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ON THE MEAN SQUARE OF THE ERROR TERM FOR AN

EXTENDED SELBERG’S CLASS

par

Anne de Roton

Abstract. — We are concerned with an estimate and a mean square theorem for the
summatory function of a class of Dirichlet series. This extension of Selberg’s class is a
class of Dirichlet series satisfying a functional equation involving multiple gamma fac-
tors and, contrary to the class studied by Chandrasekharan and Narasimhan, a conju-
gate, which allows twisted functions to belong to this class. If F (s) =

P

+∞

n=1
ann−s

is a Dirichlet series satisfying such a functional equation and E(x) is the associated
error term (see (1) and (3) respectively), then we prove O-estimate for E(x) and
R

x

0
|E(y)|2dy. These results are similar to those of Chandrasekharan and Narasimhan

but are applicable in cases where theirs are not.

1. Notations

We write, as usual, s = σ + iτ and f(s) = f(s). We recall here the definition of

the extended Selberg class S# studied by J. Kaczorowski and A. Perelli in a series of

papers (see [KP0] for an introduction). The class S# consists of the non identilcally

vanishing functions F (s) satisfying the following conditions.

1. For σ > 1, F (s) is an absolutely convergent Dirichlet series F (s) =
∑∞

n=1
an

ns ;

2. For some integer m ≥ 0, (s − 1)mF (s) is an entire function of finite order ;

3. F (s) satisfies a functional equation of the form

Φ(s) = εΦ(1 − s), where Φ(s) = Qsγ(s)F (s), (1)

with γ(s) =

r
∏

j=1

Γ(λjs + µj)

where λj > 0, µj ∈ C such that <µj ≥ 0, Q > 0 and |ε| = 1. (2)

The Selberg class S is the set of functions F ∈ S# satisfying the two more following

axioms :
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– (Ramanujan hypothesis) For every ε > 0, an � nε ;

– (Euler product) For σ sufficiently large,

log F (s) =
∞
∑

n=1

bn

ns

where bn = 0 unless n is a positive power of prime, and bn � nθ for some θ < 1
2 .

Notations 1. — The degree d of F ∈ S# is defined as d = 2
∑r

j=1 λj, its polar order

mF is the least integer m satisfying 2. We also write

ξ = 2
r
∑

j=1

(

µj −
1

2

)

and β =
r
∏

j=1

λ
−2λj

j .

Remark 1. — The functional equation (1) may be writen under the form

F (1 − s) = εQ2s−1 γ(s)

γ(1 − s)
F (s).

We define S(x) as the sum of the residues of the function F (s)xs

s and the error term

E(x) as

E(x) =
∑′

n≤x

an − S(x). (3)

In case mF 6= 0, E(x) is the error term for the summatory function of the coefficients

of the Dirichlet series F (x).

Remark 2. — Since s = 1 is the only singularity of the function F , we can write

S(x) under the form :

S(x) = F (0) + Res

(

F (s)

s
xs, 1

)

= F (0) + xPF (log x),

where PF is a polynomial function of degree mF − 1. The last equality results from a

simple argument, the reader may consult [Lan], vorbemerkung über R(x), p.697, for

more details.

2. Introduction and statement of the results

In this paper we shall give an estimate and a mean square estimate for the error

term E(x) associated with a function F in the extended Selberg class S#.

Estimates for E(x) and
∫ x

1 |E(y)|2dy were first obtained by Voronoï in 1904 and

Cramér in 1922 respectively for the special case of the divisor problem (see [V] and

[Cr]). Since then, this has been generalised for larger classes of Dirichlet series.

As early as 1912, Landau gave an estimate of E(x) for a class of Dirichlet series

satisfying a functionnal equation of general type involving multiple gamma factors.

The method of his proof is based on an application of the Perron formula and the



ON THE MEAN SQUARE OF AN ERROR TERM 3

residue theorem. A kind of Van der Corput method is also used to estimate the

integrals.

In 1964, Chandrasekharan and Narasimhan gave an estimate for E(x) and
∫ x

1
|E(y)|2dy

for functions of general type too (see [CN1], [CN2], [CN3]). Their method is based

on the study of some hypergeometric functions. Since then, their results have been

improved for functions of high degree by Redmond in [R1] and [R2].

Nethertheless, as far as we know, no estimate has been given in case of the extended

Selberg class. The large classes already studied in the literature do not recover the

class S#, since in the functionnal equations which have been considered, either the

µj have to be reel, or no conjugate appear.

The results we obtain for a function of S# are the same as the one obtained by

Landau, Chandrasekharan and Narasimhan in case the µj are reel numbers. We shall

prove the following theorems.

Theorem 1. — Let F ∈ S# be a function of degree d ≥ 2. Then for x ≥ 1, for all

ε > 0 we have

E(x) = O
(

x
d−1

d+1
+ε
)

.

Theorem 2. — Let F ∈ S# such that for every ε > 0,
∑

n≤x |an|2 = Oε

(

x1+ε
)

.

Then for x ≥ 1, for all ε > 0 we have E(x) = O
(

x1−1/d+ε
)

.

If we assume furthermore that for all ε > 0, an = O (nε), then we have for all ε > 0,

E(x) = O
(

x
d−1

d+1
+ε
)

.

Theorem 3. — Assume that F ∈ S# such that for every ε > 0,
∑

n≤x |an|2 =

Oε

(

x1+ε
)

. Then, for x ≥ 1
∫ x

1

|E(y)|2dy = O
(

x2−1/d
)

if 0 < d < 3

= O
(

x3−4/d+ε
)

if d ≥ 3, ε > 0.

The Selberg class was first introduced in [S] and have been studied since then in

different papers by Conrey and Gosh (see [CG1], [CG2]), Murty (see [M]), Kac-

zorowski and Perelli (see [KP0], [KP1], [KP2]...). The structure of the extended

Selberg class S# we are considering here have been particularly studied by the two

last authors. In [KP1] and [KP2], they study some incomplete Fox hypergeometric

functions and establish a link between these functions and those of S#.

Many conjectures have been settled about S and S#. Especially F ∈ S is supposed

to verify the generalised Lindelöf hypothesis, i.e. :

Conjecture 1. —

∀ε > 0, F

(

1

2
+ iτ

)

�ε τε.
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This is wrong for a function in S# (see [CG2]). This conjecture is strongly connec-

ted with the study of the error term E(x) since we can prove that a function F in S

satisfies the generalised Lindelöf hypothesis if and only if

∀k ∈ N,
F k
(

1
2 + iτ

)

1
2 + iτ

∈ L2(R),

and we prove in [DR1] that if F ∈ S#, then we have

F
(

1
2 + iτ

)

1
2 + iτ

∈ L2(R) ⇔ E ∈ L2([0, +∞[, dx/x2),

where E is the error term associated to F .

With our results, we prove that E ∈ L2([0, +∞[, dx/x2) for functions in S# of

degree less than 4. This result will be of the greater interest in the paper [DR1].

To prove theorem 1, we follow the method of Landau in [Lan]. Few arguments

have to be modified. The methods of proof of theorems 2 and 3 both involve an

identity relating a smoothed version of the error term to be estimated to a series of

hypergeometric functions. We then study those hypergeometric functions and expand

them asymptotically. To go back to the initial function, we use finite differences. This

method was the one used by Chandrasekharan and Narasimhan in [CN1] and [CN2]

except for the study of the hypergeometric function which was easier in their case. We

have to connect our hypergeometric function to the Bessel functions to obtain some

results similar to theirs.

We begin to give some technical lemmas we shall need further to prove our theo-

rems. In section 3, we draw up a list of consequences of the complex Stirling formula

and we especially give some estimates of a function of Selberg class in some vertical

strips. In section 4, we give some technical lemmas. Section 5 will be devoted to the

study of Bessel functions. In section 6, we connect a smoothed version of the error

term with an hypergeometric funtion we study in section 7. In section 8 and 9, we

prove the theorem 1 and 2 and theorem 3 respectively.

