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Abstract. The plastic flow of a foam results from bubble rearrangements. We study their occurrence in
experiments where a foam is forced to flow in 2D: around an obstacle; through a narrow hole; or sheared
between rotating disks. We describe their orientation and frequency using a topological matrix defined in
the companion paper [1], which links them with continuous plasticity at large scale. We then suggest a
phenomenological equation to predict the plastic strain rate: its orientation is determined from the foam’s
local elastic strain; and its rate is determined from the foam’s local elongation rate. We obtain a good
agreement with statistical measurements. This enables us to describe the foam as a continuous medium
with fluid, elastic and plastic properties. We derive its constitutive equation, then test several of its terms
and predictions.

PACS. 83.80.Iz Emulsions and foams – 83.10.Bb Kinematics of deformation and flow – 62.20 Deformation
and plasticity

1 Introduction

A liquid foam, made of gas bubbles surrounded by liq-
uid walls (Fig. 1), is elastic for small strain, plastic for
large strain, and flows at large strain rates [2,3,4]. This
complex mechanical behaviour is exploited in numerous
applications, such as ore separation, drilling and extrac-
tion of oil, food or cosmetic industry [2]. It is not yet fully
understood [4]. Existing models of complex fluids include
Oldroyd’s visco-elasticity or Bingham’s visco-plasticity [5,
6]. Complete models tend to unify elastic, plastic and fluid
behaviour [7,8,9,10,11,12,13].

Most models describing the foam as a continuous ma-
terial have to make an assumption to describe phenomeno-
logically the elastic to plastic transition, and the plastic
strain rate. Here, we want to link it directly with the ob-
servation of foam’s individual components, the bubbles. In
fact, bubbles play for foams the same role as microscopi-
cal components play for other complex fluids, but have the
advantage of being easily observable. The individual plas-
tic events [14] in foams are the topological rearrangements
(neighbour swapping, also called ”T1 processes” [2]). Pre-
dicting the occurrence and properties of T1s, and charac-
terizing their impact at large scale, is thus a crucial step
to describe the foam as a continuous material.

Section 2 lists the ingredients we use. We start from a
scalar model of the foam plasticity and dynamics, which

a Author for correspondence at philippe.marmottant@ujf-
grenoble.fr

predicts correctly its rheological behaviour [10]. We then
include robust statistical tools defined in the companion
paper [1], which provides: (i) a link between local (bub-
ble) behaviour and global (foam) measurements of elas-
tic, plastic and fluid behaviours; (ii) matrix (rather than
scalar) measurements of these quantities, that is, including
direction and magnitude of anisotropy; (iii) space depen-
dence of these measurements (heterogeneous deformation
instead of homogeneous).

Section 3 then presents a kinematic equation to de-
scribe the elastic to plastic transition, which is the main
point of this paper. It is an analytical prediction of the
plastic strain rate, based on the elastic strain and the to-
tal strain rate.

Section 4 tests its predictions on experiments in dif-
ferent foam flows. The relationship between experimental
data agrees with our analytical prediction. Moreover, we
correctly predict the frequency and spatial distribution of
T1s, which differs much from the spatial distribution of
both elastic strain and total strain rate.

Section 5 concludes by discussing these findings and
possible applications to other systems. It proposes a dy-
namic constitutive equation for foam rheology, relating
stresses to applied strains, with the introduction of a vis-
cosity. This closes the complete set of equations describing
a foam, leading to testable predictions.
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(a)

(b)

(c) (d)

Fig. 1. Experimental 2D flows of a foam : top view, here flow
from left to right. (a) Wet foam (between glass and water)
flowing around an obstacle, picture B. Dollet [15]; field of view
15 cm × 10 cm. (b) Dry foam (between parallel glass plates)
flowing around an obstacle, picture C. Raufaste [1]; field of view
13.3 cm × 10 cm. (c) Moderately dry foam (between parallel
plexiglass plates) flowing through a narrow hole, picture M.
Asipauskas [16]; field of view 7.5 cm × 10 cm. (d) Wet foam
(between parallel glass plates) sheared between two concentric
wheels with tooth-shaped boundaries to prevent slipping; the
rotating inner wheel is visible at the bottom, the fixed outer
wheel is visible at the top [17]; arrows indicate the measured
velocity field; ; field of view 12.5 cm × 11.5 cm Liquid fractions
are approximately estimated as: (a) 4 10−2 [18], (b) 2 10−4 [19],
(c) 10−2 [16], (d) 5 10−2 [17].

2 Ingredients of model and tests

2.1 Continuous description of plasticity with scalar
strains

This section summarizes the model presented in [10] for
homogeneous strains, described by a simple scalar. This

situation arises when considering the strain in a rheome-
ter, where strain is induced by the displacement of a plate
with respect to the other, and characterized by a scalar.

The total applied strain rate (or symmetrised veloc-
ity gradient) contributes in part to load the elastic strain
(bubbles deform) and to the plastic strain rate (bubbles
move relatively to each other). The total applied strain
rate is the sum of an internal elastic strain rate and the
irreversible plastic strain rate:

ε̇tot =
dεel

dt
+ ε̇pl, (1)

where we used a different notation for the time derivative
of εel, to emphasise that it is an internal state variable of
the material.

A kinematic equation describes how the total strain
rate is shared between change of elastic strain and plastic
strain. For slowly sheared foams plasticity occurs if εel and
ε̇tot have the same sign (loading of the material), and is
zero otherwise (unloading) [10]:

if εelε̇tot > 0, ˙εpl = h(εel)ε̇tot,

if εelε̇tot ≤ 0, ˙εpl = 0. (2)

The plasticity fraction, or yield function, h, is zero at zero
strain (elasticity only, no plasticity), and reaches 1 (plas-
ticity only, no elasticity) at the yield strain, which is a
material dependent parameter. A smooth onset of plas-
ticity can be described by a plasticity function h which
continuously interpolates between the value 0 (completely
elastic) and 1 (completely plastic) [10].

