃k ∈ Ko such that: w = k + m(v). We set wn = k + m(vn) ∈ K(vn).
It is clear that wn → k + m(v) = w. Therefore, K(vn) Mosco-converges to K(v).
We will give in section 5, some examples of such set-valued mapping K.
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5. The optimal control problem.

5.1. Existence result. Now we turn back to problem (P) mentioned in Section 1.
We suppose that assumptions of Theorem 3.1 are satisfied so that the set-valued operator
T (defined in the previous sections) is well defined on U .
Consider a cost functional J : V × U → R ∪ {+∞}, we set

(P) min{J(y, u), y ∈ T (u), u ∈ Uad,⊂ U},

where Uad is a non-empty, convex and closed subset of the (Hilbert) space U .

Theorem 5.1. Assume J is convex and lower-semicontinuous and either Uad is
bounded or J is coercive with respect to u. Assume assumptions of Theorem 4.1 are
satisfied for every cluster point of minimizing sequences of problem (P). Then problem
(P) has at least one optimal solution.

Proof. The proof is straightforward. Let (un)n∈N ∈ Uad be a minimizing sequence.
The boundedness of Uad or the coercivity of J implies that un is bounded in U . Let u

be a weak-cluster point of (un)n∈N and denote the corresponding subsequence similarly.
Assumptions of Theorem 4.1 are satisfied so that for every yn ∈ T (un), yn is a bounded
sequence and weakly converges (up to a subsequence) to y ∈ V . Moreover y ∈ T (u).
We end the proof with the lower semi-continuity of J

In the sequel, using [17] formalism we choose J as follows :

• N : U → U is a linear, symmetric continuous and coercive operator i.e.

∃κ > 0 : 〈N v, v〉 ≥ κ‖v‖2, ∀v ∈ U

• H is a Hilbert space of observations and C ∈ L(V,H) be a given continuous oper-
ator.

• The desired state is zd ∈ H

We associate the following cost functional J : V × U → R defined by

(5.1) J(y, u) = 〈Nu, u〉U + ‖Cy − zd‖
2
H.

5.2. Some relevant examples. In this subsection, we will give some simple exam-
ples to support our theoretical results.

Example 5.1. Implicit Signorini problem

Let Ω ⊂ R
n an open bounded connected set with a regular boundary ∂Ω = Γ. Let us

consider the following implicit Signorini problem

(5.2)

{

Find y ∈ K(y) such that
a(y, z − y) ≥ 〈u, z − y〉, ∀z ∈ K(y)

with the following data

V = {y ∈ H1(Ω) | ∆y ∈ L2(Ω)} ,
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for each y ∈ V , we associate the closed convex non empty set of H1(Ω) defined by

K(y) = {z ∈ H1(Ω) | z|Γ ≥ h −

∫

Γ
ϕ

∂y

∂n
dσ a.e. on Γ},

with h, ϕ ∈ H
1

2 (Γ) and h ≥ 0 on Γ.

a(y, z) =

∫

Ω

(

∇y · ∇z + y z
)

dx

〈u, z〉 =

∫

Ω
u z dx, u ∈ L2(Ω) .

It is known that the solution y of (5.2) ( Implicit Signorini problem) is characterized
by















−∆y + y = u a.e. in Ω

y ≥
(

h −

∫

Γ
ϕ

∂y

∂n
dσ

)

,
∂y

∂n
≥ 0,

[

y −
(

h −

∫

Γ
ϕ

∂y

∂n
dσ

)]∂y

∂n
= 0 on Γ.

We have to verify assumptions of Theorem 4.1:

• Assumption (i) is satisfied (we refer to [13] p.130) .

• It is clear that , (ii) and (iii) are ensured (with A = −∆ + Id).

• U = H = L2(Ω) and B : H → V ′ is the canonical (compact) embedding, so we get
(iv).

• Let us show that (v) is satisfied. We first note that K is defined by (4.11) with

Ko = {z ∈ H1(Ω) | z|Γ ≥ h a.e. on Γ }

and m : V → V is given by m(y) = −

∫

Γ
ϕ

∂y

∂n
dσ , (here real numbers are iden-

tified to constant functions). We have to prove that m is compact. Let yk be
a sequence of V weakly convergent to y. The normal derivative trace operator
is linear, continuous (and thus weakly continuous) from V to H− 1

2 (Γ)([18] ) so
that m(yk) → m(y) in R. As the constant functions space (identified to R) is
(compactly) embedded in V this gives the strong convergence of m(yk) to m(y) in
V .

• Φ = 0 so that (vi) is fulfilled.