The author would like to thank the referee for his very fruitful comments, for poin-

ting out several inaccuracies and for suggesting how to improve our results, especially

in section 8. We also would like to thank Professor J. Kaczorowski for having suggested

us to use Bessel functions during a very fruitful conversation in Cetraro.

3. Some consequences of the Stirling formula

We give here some technical estimates coming from the following Stirling formula.

The reader will find a demonstration of this result in [Bo] (formule (19), §VII.2.3).
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Proposition 3.1. — There exists some constants cν = cν(a), such that, for all M ∈
N,

log Γ(s + a) =

(

s + a − 1

2

)

log s − s +
1

2
log 2π +

M
∑

ν=1

cνs−ν + O

(

1

|s|M+1

)

(4)

uniformly for | arg(s)| ≤ π − ε with a fixed ε > 0 and a in a compact of C, |s| tending

to infinity.

3.1. Study of a function coming from the functionnal equation. —

Lemma 1. — Let γ(s) be as in (2). Then, uniformly for s ∈ C such that ε ≤
| arg s| ≤ π − ε, for all M ∈ N, we have when |s| tends to infinity :

log

(

γ(s)

γ(1 − s)

)

=
d

2
s(log s + log(−s)) − s(log β + d) +

1

2
ξ log s − 1

2
(ξ + d) log(−s)

+
1

2
log β + 2i

r
∑

j=1

=µj log λj +

M
∑

ν=1

cνs−ν + O
(

|s|−M−1
)

.

This follows easily from the Stirling formula.

Lemma 2. — Let γ(s) be as in (2). Then, uniformly for σ1 ≤ σ ≤ σ2, we have, as

|τ | tends to infinity

γ(s)

γ(1 − s)
= c(σ, τ)|τ |d(σ−1/2)ei(dτ log |τ |−(log β+d)τ−=ξ log |τ |)

(

1 + O

(

1

|τ |

))

where c(σ, τ) is a complex number which only depends on σ and the sign of τ .

Notations 2. — For a > 0 and ν ∈ R, we define

f(s) = fa,ν(s) :=
1

2

(

2

a

)s−ν Γ
(

s
2

)

Γ
(

ν − s
2 + 1

) .

We shall establish a link between the function f and the multiple gamma factor γ.

Lemma 3. — For α > 0, a > 0, ν ∈ R, κ ∈ C, there exists real numbers K =

K(α, a, κ, ν) and c′j = c′j(α, a, κ, ν), j ∈ N such that for all M ∈ N,

log(f(αs + κ)) =
α

2
s (log s + log(−s)) + α(ln α − ln a − 1)s +

κ − 1

2
log s

+

(

κ − 1

2
− ν

)

log(−s) + K +
M
∑

j=1

c′js
−j + O

(

1

|s|M+1

)

(5)

uniformly for s such that ε < | arg s| < π − ε with ε > 0, when |s| tends to infinity.

We have in particular when |τ | tends to infinity

|f(s)| �
(

|τ |σ−1−ν
)

, (6)

uniformly for σ ∈ [σ1, σ2].
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Definition 1. — For ρ ∈ Z, ρ ≥ −1, we define

Gρ(s) =
Γ(1 − s)γ(s)

Γ(2 + ρ − s)γ(1 − s)
.

By Stirling’s formula, there exists a complex sequence c
(1)
ν = c

(1)
ν (λ1, · · · , λr; µ1, · · · , µr, ρ),

such that for all M ∈ N∗,

log Gρ(s) =
d

2
s
(

log s + log(−s)
)

+ s





r
∑

j=1

2λj log λj − d



+
1

2
ξ log s

−
(

1

2
(ξ + d) + ρ + 1

)

log(−s)+





r
∑

j=1

(−λj − 2i=µj) log λj



+

M
∑

ν=1

c(1)
ν s−ν+O

(

1

|s|M+1

)

(7)

uniformly for ε ≤ | arg(s)| ≤ π − ε with ε > 0, if |s| tends to infinity.

We have in particular

|Gρ(s)| � |τ |d(σ− 1
2 )−ρ−1 (8)

uniformly for σ ∈ [σ1, σ2] and |τ | tending to infinity.

Notations 3. —

α = d, κ = 1 + ξ, ν = 1 + <ξ +
d

2
+ ρ, a = dβ1/d, (9)

Comparing (7) to (5), we show that there exists some real numbers

ek = ek(λ1, · · · , λr; µ1, · · · , µr; ρ) such that, when |τ | tends to infinity, we have uni-

formly for σ ∈ [σ1, σ2],

rm(s) := Gρ(s) −
m
∑

k=0

Fk(s) = O
(

|f(αs + κ)||s|−m−1
)

= O
(

|τ |d(σ− 1
2 )−ρ−m−2

)

with Fk(s) = ekf(αs + κ) (−1)k

(αs+κ−k)···(αs+κ−1) .

3.2. Estimates for the value of a quotient of Γ functions in half integers.

—

Proposition 3.2. — For ν ∈ R, <z = N + 1
2 with N ∈ N and N ≥ |ν| + 1/2, we

have :
Γ(1 − z)

Γ(ν + z)
� e2N

|z|N |ν + z|N+ν
.

Proof By the complement formula, we get :

Γ(1 − z)

Γ(ν + z)
=

π/ sin(πz)

Γ(ν + z)Γ(z)
.
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For z = N + 1/2 + it, we have :
∣

∣

∣

∣

π

sin(πz)

∣

∣

∣

∣

=

∣

∣

∣

∣

2iπ

eiπ(N+1/2)e−πt − e−iπ(N+1/2)eπt

∣

∣

∣

∣

=
2π

e−π|t| + eπ|t|
.

On the other hand, by (4), we have uniformly for <z ≥ |ν| + 1,

log |Γ(ν + z)Γ(z)| =

(

<z − 1

2

)

log |z| +
(

ν + <z − 1

2

)

log |ν + z| − |=z|π

+=z

(

arctan
<z

=z
+ arctan

<z + ν

=z

)

− 2<z − ν + log 2π + O

(

1

|z|

)

≥
(

<z − 1

2

)

log |z|+
(

ν + <z − 1

2

)

log |ν + z|− |=z|π−2<z− ν +log 2π+O

(

1

|z|

)

.

For N ≥ |ν| + 1/2 and z = N + 1/2 + it, we get

log |Γ(ν + z)Γ(z)| ≥ N log |z|+(ν+N) log |ν+z|−|t|π−2N−1−ν+log2π+O

(

1

|z|

)

.

So we have :
Γ(1 − z)

Γ(ν + z)
� |z|−N |ν + z|−ν−Ne2N .

This ends the proof. �

3.3. Estimates of a function of the Selberg class in some vertical strips.

—

Lemma 4. — – Let ε > 0. Then we have |F (s)| = Oε(1) uniformly for σ ≥ 1 + ε

and τ ∈ R.

– For σ < 0, we have F (s) = Oσ

(

(1 + |τ |)d(1/2−σ)
)

.

– For all ε > 0, if −ε ≤ σ ≤ 1 + ε, we have F (s) = Oσ,ε

(

(1 + |τ |) d
2
(1−σ+ε)

)

.

Proof The first estimation comes from the fact that F (s) is an absolutely convergent

Dirichlet series for σ > 1. The functional equation and lemma 2 provide the second

one. To prove the last estimation, we use a Phagmén-Lindelöf argument. �

4. Some more lemmas

Definition 2. — If T > 0, Λ, c ∈ R such that c ≤ Λ, we define the path

C(T, c, Λ) :=]c − i∞; c − iT ; Λ− iT ; Λ + iT ; c + iT ; c + i∞[.