Eq. (2) closes the system of kinematic equations de-
scribing a foam. Indeed from eqs (1,2), we can write:

dεel/dt = ε̇tot − h(εel)ε̇, (3)

which can be integrated, knowing the applied strain rate,
to calculate the internal elastic strain.

The scalar constitutive equation [10] proposed a total
stress that is the sum of the elastic and viscous stress. It
was simple to assume a linear relation:

σ = G εel + η ε̇, (4)

with G an elastic modulus and with η a viscosity.
This model is thus based on three material-dependent

parameters; an elastic coefficient, a viscous one, and a
plastic yield strain. It successfully predicted foam dynam-
ical properties. In oscillatory regime, it predicts storage
and loss moduli G′, G′′. In stationnary regime, it resem-
bles a Bingham model. It also enables to predict transient
behaviours and creep [10]. If needed, it is possible in prin-
ciple to refine it, by introducing some non-linearities in
eq. (4); for instance by replacing ε̇ by a power law, ε̇n (in
which case, in a stationnary regime it looks like a Herschel-
Buckley model); or by having G or η not constant.

2.2 Direct measurement of strain, rearrangements and
flow

This section summarizes the parts of the companion pa-
per [1] which are used in what follows. The matrices ε̇tot,
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εel, and ε̇pl generalise the total, elastic and plastic strains
in equation eq. (1), and are function of the position in the
material. They are measured directly using the statistical
strains based on the bubble network: U , V and P , re-
spectively. They are all obtained from the texture tensor
M ≡ 〈ℓ⊗ ℓ〉, based on links ℓ between each pair of neigh-
bouring bubble centers (see figure 2). Coarse-graining pro-
cedures yield a continuous description of the foam.

Fig. 2. Sequence of images of a T1 event in a measurement
box: (a) shows the network of links ℓ (thin lines) joining neigh-
bour bubble centers superimposed on snapshots extracted from
a dry foam [1], and the disappearing link (ℓd, dashes), (b) the
intermediate stage, and (c) the appearing link (ℓa, thick line).

The internal strain is defined from the relative defor-
mation of bubbles with respect to the deformation at rest
M0, as:

U ≡ 1

2
(log M − log M0) . (5)

The topological rearrangment rate is defined from the
discontinuous deformation of the network after each rear-
rangements. It describes the time derivative of U due to
T1 events:

P ≡ f
1

2
(〈ℓd ⊗ ℓd〉 − 〈ℓa ⊗ ℓa〉) M−1 + sym

= fδUT1, (6)

f being the frequency of rearrangments in an observation
box containing one link, and δUT1 is the sudden drop in
internal strain associated with a T1. It is computed from
the disappearing links ℓd and appearing links ℓa (see figure
2).

The rate of strain is defined from the continuous de-
formation of the network. It describes the time derivative
of U between T1 events as:

V ≡ W + W t

2
,

where W = M−1

〈

ℓ ⊗ dℓ

dt

〉

. (7)

2.3 Experimental data

Horizontal monolayers of bubbles (Fig. 1) offer a unique
possibility to observe all bubbles: their deformations, re-
arrangements and velocity. They are quasi-2D foams, be-
cause they are not strictly 2D. However, their flow is truly
2D: it has no vertical component. A large set of detailed
data is available; bubbles act as convenient tracers of elas-
tic strain, rearrangements and velocity [1,16,20].

We reanalyse experimental data already published and
courteously provided to us by the authors. For details of
the materials and methods, see the original publications.
In these four set-ups, coalescence and ageing are below
detection level. We assume that the gas and liquid con-
stituents of the foam move together, at the same velocity
(no drainage).

In Fig. (1a), the foam is confined between the sur-
face of water and a horizontal plate of glass. Bubbles are
rather round, due to the high effective liquid fraction [18].
Thus the region where T1s occur is larger, more widely
distributed around the obstacle (compare Figs. (12) and
(15) below). There are thus more regions of the flow where
statistics are significant. This is why we use this experi-
ment for the most detailed quantitative tests (section 4.1).
In Figs. (1b-d), the foam is confined between two hori-
zontal plates of glass, and drier liquid fractions can be
obtained.

In Figs. (1a-c), the channel (only partly visible) is hor-
izontal, its length is 1 m, its width 10 cm, its thickness
3.5, 3 and 0.5 mm respectively. It is filled with bubbles
obtained by steadily blowing nitrogen in water with com-
mercial dishwashing liquid. The bubbles are monodisperse
and form a disordered monolayer which reaches the free
exit at the end of the channel. The resulting steady plug
flow, well in the quasistatic regime [15], is made hetereo-
geneous by inserting a 3 cm diameter obstacle (Fig. 1a,b)
or a constriction [16] (Fig. 1c). Thus different regions si-
multaneously display different velocity gradients, elastic
strains, and rearrangement rates, and allow to sample si-
multaneously many different conditions.

In Fig. (1d) the foam is in a 2D circular Couette ge-
ometry [17]. Briefly, the 2-mm thick foam monolayer is
formed between two concentric disks (only partly visible)
with semicircular teeth of radius 1.2 mm to match the
bubble diameter, thus anchoring bubbles at the walls. The
outer disk, of radius 122 mm, is fixed. The inner disk, of
radius 71 mm, rotates at 0.25 mm s−1, thus shearing the
foam. The resulting velocity field decreases quickly with
the distance to the inner disk. This experiment has stirred
a debate about the existence and cause of velocity local-
ization: for review, see for instance ref. [9]. The experi-
mental measurements we present here complement those
of ref. [20]; they are largely model-independent and might
be used in the future to contribute to this debate.