We may summarize :
Theorem 5.2. Assume α > 0. Then the optimal control problem



































min ‖y − zd‖
2
L2(Ω) + α‖u‖2

L2(Ω)

−∆y + y = u a.e. in Ω

y ≥
(

h −

∫

Γ
ϕ

∂y

∂n
dσ

)

,
∂y

∂n
≥ 0,

[

y −
(

h −

∫

Γ
ϕ

∂y

∂n
dσ

)]∂y

∂n
= 0 on Γ.

u ∈ Uad
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has (at least) one optimal solution.

Example 5.2. Let Ω ⊂ R
n an open bounded connected set with a regular boundary

∂Ω = Γ. We consider (5.2) with
V = H1(Ω)

a(y, z) =

∫

Ω

[

n
∑

i,j=1

aij(x)
∂y

∂xi

(x)
∂z

∂xj

(x) + b(x)y(x)z(x)
]

dx,

where the functions x 7→ aij(x) and x 7→ b(x) satisfy the following classical assumptions:

aij ∈ L∞(Ω), 1 ≤ i, j ≤ n, b ∈ L∞(Ω), b ≥ 0 a.e. on Ω

and

∃β > 0, ∀ξi, 1 ≤ i ≤ n,

n
∑

i,j=1

aijξiξj ≥ β

n
∑

i=1

ξ2
i a.e. on Ω.

K(y) = {z ∈ H1(Ω) |

∫

Ω
(z − y)(x) dx ≥ 0 }.

It is easy to check all assumptions of Theorem 4.1 except (v). Assume that yk is a
sequence of H1(Ω) weakly convergent to y. Let us prove that K(yn) Mosco-converges to
K(y):
(i) Assume that zn ∈ K(yn) weakly converges to z in H1(Ω). So (zn − yn, 1)L2(Ω) ≥ 0 and

obviously converges to (z − y, 1)L2(Ω). Therefore

∫

Ω
(z − y)(x) dx ≥ 0 that is z ∈ K(y).

(ii) Let z ∈ K(y). We set zn = z +
∫

Ω(yn − y)(x)dx. Obviously zn strongly converges to
z in H1(Ω). Moreover

∫

Ω
(zn − yn)(x) dx = (zn − yn, 1)L2(Ω)

= (z+(yn−y, 1)L2(Ω)−yn, 1)L2(Ω) = (z−yn, 1)L2(Ω)+(yn−y, 1)L2(Ω) = (z−y, 1)L2(Ω) ≥ 0 ,

that is zn ∈ K(yn).
Now it is easy to conclude as previously.

Example 5.3. Implicit Obstacle problem with friction

Let Ω ⊂ R
2 be the section of a tube with infinity length Ω×] − ∞,+∞[ and a thin

membrane spanned in the tube held by a thin elastic wire. We assume that Ω is an open
bounded connected set with a regular boundary ∂Ω. The membrane deforms under the
action of a surface density force f acting in the axe-direction and is required to stay on
or above an obstacle m(u) where m : H1(Ω) → H1(Ω) is a compact operator. The forces
f are balanced by the force that the obstacle exerts on when the membrane is in contact
with it. The displacement of the membrane is governed by the quasi-variational inequality
(5.2) where

V = H1(Ω) , K(y) = {z ∈ V | z ≥ m(y)} , a(y, z) =

∫

Ω

(

∇y · ∇z + y z
)

dx
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〈f, y〉 =

∫

Ω
fy dx and Φ(y) =

∫

Γ
g |y| dσ,

with g ∈ L∞(Γ), g ≥ 0 on Γ a given friction bound.
Assumptions of Theorem 4.1 are satisfied. The function Φ is convex and Lipschitz contin-
uous and it is easy to see that

K(y) = Ko + m(y) ,

as in (4.11) with

Ko = {z ∈ H1(Ω) | z ≥ 0 a. e. in Ω } ,

So we conclude that Theorem 4.1 applies.

6. Conclusion. We have given an abstract framework that allows to consider optimal
control problems governed by Quasi-Variational Inequalities. The strong monotonicity of
the operator A and the Mosco-convergence of the set-valued application K involved in the
QVI are key assumptions in the proofs presented in this paper. Since in some applications
the operator A is only semi-coercive and since the underlying compactness assumption
(involved in the Mosco-convergence of K) does not allow to deal with “usual ” constraints
as pointwise constraints for example. It would be be very interesting to obtain similar
results with only a monotonicity assumption insteact of a compactness one. This is out
of the scope of the present manuscript and will be the subject of another work.
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Paris (1968).

[19] P.L. Lions, Two remarks on the convergence of convex functions and monotone operators, Nonlinear
Analysis 2, pp 553-562 (1978).

[20] U. Mosco , Convergence of convex sets and of solutions of variational inequalities, Adv. in Math.
3, 510-585, 1969

[21] Y. Sonntag, Convergence au sens de U. Mosco : théorie et application à l’approximation des solu-
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