In order to move paths of integration, we shall use the following lemma.

Lemma 5. — Let f be a meromorphic function on C such that :

1. T0 := sup {|=ρ|, ρ pole of f} < +∞,

2. Λ0 := sup {<ρ, ρ pole of f} < +∞
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3. there exists a > 0 and b ∈ R such that, for all σ1 < σ2, we have, uniformly in

σ ∈ [σ1, σ2], |f(s)| � |τ |aσ−b−1 when |τ | tends to infinity.

If T , c and Λ satisfy :

T > T0, c <
b

a
and Λ > Λ0, (10)

then, for x > 0, the integral

I(x) :=
1

2iπ

∫

C(T,c,Λ)

f(s)x−sds

is convergent and its value does not depend on T , c and Λ satisfying (10). Furthermore,

for all ε > 0, we have I(x) = Oε

(

x−b/a+ε
)

, when x tends to infinity.

Proof Under the assumptions of the lemma, the integrals are convergent on the path

C(T, c, Λ). To get the full conclusion, it is enough to use the residue theorem between

the two paths C(T, c, Λ) and C(T ′, c′, Λ′) with T, c, Λ and T ′, c′, Λ′ satisfying (10) and

observe that the horizontal integrals tend to zero. �

Lemma 6. — Let a, b ∈ R+∗ such that b ≥ 1. Then we have :
∫ +∞

0

dτ

(a2 + τ2)b
≤ π

2

a1−2b

√
b

.

Proof Since a > 0 and b > 1
2 , the integral is convergent. Furthermore, we have :

∫ +∞

0

dτ

(a2 + τ2)b
= a1−2b

∫ +∞

0

dτ

(1 + τ2)b
.

By MAPLE, we get :
∫ +∞

0

dτ

(1 + τ2)b
=

√
π

2

Γ(b − 1/2)

Γ(b)
.

The logaritmic derivate of the function ϕ(b) =
√

bΓ(b − 1/2)/Γ(b) is the function

ϕ′(b)

ϕ(b)
=

1

2b
+
∑

q∈N

(

1

q + b
− 1

q + b − 1/2

)

≤ 1

2b
+

∫ +∞

0

(

1

t + b
− 1

t + b − 1/2

)

dt ≤ 0.

So we have for b ≥ 1,
∫ +∞

0

dτ

(a2 + τ2)b
= a1−2b

√
π

2

ϕ(b)√
b

≤
√

π

2

a1−2b

√
b

ϕ(1) =
π

2

a1−2b

√
b

. �

5. Bessel functions

Our main reference for this section is the book of Watson [W]. We recall here

some properties of the Bessel function and we give an integral representation of these

functions which is not given in [W].
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Notations 4. — From now on, if c is a real number, we shall write
∫

(c)
f(s)ds for

∫ c+i∞

c−i∞
f(s)ds.

Let ν be a real number. We define the Bessel function Jν as (formula (8) §3.1 of

[W]) :

∀x ∈ R, Jν(x) =

+∞
∑

m=0

(−1)m
(

x
2

)ν+2m

m!Γ(ν + m + 1)
.

We recall the asymptotic expansion of Jν(x) when x tends to infinity (§7.21 of

[W]).

Jν(x) ∼
(

2

πx

)1/2
(

cos
(

x − νπ

2
− π

4

)

∞
∑

m=0

(−1)m(ν, 2m)

(2x)2m

− sin
(

x − νπ

2
− π

4

)

∞
∑

m=0

(−1)m(ν, 2m + 1)

(2x)2m+1

)

with (ν, m) =
Γ(ν+m+ 1

2 )
m!Γ(ν−m+ 1

2 )
.

From a classical Mellin transform result (formula (7) §6.5 of [W]), for ν ≥ 0 and

0 < c ≤ <(ν + 1), we have

x−νJν(x) =
1

2iπ

∫ c+i∞

c−i∞

2s−ν−1Γ(s/2)

Γ(ν − s/2 + 1)
x−sds.

Remark 3. — We recover here the function fa,ν defined and studied in the section

3.1.

We will extend this result to the case ν ≤ 0.

Lemma 7. — Let a > 0 and ν ≥ 0. If fa,ν is defined as in section 3.1, then we have

lim
N→+∞

∫

(−2N+1)

fa,ν(s)x−sds = 0,

uniformly for x in a compact of R+∗.

Proof We define KN(x) :=
∫

(−2N+1) fa,ν(s)x−sds. For N ≥ |ν| + 1, with z = 1 − s
2

and proposition 3.2, we have :

KN (x) =
1

2

∫

(N+1/2)

(

2

a

)2−2z−ν
Γ (1 − z)

Γ (ν + z)
x2z−2dz

= O

(

1

x

(eax

2

)2N
∫

(N+1/2)

|dz|
|z|N |ν + z|N+ν

)

.

Furthermore, if u, v ≥ 1, we have 1
uv ≤ 1

u + 1
v , so we get :

KN(x) = O

(

1

x

(eax

2

)2N
(

∫

(N+1/2)

|dz|
|z|N +

∫

(N+1/2)

|dz|
|ν + z|N+ν

))

.



10 A. DE ROTON

With lemma 6, we have
∫

(N+1/2)

|dz|
|z|N =

∫ +∞

−∞

dt
(

(N + 1/2)2 + t2
)N/2

� (N + 1/2)1−N

√
N

and
∫

(N+1/2)

|dz|
|ν + z|N+ν

=

∫ +∞

−∞

dt
(

(N + ν + 1/2)2 + t2
)(N+ν)/2

� (N + ν + 1/2)1−N−ν

√
N + ν

.

If N ≥ 2|ν| + 1, we get :

KN (x) = O

(

1

x

√
N
(eax

2

)2N (

N−N + (N/2)−N/2
)

)

,

and the integral KN(x) :=
∫

(−2N+1)
f(s)x−sds tends clearly to 0 when N tends to

infinity uniformly for x in a compact of R
+∗. �

Definition 3. — Let a > 0 and ν ∈ R. We define the function h0 = hν,a
0 by :

∀x > 0, h0(x) := x−νJν(ax).

Proposition 5.1. — If ν ∈ R and if

T ≥ 1, c < ν and Λ > 0, Λ ≥ c, (11)

then the integral
∫

C(T,c,Λ)
f(s)x−sds is convergent and its value does not depend on

T , c and Λ satisfying (11). Furthermore, we have :

h0(x) =
1

2iπ

∫

C(T,c,Λ)

fa,ν(s)x−sds.

Proof In this proof, we will write f for fa,ν.

Since the poles of the function fa,ν(αs + κ) are the points −2n−κ
α , n ∈ N, the first

part of the proposition follows from (6) and lemma 5.

We define

g(x) :=
1

2iπ

∫

C(T,c,Λ)

f(s)x−sds.

If N is a positive integer such that N > 1
2 (1 − ν), then

g(x) =
1

2iπ

∫

C(T,−2N+1,Λ)

f(s)x−sds.

We apply the residue theorem to the function f(s)x−s on the rectangle

R := [−2N + 1 − iT, Λ − iT, Λ + iT,−2N + 1 + iT ]. We get :

g(x) =
1

2iπ

∫

(−2N+1)

f(s)x−sds +

N−1
∑

k=0

pkx2k, (12)

where pk = Res(f(s)x−s,−2k) =
(

2
a

)−2k−ν (−1)k

k!Γ(ν+k+1) .

From lemma 7, the integral KN (x) :=
∫

(−2N+1)
f(s)x−sds tends to 0 when N tends
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to infinity uniformly for x in a compact of R+∗. If N tend to infinity in (12), we get

g(x) =
∑

m≥0 pmx2m = x−νJν(ax). �

We shall use some primitive functions of h0 in the case ν > 0. To define them, we

use some properties of cosine and sine functions.