2.4 Identification with continuous elastic, plastic and
total strain rates

This section discusses an additional property of foams,
whether 2D or 3D: they are a unique material where the
statistical measurements (section 2.2) can be identified
with usual continuous quantities.
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2.4.1 Affine flow and total strain rate

As discussed in the companion paper [1], if the flow of a
material is affine, then W measures the velocity gradient:

W
affine≃ ∇v. (8)

Fig. (3) shows an example of our experimental tests of eq.
(8). We have measured the detailed components, including
the rotational (asymmetric part), as well as eigenvalues
and axes of the symmetric part. All these quantities are
the same for W and ∇v, within a few percents precision,
with a correlation close to 1. The measurements of W and
∇v have a comparable precision, and suffer from similar
imprecisions near the channel walls and obstacle. Both
have a small trace (ellipses are nearly circular). Tests at
smaller and larger scales, that is with different sizes of
the representative volume element (RVE), yielded similar
results (data not shown).

This agreement is unexpectedly good, given that with
the dry foam chosen here the strain is large and its gra-
dient is strong. At large scale, movements of individual
objects within the same RVE can differ considerably; but
even in this unfavorable case, the affine assumption seems
to hold, as shown in Fig. (3). The reason seems to be that
eq. (8) is correct whenever M does not vary significantly
within the chosen RVE [19]. Together, eqs. (7,8) enable us
to identify the rate of growth of links, V , with the total
strain rate, ε̇tot = (∇v + ∇vt)/2.

2.4.2 Elastic stress and strain

In a foam, the elastic energy is proportional to the bubble
surfaces, so that the elastic strain directly stems from bub-
ble deformation. It has been experimentally checked that
U (or at least its deviatoric part) actually determines the
(deviatoric) elastic stress: see refs. [16,20], to which we
refer for details of the measurement method. We check it
here too (Fig. 4), using our driest example (Fig. 1b) in
order to improve the measurement precision of the devia-
toric elastic stress.

This indicates that the internal strain U , which is a
state variable constructed from bubble deformations, mea-
sures well the reversible strain εel that give rise to elastic
stresses, although the flowing foam is clearly out of the
elastic regime. In what follows, we thus call U the ”elastic
strain”.

Up to a prefactor, namely the foam’s shear modu-
lus, (Ud)

2 represents the elastic energy stored (e.g. due
to shear): that is, the difference between the energy of the
current state and that of the local minimum. The latter
varies at each T1.

2.4.3 Plastic strain rate

Disordered foams, which we consider here, are models for
the plasticity of amorphous materials. Plastic events take
the form of bubble rearrangements. When averaged over

(a)

(b)

Fig. 3. Affine assumption: test of eq. (8) on the foam of Fig.
(1b). (a) Comparison of maps of W (top) and ∇v (bottom):
ellipses, symmetric part; grey levels, antisymmetric part (bar:
5.6 × 10−3 s−1). (b) Quantitative comparison: top, (WXX −

WY Y )/2 versus (∇vXX −∇vY Y )/2, and the same for all other
components (superimposed): XX+Y Y , XY −Y X, XY +Y X;
bottom, angle (in degrees) of ellipses plotted in (a). Each point
comes from one RVE of the image.
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Fig. 4. XY components of the elastic stress σ (in arbitrary
units) versus XY components of U . Each point comes from one
RVE of the image of Fig. (1b). The slope of the cloud of points
is the foam’s 2D shear modulus; it is of order of the bubbles’
line tension λ to diameter ratio. Data for the (XX − Y Y )/2
components are superimposed: they have the same slope.

Fig. 5. Schematic impact of individual (discrete) rearrange-
ments on the stored elastic strain U , for a constant loading
rate ε̇. Rearrangements relax exponentially the strain over a
time τrelax, with here ε̇τrelax = 0.02 ≪ 1. In the present con-
tinuous model, rearrangements are coarse-grained. Reprinted
from ref. [10].

time or space, the effect of topological rearrangements is
usually smooth, and the foam behaves as a continuous ma-
terial (Fig. 5). This contrasts with ordered foams, where
bubbles are arranged in a honeycomb lattice and topo-
logical rearrangements are highly correlated, which are
models for the plasticity of crystals based on dislocation
movement [22,23,24].

Each topological rearrangements is instantaneous (by
definition of a topological change) and imply a change
from a stable elastic branch to another. It is followed by
a relaxation over a finite time τrelax, determined by the
ratio of dissipation to driving elastic force. The rate of
T1s is determined by the shear rate, which we keep here
slower than τ−1

relax
in what follows (for extension to higher

shear rates, see [11]). In that case, the foam has time to
relax towards a new local equilibrium state (Fig. 6), and
the total energy dissipated is determined by the differ-
ence between the energy barrier and the new local energy
minimum. Thus the foam stays in this configuration: the

Fig. 6. Shear of a 2D ordered foam [21], different liquid frac-
tion: 9.3% (close-packing, lowest amplitude curve), 5.5% (onset
of a negative slope unstable branch), 3% and 1%. Decreas-
ing liquid leads to increasing maximum stress. The topological
rearrangement occurs when the stress versus strain curve be-
comes unstable (dotted line) and induces an irreversible strain.
Three 1% foams state are represented (circles on curve). The
stress σ is here normalised using surface tension γ and bubble
radius d.

transformation is plastic. It is possible to come back, with
hysteresis, to the state which preceded the T1: since it too
is a local energy minimum, the succession of a T1 and its
inverse T1 leads to exactly the same pattern [25,26].

Note that each relaxation following the T1 involves an
irreversible dissipation, which measures the plastic dissi-
pation rate (as seen on Fig. 6), if the strain rather than
stress is imposed, the stress-strain curve of an 2D ordered
foam with less that 5.5% of liquid has an unstable branch).
The dissipation power of the plastic flow is proportional
to the rate of T1s, thus to the shear rate: the stress is thus
independent on the shear rate, which is characteristic of
solid friction (plastic contribution to stress, see plateau of
Fig. 5).

To summarize, a topological rearrangement is equiva-
lent to a plastic strain. This is specific to dry foams: as
discussed in the companion paper [1], this equivalence is
not general to all materials. The irreversibility is associ-
ated with the relaxation after a rearrangement.

When a rearrangement occurs, the total strain is not
changed locally. The elastic strain decreases by δεel =
−δUT1, and the plastic strain thus increases by δεpl =
δUT1. Hence, the matrix P measures well the plastic
strain rate ε̇pl = δεpl/δt.

2.4.4 Complete identification

The preceding sections suggest that, in dry foams, it should
be possible to achieve the complete identification between
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statistical measurements and continuous quantities:

U
foams≃ εel,

V ≃ ε̇tot,

P ≃ ε̇pl. (9)

The statistical measurements are linked by:

V =
DU

Dt
+ P , (10)

with D the total corotational derivative [1]: DU/Dt =
∂U/∂t + (v∇)U + ΩU − UΩ. Equation (10) is the ma-
trix version of eq. (1); here too, the total applied strain
rate is the sum of the internal elastic strain rate and the
irreversible plastic strain rate.

We conclude that the measurable quantities U , V and
P make the connection between the discrete pattern and
its continuous mechanical behaviour. In the following, since
we present experimental results, we stick to the statistical
measurements of strains (l.h.s. of eqs. (9)). They can of
course be replaced by the usual notations from material
science (r.h.s. of eqs. (9)).

3 Model for foam plasticity

This section introduces a prediction of the plastic strain
rate and topological rearrangements in foams.

3.1 Plastic strain rate

The deviatoric elastic strain (shear, without dilation) is
defined as the traceless matrix:

Ud ≡ U − 1

2
(TrU)I. (11)

Its amplitude is defined as

Ud ≡
[

Ud : Ud

2

]1/2

, (12)

where we use the double contraction product, namely the
scalar product of matrices, A : B =

∑

i,j AijBij . In a
2D configuration, Ud provides the absolute value of the
eigenvalues of matrix Ud. The matrix Ud/Ud is then a di-
rectional matrix that writes diag(1,−1) in the eigenvector
basis of elongation. For details of notations see [1].

To generalize the scalar model, we need to specify not
only the amplitude of the plastic strain rate matrix P ,
which we take linear in the strain rate V ; but also its
direction, which we assume is aligned with the current
deviatoric elastic strain Ud. In other words, the plastic
evolution is directed along the preexistent elastic strain
and occurs with a rate which is the projection of the total
strain rate onto the elastic strain. As will become apparent
below (section 4.1), this amounts to a mean field approx-
imation.

Our main assumption is thus that P is determined by
the ”projection” of V on Ud, defined (in analogy with
the projection of a vector on another) using the double
contraction product:

V proj =
(V : Ud)

2Ud
2

Ud. (13)

We thus generalise eq. (2) using a scalar plasticity func-
tion, h, of the strain amplitude, Ud:

if V : Ud > 0, P = h(Ud)V proj , (14)

Eq. (14) applies for the case where the total strain
loads the internal strain (V : Ud is positive). If V is
proportional to Ud (same direction, same anisotropy), this
equation reduces to P = h(Ud)V , equivalent to the scalar
one, eq. (2); moreover, if Ud has reached the yield value
(h = 1), then P = V .

On the opposite, if the applied strain rate V is in the
direction opposed to internal strain (V : Ud is negative),
it contributes to unload it elastically. It thus does not in-
duce many rearrangements [19]. We neglect them by set-
ting P to zero :

if V : Ud < 0, P = 0. (15)

Note also that eq. (14) would reduce to the classical
Prandtl-Reuss model for a perfect plastic material that
yields when the elastic strain reaches the value UY [27], if
the plasticity function was an Heaviside function, h (Ud) =
H(Ud − UY ), discontinuously jumping from the value 0
when Ud < UY to 1 when Ud ≥ UY .

3.2 Rearrangement frequency

Each rearrangement modifies the strain in its measure-
ment box. We consider here that the strain is concen-
trated within the reference area attributed to one link
Alink = A/Nlink (the perturbation in a continuous elastic
space rapidly decays with the distance to the rearrange-
ment location, see model [14]). If we assume that each
plastic change has a constant amplitude ε0, we can write:

δUT1 = ε0

Ud

Ud
, (16)

where we assumed that rearrangements are aligned with
elasticity (following eq. 14). We have seen that the plas-
ticity rate matrix can be written:

P = f δUT1, (17)

where f is the frequency of rearrangements per link. When
considering averages in larger counting boxes, containing
Nlink links (approximately 3 times the number of bubbles
in the box [2]), equation (17) still holds and writes P =
fbox δU box. Indeed the frequency in the counting box is
fbox = Nlinkf , and the impact of a T1 on a larger surface
is diluted to the value δU box = δUT1/Nlink.
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Combining the plasticity equation (eq. 14) and the am-
plitude of strain relaxation (eq. 16), we obtain the fre-
quency f of T1 events, per link:

if V : Ud > 0, f =
h(Ud)

2ε0Ud
(V : Ud) ,

if V : Ud < 0, f = 0. (18)

It depends on the positive eigenvalue γ̇ of the elongation
rate, and on the relative angle θ between the eigenvec-
tors of the elongation rate and strain. If cos(2θ) < 0, the
frequency is zero; if cos(2θ) > 0, the order of magnitude
of the frequency can be estimated: f ∝ cos(2θ)γ̇. This ex-
tends findings by [28]. It expresses that rearrangements are
frequent where the total strain rate is strong, and when
the elongation rate is parallel to the pre-existing strain
thus loading it through the yield surface.