Definition 4. — Let a and ν be some real such that a > 0. For t ∈ R, we define

C(t) = cos
(

at − νπ

2
− π

4

)

, S(t) = sin
(

at − νπ

2
− π

4

)

and for x > 0 and R > − 1
2 ,

CR(x) = −
∫ +∞

x

√

2

π
C(t)

dt

(at)R+ 1
2

; SR(x) = −
∫ +∞

x

√

2

π
S(t)

dt

(at)R+ 1
2

.

Using induction and partial integration, we establish the following asymptotic ex-

pansions. For all n ∈ N and all R > − 1
2 , if for k ∈ [0, n], γ

(R)
k :=

Γ(R+k+ 1
2 )

Γ(R+ 1
2 )

, then

CR(x) =
1

a

√

2

π

(

S(x)

n
∑

k=0

(−1)kγ
(R)
2k (ax)−R−2k− 1

2

+C(x)

n−1
∑

k=0

(−1)k+1γ
(R)
2k+1(ax)−R−2k− 3

2

)

+ O
(

x−R−2n− 3
2

)

, (13)

and

SR(x) = −1

a

√

2

π

(

C(x)
n
∑

k=0

(−1)kγ
(R)
2k (ax)−R−2k− 1

2

+S(x)

n−1
∑

k=0

(−1)kγ
(R)
2k+1(ax)−R−2k− 3

2

)

+ O
(

x−R−2n− 3
2

)

, (14)

when x tends to infinity. The implicit constants only depend on R and n.

We can now deduce from (13) and (14) the following property.

Proposition-Definition 1. — For ν > 0, we define by induction some primitive of

h0 of order n

hn+1(x) = −
∫ +∞

x

hn(t)dt.

These integrals are convergent and for all k ∈ N and there exists two complex sequences

(c
(k)
l )l and (s

(k)
l )l such that for all M ∈ N,

hk(x) =

M
∑

l=0

c
(k)
l C(x)x−l−ν− 1

2 +

M
∑

l=0

s
(k)
l S(x)x−l−ν− 1

2 + O
(

x−ν−M− 3
2

)

when x tends to infinity.
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Proposition 5.2. — Let k ∈ N and ν > 0. So, if 0 < c < ν and x > 0,

hk(x) =
1

2iπ

∫ c+i∞

c−i∞

(−1)k Γ(s)

Γ(s + k)
f(s + k)x−sds.

Proof We begin to prove by induction on k that for all s ∈ C such that 0 < σ <

ν + 1/2,

Mhk(s) = (−1)k Γ(s)

Γ(s + k)
f(s + k).

Then we use inverse Mellin transform. �

6. Expansion in a sum of hypergeometric functions

In order to estimate the error term E(x), we define a smooth version of it. To go

back to the initial function, we shall use the finite differences.

Definition 5. — For ρ ∈ N, we define

Aρ(x) =
1

ρ!

∑′

n≤x

an(x − n)ρ,

the dash indicating that the last term has to be multiplied by 1/2, if ρ = 0 and x = n.

We also define

Sρ(x) =
1

2iπ

∫

C

F (s)

s(s + 1) · · · (s + ρ)
xs+ρds,

where C is a curve enclosing all the singularities of the integrand, and

Eρ(x) = Aρ(x) − Sρ(x).

Remark 4. — Sρ(x) is the sum of the residues of the integrand at its poles −ρ,−ρ+

1, · · · ,−1, 0 and 1, so we have

Sρ(x) = xρRes

(

F (s)xs

s(s + 1) · · · (s + ρ)
, 1

)

+
1

ρ!

ρ
∑

k=0

(−1)kF (−k)

(

ρ

k

)

xρ−k.

The first step consists in finding an expansion of Eρ(x) as a sum of special functions.

Proposition 6.1. — Let ρ ∈ N
∗, ρ > d/2. For all x > 0,

Eρ(x) = εQ2ρ+1
∑

n≥1

an

n1+ρ
Iρ

(

nx

Q2

)

where for ρ ∈ Z, ρ ≥ −1, the function Iρ is defined as

Iρ(x) =
1

2iπ

∫

C1

γ(s)

γ(1 − s)

x1+ρ−sΓ(1 − s)

Γ(ρ + 2 − s)
ds

and C1 = C(T, c, Λ) with

T > T0 := max

( |=ξ|
d

,
r

max
j=1

|=µj |
λj

)

, c <
ρ

d
+

1

2
and Λ > ρ + 1. (15)
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Proof If c > 1 and ρ ≥ 1, then by a standard formula, we have

Aρ(x) =
1

2iπ

∫

<s=c

F (s)
xs+ρ

s(s + 1) · · · (s + ρ)
ds,

so that, if g(s) = F (s)
s(s+1)···(s+ρ) , we have

Eρ(x) =
1

2iπ

∫ c+i∞

c−i∞

g(s)xs+ρds − 1

2iπ

∫

C

g(s)xs+ρds.

In view of lemma 4, we know that if σ < 0 and |τ | ≥ 1, then g(s) = O
(

(1 + |τ |)d(1/2−σ)−ρ−1
)

,

so that, if 1
2 − ρ

d < c′ < 0 (such a c′ exists if ρ > d
2 ), Λ′ < −ρ, T ′ > 0 and

C2 :=]c′ − i∞; c′ − iT ′; Λ′ − iT ′; Λ′ + iT ′; c′ + iT ′; c′ + i∞[, then the integral

1

2iπ

∫

C2

F (s)

s(s + 1) · · · (s + ρ)
xs+ρds

is convergent and by using the residue theorem between the line σ = c and C2, we get

Eρ(x) =
1

2iπ

∫

C2

F (s)

s(s + 1) · · · (s + ρ)
xs+ρds.

We change the variable s to 1 − z and apply the functional equation, to obtain

Eρ(x) =
1

2iπ

∫

C1

εQ2z−1F (z)

(1 − z)(−z) · · · (1 − z + ρ)
x1−z+ρ γ(z)

γ(1 − z)
dz

where C1 = C(T, c, Λ) with

T > 0, c <
ρ

d
+

1

2
and Λ > ρ + 1.

By lemma 2 and lemma 5, we get for T > T0 = max
(

|=ξ|
d , maxr

j=1
|=µj |

λj

)

, 1 < c <
ρ
d + 1

2 and Λ > ρ + 1 :

Eρ(x) = εQ2ρ+1
+∞
∑

n=1

an

n1+ρ

1

2iπ

∫

C1

γ(z)

γ(1 − z)

(

nx
Q2

)1+ρ−z

(1 − z)(2 − z) · · · (1 + ρ − z)
dz �

7. Study of the hypergeometric function Iρ

We now study the function Iρ. Kaczorowski and Perelli have studied a very similat

function in [KP1] in order to describe functions of gegre d = 1 in S#. Our work is

strongly influenced by theirs. This function is a particular case of the Fox hypergeo-

metric functions. These last functions have been studied in [Br]. We will rather study

the particular function Iρ instead of extracting the informations we need from the

very long and dense article [Br]. In order to establish the asymptotic expansion of

the function Iρ, we show that this function is closely related to Bessel functions.

We shall use the notations defined in section 3.1.

The function Iρ is closely related to the Mellin inverse transform of Gρ. We are

going to approach Gρ with functions whose inverse Mellin transforms are known.
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We recall here that we have proved that

Gρ(s) =
m
∑

k=0

Fk(s) + rm(s),

with Fk(s) =
(−1)kekf(αs + κ)

(αs + κ − k) · · · (αs + κ − 1)
and rm(s) = O

(

|τ |d(σ− 1
2 )−ρ−m−2

)

.