4 Experimental tests

4.1 Rearrangements: orientation and frequency

This section uses data of Fig. (1a).
Fig. (7) confirms the mean field approximation of the

model (eq. 14), namely that disappearing and appearing
links are determined (in average) by the existing strain.
More precisely, P makes an angle of 0± 9◦ with M or U :
disappearing links ℓd are mainly in the elongation direc-
tion (Fig. 7, top). Their length is 1.2±0.1 times larger than
the average of existing links in that direction, ℓ+ =

√
2λ1,

where λ1 is M ’s largest eigenvalue (Fig. 7, middle). Con-
versely, links ℓa appear in the contracted direction of M ,
with a length 1.1±0.1 times the average of existing links,
ℓ− =

√
2λ2 (Fig. 7, bottom).

The jump in elastic strain is therefore oriented along
U . Its amplitude is approximately:

δUT1 ≈
(

ℓ2
d/ℓ2

+ 0
0 −ℓ2

a/ℓ2
−

)

≈
(

1.3 ± 0.2 0
0 −1.2 ± 0.2

)

, (19)

using δUT1 ≈ δM × M−1/2, from the differentiation of
eq. (5) [1]. We conclude from equation (16) that each rear-
rangement changes the elastic strain per link by a constant
amount:

ε0 ≃ 1.2 ± 0.2. (20)

Strain is decreased by slightly more than one average length
in the elongation direction, and increased by slightly more
than one average length in the orthogonal direction.

Rearrangement frequency is well predicted (Fig. 8) by
equation (18). The main parameter required, namely UY ,
is directly read from measurements of U : here UY = 0.15,
which is reasonable for a foam with 4% liquid fraction.
Second, the shape of the elasto-plastic transition has been
chosen as a quadratic h function, which is justified in sec-
tion 4.2.

Fig. 7. Histograms of measurements in all regions of the foam
(Fig. 1a). Top: angle between topological events and elonga-
tion. Middle: length of disappearing links compared to average
length in elongation direction ℓ+. Bottom: length of appearing
links compared to average length in compressed direction ℓ−.

Fig. 8. Frequency of rearrangements: observed versus pre-
dicted. Each point corresponds to a RVE of the foam, that is,
one ellipse of Fig. (12). Observations: frequency fmeasured of
rearrangements (per link and second) mesured on Fig. (1a).
Predictions: f from eq. (18), setting the yield function to
h = min((U/UY )2, 1) and the yield UY = 0.15, while ε0 = 1.2
(eq. 20). Solid line: diagonal fmeasured = f .
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Fig. 9. Foam flow. Top: superimposed images evidence the
streamlines (here from Fig. (1b)). Bottom: measured velocity
field and streamlines. The solid line highlights the streamline
analysed in Fig. (10).

The origin of the upstream/downstream asymmetry of
plasticity can now be qualitatively explained, by following
a bubble along its streamline (Fig. 9). The obstacle im-
poses a succession of opposite elongation rates: spanwise
before the obstacle, and streamwise after it (see below,
Fig. 12). Before the obstacle, the elastic strain and the
elongation rate are aligned, and the foam is yielding. After
the obstacle, it takes some time until the elastic strain fully
relaxes, then increases again in the new direction of elon-
gation, orthogonal to the initial one (Fig. 10). Topological
rearrangements are therefore concentrated in a smaller re-
gion.

4.2 Maps

This section presents the spatial distribution of measure-
ments plotted as ellipse maps (matrix fields), which simul-
taneously display: position, orientation, anisotropy and
frequency of rearrangements. Again, we predict plastic-
ity from the measured elastic strain and total strain rate,
using a yield strain UY directly read from the onset of
a plateau in the plasticity fraction h, without adjustable
parameter (see Fig. 11 for the different measurements).
A smooth quadratic plasticity fraction h is chosen (as ob-
served from rheometric measurements [10]), to account for
possible plastic events below the yield. This direct predic-
tion of P from h is robust: in fact, it is especially signifi-
cant near the yield strain, where h is close to 1 (whatever
the choice of h).

Conversely, the inverse estimate of h, from P , is nois-
ier. In fact, differences between various candidates for the

Fig. 10. Measurements along the streamline shown on Fig.
(9)bottom. Top: loading and unloading of elasticity, Ud. Bot-
tom: T1 frequency along streamline, as in Fig. (8); solid line:
experimental fmeasured; dashes, predicted f .

h function are more significant far from the yield point,
where measurements are both smaller and with less statis-
tics. In practice, we suggest to estimate the amplitude of
deviatoric part P d of plastic strain with the amplitude
Pd = (P d : P d/2)1/2; and the amplitude of the deviatoric
part of the total strain rate with Vd = (V d : V d/2)1/2.
If we assume P and V are nearly parallel (which is not
really the case with obstacles), eq. (14) can be projected
on the same axis: we obtain an estimate of the plasticity
fraction as h ≃ Pd/Vd.