If T > T0, Λ > max
(

ρ + 1, m−<κ
d

)

, c < 1
2 + ρ

d , if c is not a pole of rk and if

C1 = C(T, c, Λ) is the path defined in (2), then the integrals

Hk(x) :=
1

2iπ

∫

C1

Fk(s)x1+ρ−sds and Rk(x) :=

∫

C1

rk(s)x1+ρ−sds

are convergent. With these notations, we have for x > 0 and m ∈ N

Iρ(x) =

m
∑

k=0

Hk(x) + Rm(x). (16)

To estimate Rm, we move the path of integration to the right and pay attention

to the fact that the integral remains convergent. By proposition 5, we get for m ∈ N

and ε > 0

Rm(x) = Oε

(

x
1
2
+ρ− ρ+m+1

d
+ε
)

(17)

when x tends to infinity.

Proposition 7.1. — If T ≥ 1, Λ > max(0, c) and c < ν, we have

Hk(x) =
ek

d2iπ
x1+ρ+(κ−k)/d

∫

C(T,c,Λ)

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)
(x1/d)−zdz.

Proof By (6), when |τ | tends to infinity

Fk(s) � |τ |d(σ− 1
2 )−ρ−k−1,

so if T > T0 := max
(

|=ξ|
d , maxr

j=1
|=µj |

λj

)

, c < 1
d (ρ+k)+ 1

2 and Λ > max
(

ρ + 1, k−<κ
d

)

,

by proposition 5, we have

Hk(x) =
1

2iπ

∫

C(T,c,Λ)

Fk(s)x1+ρ−sds

=
1

2iπ

∫

C(T,c,Λ)

ekf(αs + κ)
(−1)kx1+ρ−s

(αs + κ − k) · · · (αs + κ − 1)
ds.

We change the variable s to z = αs + κ − k

Hk(x) =
ek/d

2iπ
x1+ρ+(κ−k)/d

∫

C(T ′,c′,Λ′)

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)
(x1/d)−zdz

for any real T ′, c′ and Λ′ satisfying T ′ ≥ 1, Λ′ > max(0, c′) and c′ < ν. �

We now establish a link between Hk and hk in case ν > 0, i.e. in case ρ > −<κ− d
2 .
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Proposition 7.2. — If ν > 0, for x > 0 we have

Hk(x) =
ek

d
x1+ρ+ κ−k

d hk(x1/d).

Proof By proposition 7.1, we have

Hk(x) =
ek/d

2iπ
x1+ρ+(κ−k)/d

∫

C(T,c,Λ)

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)
(x1/d)−zdz.

By proposition 5, since the real part of the poles of the integrand is less than 0, since

we have
∣

∣

∣

∣

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)

∣

∣

∣

∣

� |τ |σ−ν−1,

we can chose 0 < c = Λ < ν because ν > 0 and then we have

Hk(x) =
ek/d

2iπ
x1+ρ+(κ−k)/d

∫ c+i∞

c−i∞

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)
(x1/d)−zdz

= δekx1+ρ+δ(κ−k)hk(x1/d). �

For k = 0 and ν ∈ R, we also have

H0(x) =
e0

d
x1+ρ+ κ

d h0(x
1/d). (18)

We shall now deduce from the link between Iρ and hk an asymptotic expansion of

Iρ in case ν > 0 and an asymptotic equivalent of I0 in case ν ≤ 0.

Notations 5. — We write δ = 1/d, ω = 1+ρ+(κ−ν−1/2)δ = (ρ+1/2)(1−δ)−iδ=ξ.

Theorem 4. — Assume ρ > −1 − <ξ − d
2 (ie ν > 0). There exists two complex

sequences (δn)n and (δ′n)n such that for all m ∈ N and all ε > 0

Iρ(x) = eiaxδ
m
∑

n=0

δnxω−nδ + e−iaxδ
m
∑

n=0

δ′nxω−nδ + O
(

x<ω−(m+1/2)δ+ε
)

when x tends to infinity.

Proof By proposition 7.2, (17) and (16), we have

Iρ(x) =

m
∑

k=0

δekx1+ρ+(κ−k)δhk(xδ) + O
(

x
1
2
+ρ−(ρ+m+1)δ+ε

)

=

m
∑

k=0

δekx1+ρ+(κ−k)δhk(xδ) + O
(

x<ω−δ(m+1/2)+ε
)

Using the asymptotic expansion of functions hk (see proposition-definition 1) we show

that there exists two complex sequences (δn)n and (δ′n)n such that for all m ∈ N

Iρ(x) = C
(

xδ
)

m
∑

n=0

δnx1+ρ+(κ−ν−n− 1
2 )δ + S

(

xδ
)

m
∑

n=0

δ′nx1+ρ+(κ−ν−n− 1
2 )δ

+O
(

x
1
2
+ρ−(ρ+m+1)δ+ε

)
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so there exists two complex sequences (ηn)n and (η′
n)n such that for all m ∈ N

Iρ(x) = eiaxδ
m
∑

n=0

δnxω−nδ + e−iaxδ
m
∑

n=0

δ′nxω−nδ + O
(

x<ω−(m+1/2)δ+ε
)

�

Proposition 7.3. — Let ν be a real number. We have when x tends to infinity

I0(x) = O
(

x
1
2
(1−δ)

)

.

Proof By (16), (17) and (18), we have for all ε > 0 :

I0(x) = δe0x
1+δκh0(x

δ) + Oε

(

x
1
2
−δ+ε

)

.

But h0(x) = O
(

x−ν− 1
2

)

= O
(

x−<κ− d
2
− 1

2

)

, so I0(x) = O
(

x
1
2
(1−δ)

)

+Oε

(

x
1
2
−δ+ε

)

.

We chose 0 < ε < δ
2 to get the final result. �

Proposition 7.4. — If ρ ∈ N, the function Iρ has a ρth derivative and for all k ∈ N,

k ≤ ρ, we have

I(k)
ρ (y) = Iρ−k(y).

Proof Assume that ρ ∈ N and T , c and Λ satisfy (15), then we have :

Iρ(x) =
1

2iπ

∫

C(T,c,Λ)

Gρ(s)x
1+ρ−sds.

We have
d

dx

(

Gρ(s)x
1+ρ−s

)

= (1 + ρ − s)Gρ(s)x
ρ−s

and the integral
∫

C(T,c,Λ)

(1 + ρ − s)Gρ(s)x
ρ−sds

is convergent uniformly for x in a compact of R+. So we have

I ′ρ(x) =
1

2iπ

∫

C(T,c,Λ)

(1 + ρ − s)Gρ(s)x
ρ−sds.

But (1 + ρ − s)Gρ(s) = Gρ−1(s) so

I ′ρ(x) =
1

2iπ

∫

C(T,c,Λ)

Gρ−1(s)x
ρ−sds.

Since T , c and Λ satisfy conditions (15) with ρ − 1 instead of ρ, we have

I ′ρ(x) = Iρ−1(x).

An iteration gives the conclusion. �
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8. Estimation of the error term

8.1. Estimation of the error term with Landau’s method. — We shall prove

in this section theorem 1.

Let F ∈ S# be a function of degree d ≥ 2.

Using arguments similar to the one used in the proof of the Perron formula (see [T],

section I.2,theorem 1), we prove that for all ε > 0, x ≥ 1 and T ≥ 1, we have

∑′

n≤x

an =
1

2iπ

∫ 1+ε+iT

1+ε−iT

xsF (s)

s
ds + O






x1+ε

+∞
∑

n=1
n6=x

|an|
n1+ε(T | log(x/n)|)






+ O

( |ax|
T

)

=
1

2iπ

∫ 1+ε+iT

1+ε−iT

xsF (s)

s
ds + O

(

x1+ε

T

)

+ O

( |ax|
T

)

,

where ax = 0 if x 6∈ N.

Applying the residue theorem, we get

1

2iπ

∫ 1+ε+iT

1+ε−iT

xsF (s)

s
ds = S(x) +

1

2iπ

∫ −ε−iT

1+ε−iT

xsF (s)

s
ds

+
1

2iπ

∫ −ε+iT

−ε−iT

xsF (s)

s
ds +

1

2iπ

∫ 1+ε+iT

−ε+iT

xsF (s)

s
ds.

Let us estimate the horizontal integrals. If s = σ+ iT with T ≥ 1 and −ε ≤ σ ≤ 1+ε,

by lemma 4, we have

xs

s
F (s) = O

(

T
d
2
(1+ε)−1

(

xT−d/2
)σ)

,

and therefore,
∫ 1+ε±iT

−ε±iT

xsF (s)

s
ds = O

(

T
d
2
(1+ε)−1

(

x1+ε

T d(1+ε)/2
+

x−ε

T−dε/2

))

= O

(

1

T
x1+ε

)

+ O
(

x−εT d(1+2ε)/2−1
)

.

Now, let us estimate the vertical integral. Using the functionnal equation and lemma

2, we have

F (s) = εQ2s−1 γ(1 − s)

γ(s)
F (1 − s)

= εQ2s−1c(σ, τ)|τ |d(1/2−σ)ei(−dτ log |τ |+(log β+d)τ−=ξ log |τ |)F (1 − s)

(

1 + O

(

1

|τ |

))

.

So, with s = −ε + iτ , we have

F (s)
xs

s
= Ax−ε|τ |d(1/2+ε)−1

∑

n≥1

an

n1+ε
e

i
“

−(dτ+=ξ) log |τ |+(log βQ2x
n

+d)τ
”
(

1 + O

(

1

|τ |

))

,
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where A is a constant depending on ε and the sign of τ . We have
∫ −ε+iT

−ε−iT

F (s)
xs

s
= A1x

−ε
∑

n≥1

an

n1+ε

∫ T

1/d

τd(1/2+ε)−1e
i
“

−(dτ+=ξ) log τ+(log βQ2x
n

+d)τ
”

dτ

+A2x
−ε
∑

n≥1

an

n1+ε

∫ T

1/d

τd(1/2+ε)−1e
i
“

(dτ−=ξ) log τ−(log βQ2x
n

+d)τ
”

dτ

+O



x−ε
∑

n≥1

∫ T

1/d

τd(1/2+ε)−2



+ O(x−ε).

With u = dτ , we have
∫ −ε+iT

−ε−iT

F (s)
xs

s
= B1x

−ε
∑

n≥1

an

n1+ε

∫ dT

1

ud(1/2+ε)−1e
i
“

−(u+=ξ) log u+(log d+log βQ2x
n

/d+1)u
”

du

+B2x
−ε
∑

n≥1

an

n1+ε

∫ dT

1

ud(1/2+ε)−1e
i
“

(u−=ξ) log u−(log βQ2x
n

/d+1+log d)u
”

du

+O
(

x−εT d(1/2+ε)−1
)

+ O(x−ε).

= B1x
−ε
∑

n≥1

an

n1+ε

∫ dT

1

ud(1/2+ε)−1ei(ϕ(u)−=ξ log u)du

+B2x
−ε
∑

n≥1

an

n1+ε

∫ dT

1

ud(1/2+ε)−1ei(−ϕ(u)−=ξ log u)du

+O
(

x−εT d(1/2+ε)−1
)

+ O(x−ε)

with ϕ(u) = −u logu + (log βQ2x
n /d + 1 + log d)u.

According to Hilfsatz 10 of [Lan], we have for U ≥ 1, δ ≥ 0 and w ∈ R, the

following equality
∣

∣

∣

∣

∣

∫ U

1

uδe±iu(log u−w)du

∣

∣

∣

∣

∣

< 23U
1
2
+δ.

Applying this lemma with δ = d(1/2 + ε)− 1 and w = log βQ2x
n /d + 1 + log d, we get

for U ≥ 1 and d ≥ 2
∫ U

1

ud(1/2+ε)−1e±iϕ(u)du < 23Ud(1/2+ε)−1/2.

Therefore, we have
∫ dT

1

ud(1/2+ε)−1ei(±ϕ(u)−=ξ log u)du = O
(

T d(1/2+ε)−1/2
)

and so
∫ −ε+iT

−ε−iT

F (s)
xs

s
= O

(

x−εT d(1/2+ε)−1/2
)

.
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Finaly, we have proved that if d ≥ 2, we have

∑′

n≤x

an = S(x) + O

(

1

T
x1+ε

)

+ O
(

x−εT (d−1)/2+ε
)

+ O

( |ax|
T

)

so with T = x
d+1

2 , since an = o(n1+ε), we have
∑′

n≤x

an = S(x) + O
(

x
d−1

d+1
+ε
)

.

Remark 5. — With a similar method combined with the Van der Corput method

used instead of Hilfsatz 10, we should prove that for 1 ≤ d < 2, we have the estima-

tion E(x) = O
(

x
d
4
+ε
)

.

We did not manage to prove the estimation E(x) = O
(

x
d−1

d+1
+ε
)

in the case d < 2.

We shall prove it in the next subsection with the additionnal Ramanujan hypothesis.

This hypothesis must be redundant but we did not manage to avoid it.

Anyway, we can notice that the degree of the functions of S# is conjecturally a posi-

tive integer (see [KP0]). Kaczorowski and Perelli have already proved that there are

no function in S# of degree 1 < d < 5/3 (see [KP2]). Moreover, we know that the

functions of S# of degree d ≤ 1 satisfy the Ramanujan hypothesis and, since Kaczo-

rowski and Perelli have explicitly describded these functions, it is easy to prove that

their error term satisfies E(x) = O
(

x
d−1

d+1
+ε
)

(see [KP1]).

8.2. Method used by Chandrasekharan and Narasimhan. — We shall use

finite differences to establish a link between E(x) and its smooth version Eρ(x).

If ρ is an integer, λ > 0 and 0 < ρλ < x, the ρth finite difference of the real

function f is defined as

∆ρ
λf(x) =

ρ
∑

ν=0

(−1)ρ−ν

(

ρ

ν

)

f(x + λν).

By formula (8) of [CN2], we have

E(x) = E0(x) = λ−ρ∆ρ
λ(Aρ(x)−Sρ(x))+O

(

λ logmF −1 x
)

+O





∑

x<n≤x+ρλ

|an|



 (19)

Notations 6. — In case d > 1, we define λ(x) = x1−δ−η, where δ = 1/d and η > 0

and choose a convenient η for each case.

Definition 6. — We define W (x) = ∆ρ
λ(Aρ(x)−Sρ(x)) and V (x) = E(x)−λ−ρW (x).

We assume d > 1. In order to estimate W (y), we shall use proposition 6.1, the

asymptotic expansion of Iρ and some properties of finite differences. This study follows

the method used by Chandrasekharan and Narasimhan in [CN1].

Notations 7. — We write for all natural integer n, αn = n/Q2.
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Since we have W (y) = ∆ρ
λ (Aρ(y) − Sρ(y)), by proposition 6.1, we have for ρ > d/2

and y > 0,

W (y) = αQ−1
∞
∑

n=1

an

α1+ρ
n

∆ρ
λIρ(αny).

We estimate now ∆ρ
λIρ(y).

Assume that ρ ∈ N, λ > 0, y ∈ R and f has a ρth derivative on R
+∗. Then we have

∆ρ
λf(y) =

∫ y+λ

y

∫ t1+λ

t1

· · ·
∫ tρ−1+λ

tρ−1

f (ρ)(tρ)dtρ · · · dt2dt1.

In particular,

|∆ρ
λf(y)| ≤ λρ sup

y≤t≤y+ρλ
|f (ρ)(t)|.

Applying it to Iρ, we get by proposition 7.4

|∆ρ
λIρ(y)| ≤ λρ sup

y≤t≤y+ρλ
|I0(t)|.