Fig. 11. Yield strain versus liquid fractions for the different
setups of Fig. 1: ◦, (a); •, different experiments of (b); �, (c);
△, (d). Trend of data (b) can be qualitatively compared to a
quadratic law [29]: UY = C(Φc − Φ)2, with Φc corresponding
to the rigidity limit liquid fraction (≈ 30 % for setup (b) [1])
and C an empirical constant equals to 1.1.
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4.2.1 Flow around an obstacle: wet foam

(a)

(b)

(c)

(d)

Fig. 12. Wet foam flowing around an obstacle (Fig. 1a). Mea-
surements of U (a) and V (b) yield, through eq. (14) with
quadratic plasticity function h, the theoretical prediction of P

(c), in good agreement with its measurement (d). Scale: for U ,
bar= 1 (no unit); for V and P : bar= 1 s−1.

For a wet foam, upon flowing around the obstacle (Fig.
12), we observe that the amplitude of U increases then
decreases, while V changes orientation. U ellipses have a

”capsule” shape before the obstacle, with a negative com-
pression larger than the positive expansion. This is due
to bubble compressibility: in this experiment bubbles can
expand their height (in the water bath) and thus retract
their horizontal area [15].

The agreement between prediction (Fig. 12c) and mea-
surement (Fig. 12d) of P is very good. In particular, we
predict well the spatial distribution of T1 events: they
occur mostly just before the obstacle, and in a narrower
region after it. For horizontal positions just on the right
of the center of the obstacle, the flow tends to decrease
the existing strain (V : Ud < 0): the predicted frequency
vanishes.

We also predict well the direction of rearrangements, as
well as their amplitude, represented by the direction of the
coffee beans and their size, respectively. We do not observe
in experiment purely elastic areas and purely plastic areas
with a sharp transition line. This is why a discontinuous
plasticity function h would be unsuitable, and we use a
smooth one (eq. 14).

Fig. 13. Estimate of h. Symbols: measurements from Fig. (1a)
of Pd/Vd ≃ h. We represented the average (circle) and standard
deviation (vertical error bar) after binning data along the hori-
zontal axis on equal interval sizes (horizontal error bar). Dash-
dots: h(Ud) = min((Ud/UY )2, 1), quadratic up to UY = 0.15.

Conversely, statistics are just good enough that we can
extract h from measurements. (Fig. 13). We observe that
h increases, more or less like the proposed (U/UY )2, up
to UY = 0.15, then saturates. Interestingly, it plateaus



10 P. Marmottant et al.: Discrete rearranging disordered patterns, part II: 2D plasticity, elasticity and flow of a foam

at a value ∼ 0.6 ± 0.1 significantly lower than 1. This is
probably because after the obstacle V unloads U , which
decreases before the foam enters the fully plastic regime.
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4.2.2 Flow around an obstacle: dry foam

The same experiment with a dry foam (Fig. 1b) yields a
qualitatively similar behaviour for U , V and P (Fig. 15).
Quantitatively, however, the maximum value of Ud is here
0.45, which is a reasonable value for a dry foam [21]. The
spatial variation of U , V and P is restricted to a much
narrower range. Note that ellipses are more circular: foam
is much less compressible than the previous dry case.

This means that we measure larger values but on much
less points, resulting in poorer statistics. Still, the agree-
ment between prediction and measurements of P is qual-
itatively correct. Extracting h from the data is also qual-
itative, with apparently a plateau as low as 0.4 (Fig. 14).

Fig. 14. Same figure as Fig. (13), but for the dry foam of Fig.
(1b), UY = 0.45.

(a)

(b)

(c)

(d)

Fig. 15. Dry foam flowing around an obstacle (Fig. 1b). Same
caption as Fig. (12), except that for V and P bar= 0.063 s−1.
See similar figures in the companion paper [1].
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4.2.3 Flow through a constriction.

When a foam is forced to flow through a constriction (Fig.
1c), along any streamline Ud steadily increases. The con-
striction is here so narrow, comparable to the square root
of a bubble area, that just at the constriction the con-
tinuous description (and thus our measurement method)
breaks down. The influence of the constriction is visible
far uphill: Ud is widely distributed, and we obtain good
statistics (Fig. 16).

Conversely, V is more localized near the orifice, and
thus, as expected from eq. (14), so is P . Plasticity is in-
deed oriented by the elastic strain, the angle between the
main axis of P and of Ud is 1±5◦. Concerning the plastic-
ity amplitude, we observe that Pd is much smaller than Vd

when the foams enters in the field of view: Pd/Vd under-
goes a 5-fold increase until it reaches 1 at the constriction
(Fig. 17 a), and Ud plateaus. We measure UY ∼ 0.32;
which is reasonable for a foam with ∼1% liquid fraction.

(a) (b)

(c) (d)

Fig. 16. Foam flowing through a constriction (Fig. 1c). Same
caption as Fig. (12), except that for U bar= 0.1, and for V and
P bar= 0.25 s−1. See similar figures in the companion paper
[1].

The direct estimate of the plasticity fraction as h ≃
Pd/Vd is obtained with reasonably good statistics (Fig.
17 b). It plateaus close to 1, confirming that the satura-
tion is reached. We obtain an extremely good quantitative
agreement of the predicted plasticiy with the measurement
(Fig. 16).

(a)

(b)

Fig. 17. Constriction: analysis of Fig. (1c). (a) Pd/Vd (open
circles) and Ud (closed circles) versus the distance to the con-
striction. (b) Plasticity fraction h estimated as h ≃ Pd/Vd ver-

sus strain Ud (data from (a)): same figure as Figs. (13) and
(14), here with UY = 0.32.
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(a) (b)

(c) (d)

Fig. 18. Foam sheared between concentric disks (Fig. 1d).
Same caption as Fig. (12), except that for U bar= 0.1, and for
V and P bar= 0.25 s−1.