By proposition 7.3, I0(x) = O
(

x
1
2
(1−δ)

)

so if y ≥ λρ, we have

|∆ρ
λIρ(y)| ≤ λρO

(

y
1
2
(1−δ)

)

. (20)

On the other hand, we have by proposition 4

|∆ρ
λIρ(y)| = O (|Iρ(y)|) = O

(

y<ω
)

= O
(

y(ρ+1/2)(1−δ)
)

. (21)

We have for ρ > d/2, z > 0 and y > 0,

W (y) = αQ−1
∞
∑

n=1

an

α1+ρ
n

∆ρ
λIρ(αny) (22)

= αQ−1
∑

αn≤z

an

α1+ρ
n

∆ρ
λIρ(αny) + αQ−1

∑

αn>z

an

α1+ρ
n

∆ρ
λIρ(αny).

Using (20) in the first sum and (21) in the second one, we get

W (y) = O





∑

αn≤z

|an|
α1+ρ

n

αρ
nλρ(αny)

1
2
(1−δ)



+ O

(

∑

αn>z

|an|
α1+ρ

n

(αny)(ρ+1/2)(1−δ)

)

= O





∑

αn≤z

|an|
α

1
2
(1+δ)

n

λρy
1
2
(1−δ)



+ O

(

∑

αn>z

|an|
α

ρδ+ 1
2
(1−δ)

n

y(ρ+1/2)(1−δ)

)

.

If ρ > d+1
2 , using λ = y1−δ−η and choosing z = ydη, since for all ε > 0,

∑+∞
n=1 |an|n−1−ε <

+∞, we get for all ε > 0

W (y) = O
(

z1+ε− 1
2
(1+δ)y(ρ+1/2)(1−δ)−ρη

)

+ O
(

z1+ε−ρδ−δ/2y(ρ+1/2)(1−δ)
)

W (y) = O
(

y(ρ+1/2)(1−δ−η)+dη/2+ε
)

. (23)
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We can now prove theorem 2. Let F ∈ S# such that for all ε > 0, we have
∑

n≤x |an|2 � n1+ε.

By Cauchy’s inequality, we have




∑

y<n≤y+ρλ

|an|





2

≤ ρλ





∑

y<n≤y+ρλ

|an|2


� y2−δ−η+ε, (24)

for all ε > 0, so we have

V (y) � y1− 1
2
(δ+η)+ε. (25)

Since E(x) = V (x) + λ−ρW (x), we have by (25) and (23), for all ε > 0,

E(x) = O
(

x(1−δ−η)/2+dη/2+ε
)

+ O
(

x1− 1
2
(δ+η)+ε

)

.

We choose η = δ and we get E(x) = O
(

x1−δ+ε
)

.

If we assume that for all ε > 0, an = O (nε), then V (x) � x1−δ−η+ε, so we have

by (23), for all ε > 0,

E(x) = O
(

x(1−δ−η)/2+dη/2+ε
)

+ O
(

x1− 1
2
(δ+η)+ε

)

.

We choose η = 1−δ
d+1 and we get E(x) = O

(

x
d−1

d+1
+ε
)

.

9. Estimation of the mean square of the error term

We shall now estimate the integral
∫ x

0
|E(y)|2dy and prove theorem 3. Since the

estimate of theorem 3 is obvious for functions of degree d ≤ 1 in S#, we shall ass-

sume that F ∈ S# is a function of degree d > 1 such that for all varepsilon > 0,
∑

n≤x |an|2 � x1+ε. We have

∫ x

1

|E(y)|2dy ≤ 4 max

(∫ x

1

λ−2ρ|W (y)|2dy,

∫ x

1

|V (y)|2dy

)

.

9.1. Estimation of the second integral. — When x tends to infinity, we have
∫ x

2

λ(y)2 log2mF −2 ydy =

∫ x

2

y2(1−δ−η) log2mF −2 ydy � x3−2δ−2η log2mF −2 x + 1.

By (24), we have

∫ x

1





∑

y<n≤y+ρλ

|an|





2

dy = O





∫ x

1

y1−δ−η





∑

y<n≤y+ρλ

|an|2


 dy





= O





∑

1<n≤x+ρx1−δ−η

|an|2
∫ n

n−ρn1−δ−η

y1−δ−ηdy



 = O





∑

1<n≤x+ρx1−δ−η

|an|2n2(1−δ−η)



 .
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So, for all ε > 0, we have when x tends to infinity

∫ x

1





∑

y<n≤y+ρλ

|an|





2

dy = O
(

(x + ρx1−δ−η)2(1−δ−η)+1+ε
)

= O(x3−2δ−2η+ε).

Finaly, by (19), for all ε > 0, we have
∫ x

1

|V (y)|2dy = O(x3−2δ−2η+ε + 1). (26)

9.2. Estimation for the first integral. — In order to estimate
∫ x

1 λ−2ρ|W (y)|2dy,

we shall use proposition 6.1, the asymptotic expansion of Iρ and some properties

of finite differences. This study follows the method used by Chandrasekharan and

Narasimhan in [CN2].

By (22), for ρ > d/2 and y > 0, we have

|W (y)|2 = Q2
∞
∑

m=1

∞
∑

n=1

aman

(αmαn)1+ρ
∆ρ

λIρ(αmy)∆ρ
λIρ(αny). (27)

Definition 7. — We write

W1(y) =

∞
∑

n=1

|an|2

α
2(1+ρ)
n

|∆ρ
λIρ (αny)|2 ,

W2(y) =
∑

n6=m

aman

(αmαn)1+ρ
∆ρ

λIρ (αmy)∆ρ
λIρ (αny) .

We shall estimate
∫ x

1 λ−2ρW1(y)dy and
∫ x

1 λ−2ρW2(y)dy separately.

9.2.1. Estimation of diagonal terms. —

Proposition 9.1. — If ρ ∈ N and x > 1, then
∫ x

1

λ−2ρW1(y)dy = O
(

x2−δ
)

.

Proof By (20), we have
∫ x

1

λ−2ρW1(y)dy =

∫ x

1

λ−2ρ
∑

n≥1

|an|2 |∆ρ
λIρ (αny)|2

α
2(1+ρ)
n

dy

=

∫ x

1

λ−2ρ
∑

n≥1

|an|2
(

λραρ
n (αny)

1
2
(1−δ)

)2

α
2(1+ρ)
n

dy �
∫ x

1

∑

n≥1

|an|2
α1+δ

n

y1−δdy.

For all ε > 0,
∑

αn≤x |an|2 = Oε

(

x1+ε
)

, so if ε < δ,
∑

n≥1
|an|2

α1+δ
n

= Oδ(1). This

proves
∫ x

1

∑

n≥1

|an|2
α1+δ

n

y1−δdy = Oδ

(

x2−δ
)

. �
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9.2.2. Estimation of non-diagonal terms. —

Notations 8. — We recall that ω = (ρ + 1
2 )(1− δ)− iδ=ξ, αn = n/Q2 and a = dβδ.

The equation (27) shows that the estimation of the non-diagonal terms reduces to

estimating the integral
∫ x

1

λ(y)−2ρ∆ρ
λIρ (αmy)∆ρ

λIρ (αny) dy.

Using the asymptotic expansion of Iρ given in proposition 4, this estimate is reduced

to that of the integral

U (b,c)
m,n (x) =

∫ x

1

λ(y)−2ρ∆ρ
λ

(

yωeibyδαδ
m

)

∆ρ
λ

(

yωe−icyδαδ
n

)

dy, (28)

where b and c are two real numbers such that |b| = |c| = a.