4.2.4 Couette flow

In a steady Couette flow (Fig. 18), as expected U respects
the circular symmetry: it does not vary orthoradially. The
advantage is that we can improve the measurements by
averaging orthoradially. The drawback is that we have
very few independent measurements (here 6), along the
radial direction. U is significantly different from zero ev-
erywhere. Near the rotating (inner) disk, it means that
U saturates. Near the fixed (outer) disk, it is probably a
residual strain due to the foam preparation (there are not
enough T1s to relax it). Ud is rather low (at most of order
of 0.1), which is consistent with the high liquid fraction.
All these findings confirm those of ref. [20].

As expected, V similarly does not vary orthoradially.
It decreases quickly with the distance to the fixed disk,
so that we have only two independent, non-zero measure-
ments. It is thus impossible to perform the same analysis
as in the above flows which truly vary with both space
coordinates.

Still, we can predict P from eq. (14): this agrees quan-
titatively with the measurements. Concerning the orien-
tation of P , the angle between the main axis of P and
of U is −5 ± 3◦, they are indeed aligned. Since the flow
is steady, U is constant along a streamline, and we thus
expect P = V : this agrees qualitatively with the measure-
ments.

5 Conclusion

5.1 Summary

Using the formalism developed in the companion paper
[1], we measure in different 2D foam flows the matrices

which quantify the elastic strain, the total strain rate and
the plastic rearrangements. We identify statistical mea-
surements performed on the detailed structure of bubbles,
with large scale quantities describing the foam as a con-
tinuous material.

We then generalize to matrices a previous scalar model
[10], and base it on local measurements on individual bub-
bles. We show that the plastic rearrangements arise from a
combination of both the elastic strain and the total strain
rate. As shown by the maps, they cannot be predicted
from the elastic strain alone, nor from the total strain
rate alone.

For instance, in the wet obstacle flow, the spatial sym-
metry with respect to the obstacle is very different in the
three maps. In the dry foam obstacle, the elastic strain ex-
tends very far, while the velocity gradient has a narrower
extension, but both are needed, and the total strain gives
the orientation. In the constriction the elastic strain ex-
tends so much that it is mainly the total strain rate which
determines where T1s occur.

In a first approximation, the plasticity is described
mainly by the behaviour near yielding. The yield strain UY

is the main relevant parameter. We determine it directly
from image analysis and check that the obtained values
are reasonable. We then statistically predict the position,
orientation, anisotropy and frequency of topological rear-
rangements in a flowing foams, in good agreement with
various experiments.

In a second step, to refine the description and improve
the prediction, we introduce the proportion of plasticity,
to account for the gradual appearance of plasticity instead
of a sharp yield. It is a function h(Ud) (also called ”yield
function”) of the elastic strain, which interpolates between
0 (fully elastic) at small strain h(0) ∼ 0, and 1 (fully plas-
tic) near yielding, h(UY ) ∼ 1. We obtain here estimates
of h.

5.2 Discussion

The model presented in Section 3 succesfully predicts the
plasticity, and contributes to describe the foam as a con-
tinuous material. We now discuss its validity and some of
its limitations.

5.2.1 Material

The general approach which links individual and collec-
tive descriptions is applicable to other complex materi-
als (see companion paper [1]). The identification between
statistical and continuous quantities is restricted to affine
flows, which probably applies rather generally to foams
and other cellular materials; it also requires that the elas-
tic strain corresponds directly to individual objects, and
the plastic strain rate to topological rearrangements: this
is probably specific to dry foams and emulsions.
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5.2.2 Shear rate

Foams coarsening, due to the diffusion of gas from one
bubble to the other, couples to foam rheology at slow time
scales [4]. Here, the present experiments are short enough
to neglect this effect.

On the other hand, at very high shear rate, the rhe-
ology couples to the bubble’s internal relaxation times,
which are much shorter [11]. In a material like a foam, at
such a high shear rate the bubbles’ films and vertices do
not relax towards the local mechanical equilibrium. Bub-
bles distort and the foam eventually breaks; in fact, at all
velocities explored here, if the foam exists it means that
the shear rate is slower than the internal relaxation times
[19].

5.2.3 Dimension

Our formalism is written using matrices, so that it indif-
ferently applies to 2D or 3D systems. In principle it could
be tested in truly 2D foams (for instance in numerical
simulations) as well as in truly 3D foams (detailed mea-
surements are in progress). Here, for simplicity, we test it
on bubble monolayers (quasi-2D foams) which flow hori-
zontally (true 2D velocity field).

The friction due to plates of glass is an external force
acting on bubbles, not to be confused with viscous stresses
which are internal to the foam. It likely plays a role in the
values of the quantities we measure above, but does not
affect the relations between these quantities; that is, the
equations we write are insensitive to this friction. This is
in particular the case for the repartition of the total strain
rate between its elastic and plastic contributions (eq. 14).

5.2.4 Disorder

We have assumed here that the foam is amorphous; that is,
RVEs are homogeneous. This excludes foams with: crys-
talline order; avalanches of T1s; localization of the shear,
and shear banding; or one dimension comparable to a bub-
ble diameter.

Here we measure the effects of the function h, and thus
indirectly trace back to its approximate expression. This
is not precise, since apparently, the exact shape of h does
not affect much the predictions. This implies that, recip-
rocally, once h is known, predictions based on it are very
robust. We are thus currently trying to measure directly
the function h for various foams, with different liquid frac-
tions and disorders.

5.3 Perspectives: constitutive equation

5.3.1 Closing the set of equations

In principle we could study the fluctuations in time and
space of the three matrices we measure: U , P , V . How-
ever, we observe experimentally that their averages vary

smoothly with space. As a first step, we want to use these
average smooth fields to obtain a continuous description
of 2D foam flows. For that purpose, we need a closed set
of equations to relate these three matrices.

First, the kinematic equation (10) means that the total
strain rate is shared between elastic and plastic contribu-
tions. It is equivalent to rewrite it as:

DU

Dt
= V − P . (21)

In other words, the elastic strain is loaded by the total
applied strain rate, that is, the velocity gradient; this pro-
cess is limited by the plastic strain rate, which saturates
the elastic strain.

Second, the plasticity equation (14) describes how the
total strain rate is shared between change of elastic strain
and plastic strain rate. It involves the fraction of plasticity,
h. Eq. (14) can be combined with eq. (15) into a single
equation, using the Heaviside function:

P = h(Ud) H(V :Ud)
(V :Ud) Ud

2Ud
2

. (22)

Third, V is directly related to the symmetrised gradi-
ent of the velocity field. In fact, combining eqs. (8) and
(7) yields:

V
affine≃ ∇v + ∇vt

2
. (23)

Fourth, the velocity field is determined by the funda-
mental equation of dynamics, that is, momentum conser-
vation (Navier-Stokes):

ρ

(

∂v

∂t
+ (v.∇)v

)

= div.σ + fext (24)

where ρ is the foam density, σ the stress tensor, and fext

the external forces (such as the friction on the glass plates)
not included in the stress.

Fifth, we now need the constitutive equation itself.
That is, a dynamical equation which determines the elastic
and viscous contributions to the stress, from the current
elastic strain and strain rate. We suggest to generalize eq.
(4), now using matrices:

σ = 2GUd + K Tr(U)I + 2ηV . (25)

We have added here a compression modulus K; in prac-
tice, for foams, it is much larger than the shear modulus.
We write the material-dependent parameters as scalar,
which is correct for an isotropic disordered foam; in an
anisotropic material they would be rank-four tensors. The
drawback of the external friction on plates (mentioned in
section 5.2.3) is that it prevents us from measuring locally
the viscous contribution to the stress in eq. (25). We thus
have assumed its viscosity is linear, i.e. η constant. It is
possible in principle that η depends on Ud or V , thus
introducing some non-linearities.

In conclusion, this fully closed set of equations can be
solved from the knowledge of two field variables: v for
transport and U for internal strain.
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Fig. 19. Storage and loss moduli versus strain amplitude for
a monodisperse emulsion. Symbols: experimental G′ (squares)
and G′′ (triangles) in a close-packed emulsion (Fig. 1 of Ref.
[30]). Lines: model calculated with the complete set of equa-
tions, eqs. (21-25). The method is the same as in Ref. [10];
the correspondence between scalars and matrices is obtained
by replacing (σ,U ,ε̇) by (σxy,2Uxy ,2Vxy). The factors 2 come
from the tensorial generalization (eq. (25)) of the scalar equa-
tion (eq. (4)); this is why the yield strain is half of that used
for the scalar case (Fig. 9 of Ref. [10]). The parameters are
directly obtained from the experimental data: shear modulus
G = 1.7103 Pa, yield strain UY = 0.0223, and viscosity η = 30
Pa.s. The yield function used here is h = (U/UY )2.

5.3.2 Unified description of elastic, plastic and viscous
behaviours

Together, eqs. (21-25) provide a fully closed system. It is
a complete continuous constitutive equation for foams. It
treats with an equal importance the elastic, plastic and
viscous contributions in any of the three regimes: elas-
ticity, plasticity and flow. It admits as limits the classi-
cal equations of elasticity or hydrodynamics, as well as
elasto-plasticity, visco-elasticity and visco-plasticity. Ex-
tension to higher shear rates [11] is challenging, but not
impossible in principle.

It should be enough to perform complete, testable pre-
dictions of U , P , V , from the material’s properties and
the boundary conditions. This is much stronger than Sec-
tions 3 and 4, which predict P from known U and V . Such
analytical predictions, and the corresponding experimen-
tal tests, are in progress. They are outside of the scope
of the present paper; still, we can make a few remarks
regarding the foam dynamical properties.

In oscillatory regime, it predicts the storage and loss
moduli G′, G′′ (Fig. 19). Since these are scalar quantities,
this is very similar to predictions based on eq. (4) [10].

In stationary regime, while we can not yet measure
locally the viscous contributions to the stress, we can in-
directly measure its consequences at the global level. In

fact, the force acting on a circular obstacle (Fig. 1a) results
from the integral of the stress over the obstacle boundary:
experimentally, it increases linearly with the foam velocity,
with a non-zero intercept [15]. This agrees with eq. (25).
A consequence is that, in a stationnary regime where the
elastic contribution to stress is constant, the foam seems
to behave as a visco-plastic (Bingham) fluid.

In any transient regime, however, the full visco-elasto-
plastic nature of the foam has to be taken into account.
The internal variable U , often overlooked, thus plays a
role as important as that of P or V .
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28. S. Vincent-Bonnieu, R. Höhler, S. Cohen-Addad, preprint
29. T.G. Mason, J. Bibette, D.A. Weitz, J. Colloid Interface

Sci. 179, 439 (1996)
30. T.G. Mason, J. Bibette, D.A. Weitz, Phys. Rev. Lett. 75,

10 (1995)