Lemma 8. — For δ < 1, ρ ≥ 1, z > 1 and x > max
(

1, (2ρ)
1

η+δ

)

, we have

U b,c
m,n(x) = O

(

1

αδ
m − αδ

n

)

x2(1−δ)(αmαn)δρ if αn < αm < z (29)

= O

(

αδρ
n

αδ
m − αδ

n

)

x(ρ+2)(1−δ)
(

1 + λxδ−1αδ
m

)

if αn ≤ z < αm (30)

= O

(

1

αδ
m − αδ

n

)

λ−2ρx(2ρ+1)(1−δ)
(

x1−δ + λαδ
m

)

if z < αn < αm. (31)

Proof In this proof, m and n are fixed so we do not always write them. For b, c ∈ R
∗

such that |b| = |c| and for y > 0, we define

Gb
m(y) = e−ibyδαδ

m∆ρ
λ

(

yωeibyδαδ
m

)

and Hb,c(y) = λ(y)−2ρy1−δGb
m(y)Gc

n(y),

so we have

U b,c
m,n(x) =

∫ x

1

λ(y)−2ρGb
m(y)Gc

n(y)eiyδ(bαδ
m−cαδ

n)dy

=
1

iδ(bαδ
m − cαδ

n)

∫ x

1

Hb,c(y)
d

dy

(

eiyδ(bαδ
m−cαδ

n)
)

dy,

so

U b,c
m,n(x) = O

(

1

|αδ
m − αδ

n|

)(

|Hb,c(x)| + |Hb,c(1)| +
∫ x

1

| d

dy
Hb,c(y)|dy

)

. (32)

We have

|Gb
m(y)| =

∣

∣

∣∆r
λ

(

eibyδαδ
myω

)∣

∣

∣ and

∣

∣

∣

∣

d

dy
Gb

m(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

eibαδ
myδ d

dy

(

e−ibαδ
myδ

∆ρ
λ

(

yωeibαδ
myδ)

)

∣

∣

∣

∣

and these two functions have been estimated par K. Chandrasekharan and R. Nara-

simhan in [CN2] in case ω is real. In case ω ∈ C, the estimations and their proof are
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the same (see [DR] for more details). We recall here their results :

If y > max
(

1, (2ρ)
1

η+δ

)

, we have

Gb
m(y) = O

(

y<ω
)

(33)

= yω∆ρ
λ

(

eibαδ
myδ
)

+ O
(

λy<ω−1
)

(34)

= O
(

λρy<ω−ρ(1−δ)αδρ
m

)

. (35)

d

dy
Gb

m(y) = O
(

λαδ
myδ−2+<ω

)

pour ρ ≥ 1 (36)

= O
(

λρy<ω−ρ(1−δ)−1αδρ
m

)

. (37)

Using λ′(y) = O
(

λ(y)
y

)

, we get

∣

∣

∣

∣

d

dy
Hb,c(y)

∣

∣

∣

∣

= O
(

y−1Hb,c(y)
)

+ λ(y)−2ρy1−δO

(∣

∣

∣

∣

d

dy
Gb

m(y)

∣

∣

∣

∣

|Gc
n(y)| + |Gb

m(y)|
∣

∣

∣

∣

d

dy
Gc

n(y)

∣

∣

∣

∣

)

. (38)

– If αn < αm ≤ z, by (35) and (37) we have

Hb,c
k,l (y) = λ−2ρy1−δO

(

λ2ρy2<ω−2ρ(1−δ)(αmαn)δρ
)

= O
(

y2(1−δ)(αmαn)δρ
)

(39)

and by (38)

d

dy
Hb,c(y) = O

(

λ−2ρy−δλ2ρy2<ω−2ρ(1−δ)(αmαn)δρ
)

= O
(

y1−2δ(αmαn)δρ
)

. (40)

By (39), (40) and (32), we get (29).

– If αn ≤ z < αm, by (33) applied to Gb
m(y), (35) to Gc

n(y), (36) to d
dy Gk,b

m (y) and

(37) to d
dyGl,c

n (y), we have

Hb,c(y) = λ−2ρy1−δO
(

λρy2<ω−ρ(1−δ)αδρ
n

)

= O
(

λ−ρy(ρ+2)(1−δ)αδρ
n

)

(41)

and by (38)

d

dy
Hb,c(y) = O

(

λ−ρy2<ω−(ρ−1)(1−δ)−1αδρ
n

)

+λ−2ρy1−δO
(

λy<ω−2+δαδ
mλρy<ω−ρ(1−δ)αδρ

n + y<ωλρy<ω−1−ρ(1−δ)αρδ
n

)

= O
(

λ−ρy−δ+2<ω−ρ(1−δ)αδρ
n

)

+ O
(

λ−ρ+1y2<ω−ρ(1−δ)−1αδ
mαδρ

n

)

= O
(

λ−ρy(ρ+1)(1−δ)−δαδρ
n

(

1 + λyδ−1αδ
m

)

)

. (42)

By (41), (42) and (32), we get (30).
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– If z < αn < αm, by (33) and (36), we have

|Hb,c(y)| = λ−2ρy1−δO
(

y2<ω
)

= O
(

λ−2ρy(2ρ+2)(1−δ)
)

. (43)

and by (38)

d

dy
Hb,c(y) = O

(

λ−2ρy2<ω−δ
)

+ λ−2ρ+1y2<ω−1O
(

αδ
m + αδ

n

)

so
d

dy
Hb,c(y) = O

(

λ−2ρy(2ρ+1)(1−δ)−δ
(

1 + λyδ−1αδ
n

)

)

. (44)

By (43), (44) and (32), we have (31). �

We can deduce from these estimations those of non-diagonal terms. The proof is

the same as that of Chandrasekharan and Narasimhan in [CN2], we just recall here

their conclusions.

Lemma 9. — Assume that

W2(x) =
∑

m 6=n

bmbn

(αmαn)1+ρ
∆ρ

λIρ(αmy)∆ρ
λIρ(αny),

that Iρ expands asymtotically to the form

Iρ(x) ∼ eiaxδ
M
∑

ν=0

δνxω−νδ + e−iaxδ
M
∑

ν=0

δ′νxω−νδ,

and that the estimations of the lemma 8 hold for the function

U (b,c)
m,n (x) =

∫ x

1

λ(y)−2ρ∆ρ
λ

(

yωeibyδαδ
m

)

∆ρ
λ

(

yωe−icyδαδ
n

)

dy,

for all b, c ∈ R such that |b| = |c| = a.

Then for all ε > 0, we have
∫ x

1

λ−2ρW2(y)dy = O
(

x2(1−δ)
(

xη(d−2)+ε + log x
))

.

9.3. Proof of theorem 3. — With the hypothesis of theorem 3, we have
∫ x

1

λ−2ρ|W (y)|2dy = O
(

x2−δ
)

+ O
(

x2(1−δ)
(

xη(d−2)+ε + log x
))

and
∫ x

1

|V (y)|2dy = O(x3−2δ−2η+ε).

Finally, for all η > 0, we have
∫ x

1

|E(y)|2dy = O
(

x2−δ
)

+ O
(

x2(1−δ)
(

xη(d−2)+ε + log x
))

+ O(x3−2δ−2η+ε).

– If d < 2, then we choose η tending to infinity and we have
∫ x

1

|E(y)|2dy = O
(

x2−δ
)

.
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– If d ≥ 2, then we choose η = δ and we have
∫ x

1

|E(y)|2dy = O
(

x2−δ
)

+ O(x3−4δ+ε).

This ends the proof.

Estimates of theorem 3 prove that for d < 4, the function E(x) belongs to L2([0, +∞[, dx/x2).

We shall use it in [DR1]. The estimation we get in this last theorem is similar to the

one obtained by Chandrasekharan and Narasimhan in [CN2]. We intend to adapt the

method used by Redmond in [R2] in order to sharpen our result in the case d ≥ 4

and avoid the use of the hypothesis
∑

n≤x |an|2 � x1+ε..
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