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Hamilton-Jacobi equation with Neumann
boundary condition

Said Benachour’ and Simona Dabuleanu!

Institut Elie Cartan UMR 7502 UHP-CNRS-INRIA
BP 239 F-54506 Vandoeuvre-lés-Nancy France

Abstract

We prove the existence and the uniqueness of strong solutions for the viscous Hamilton-
Jacobi equation: uy — Au = a|VulP, ¢ >0, x € Q with Neumann boundary condition, and
initial data pg, a continuous function. The domain ) is a bounded and convex open set
with smooth boundary, a € R,a # 0 and p > 0. Then, we study the large time behavior of
the solution and we show that for p € (0, 1), the extinction in finite time of the gradient of
the solution occurs, while for p > 1 the solution converges uniformly to a constant, as ¢t — oco.

MSC: 35K55, 35K60, 356B33, 35B35, 35B65

Keywords: nonlinear parabolic equation, viscous Hamilton-Jacobi equation, Neumann boundary

condition, large time behaviour, Bernstein technique

1 Introduction and main results

Consider the following initial boundary value problem:

6_1: —Au=alVul in (0,400) x £,
a—Z(t,x) =0 on (0,400) x 09, (1.1)

U(O, CC) = //JO(x) in Q’
where a € R, a # 0, p > 0 and  C R is a bounded open set with smooth boundary
of C3 class.
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The Cauchy problem in the whole space RY has been intensively studied (see B,
A, B, d, [d, 7, @]) As well, in bounded domains Q@ ¢ R¥, existence and uniqueness
results of the solutions for the Cauchy-Dirichlet problem have been obtained in
M, B, 2, 4). In particular the large time behavior of the solution to the Cauchy
problem has been analysed in [fi, {l, §, as a < 0 and for initial data pg a positive
function. Thus, in [§], we can find the following result: if @ < 0, p € (0,1) and the
initial data g is a periodic function, the extinction in finite time of the solution of
problem ([L.1]) occurs. Since, any positive solution of the Cauchy problem is a super-
solution of the homogeneous Cauchy-Dirichlet problem, the result of [§], remain
valid also in bounded domains for the Cauchy-Dirichlet problem.

With respect to the Cauchy-Neumann we mention the results given in [[[3], re-
garding the existence, uniqueness and regularity of weak solutions, for p € (0,2),
a € R,a # 0 and initial data pg a bounded Radon measure or a measurable function
in L9(Q2), q > 1. To our knowledge the problem ([.1) has not been investigated for
the super-quadratic case, p > 2.

In this paper we consider the problem ([.1) when € is a bounded and convex open
set, and we give some existence and uniqueness results of the solutions when the
initial data is a continuous function in Q. Then we study the large time behavior
of the solutions according to the exponent p. The results rely on some remarkable
estimates for the gradient of the solutions of problem ([L.1), obtained by using a
Bernstein technique. These estimates, given in Theorem [[.9 are used as the key
argument in the proof of the extinction result in Theorem [.J. More exactly we
show that: if p € (0,1) then, for any solution u of problem ([[.1]) with initial data in

C(€2) there exists T* > 0 and ¢ € R such that:
u(t,z) = ¢, for all t > T* and = € Q.

This property is called: “the extinction of the gradient of the solution u in finite
time“. Also, in Theorem [[.3 we prove that, for p > 1 any solution of problem ([.1)
converges uniformly to a constant, as t — oo.

The notations used are mostly standard for the parabolic equations theory:
For all 0 < 7 < T < oo we denote by Qr = (0,7) x Q , T'r = (0,T) x 99 ,
Qrr = (1,T) x Q and I'yp = (1,7) x 0Q. C(R) is the space of continuous
functions on Q. Cy(f2) is the space of bounded continuous functions on €. Cy(9)
the space of continuous functions on €2 which vanish on the boundary 9Q. C°(Q)
( resp. C°(Qr)) the space of infinitely differentiable functions on © (resp. Q)
with compact support in © (resp. Q7). C%1([0,T) x Q) is the space of continuous
functions u on [0,T) x Q which are differentiable with respect to z € Q and the
derivatives (g_mui)lSiSN are in C([0,T) x Q). CH2(Qr) is the space of continuous
functions v on Q7 such that the derivatives: %, (aa_gZ)ISiSN’ (#gmj)lﬁiJSN’ exist

and belong to C(Qr). Suppose that « is a positive real number and [«] the integer



part of a such that [a] < « then: C%(Q) and C*/?(Q) denote the usual Holder
spaces on the bounded open sets @ C RY and @ c RN*! respectively (for the
definitions see [, 0]).
We denote by M;(2) the space of bounded Radon measures on {2 endowed with the
usual norm || [| x4, () For ¢ > 1, || || is the usual norm of the Lebesgue space L9(S2).
Wha(Q), W4(Qr) and W, *(Qr) are the usual Sobolev spaces in € respectively
Qr (for the definitions see [RI]).
We denote by (S(t))i>0 the semigroup of contraction in L?(£2),q > 1 related to the
heat equation with homogeneous Neumann boundary condition (see [RJ]). As we
can see in [[[J] this semigroup can be extended, in a natural way, to the space of
bounded Radon measures, Mp(£2).

First we recall an existence and uniqueness result for the solutions of problem ([.1))
when p € (0,2) (for further details see [[L3]).

Theorem 1.1 [[3] Let pg € My(R2). Then admits a weak solution u €
L(0,T; LN Q)N L0, T; WHH Q) NCHH2249(Q. ), T > 0,7 € (0,T), § € (0,1),
such that |Vu|P € LY(Qr), in the following cases:

i) 0 <p<2/(N+1). The solution is unique if Q is convex.

i) 2/(N + 1) < p < 1. The solution is unique if py € L1(Q) for some q >
pN/(2 —p) and Q a convex open set.

iii) 1 <p < (N+2)/(N+1). The solution is unique. If puy € L1(Q) for some
q > 1 then u € C([0,T); LY(2)) N LP(0, T; WLP(Q)).

w) (N+2)/(N+1) <p<2 pu € LYN) and ¢ > q. = %;1). There holds
u € C([0,T); LY(Q)) N LP(0,T; WHPI(Q)) and the solution is unique in this
space.

v) (N+2)/(N+1)<p<2, poe€ LYQ), uo > 0.

Moreover, this solution satisfies ([[.1) in the mild sense:
t
u(t) = ,uo—i—a/S t— §)|[Vu(s)Pds, te(0,T).
0

In Theorem [.2 below we prove the existence and the uniqueness of solutions of
problem ([L.1)), for p > 0, Q a bounded and convex open set with smooth boundary,
and for initial data pg € C(2). We give also some gradient estimates of the solution
u of problem ([.1)) which will be very useful in the proof of Theorem [[.3.

Let u be a function in C(Qu). For any ¢ > 0 denote by:

M(t) = I;leaﬁx u(t, x) (1.2)
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and

m(t) = inei%u(t,x), (1.3)

Theorem 1.2 Consider a € R,ya # 0, p > 0 and g € C(Q), where Q is a bounded
and convex open set. Then, the problem (1.1) admits a unique solution:

u € C(Qr) NCH2E(Q )

for any T >0 and 7 € (0,T). Moreover, we have:

t — M(t) is a decreasing function in R, (1.4)
t — m(t) is a non-decreasing function in R, (1.5)
1\ /2 1
|Vu(t)|loo < <§> (M(s) —m(s))(t—s)"2 forallt >s>0, (1.6)

and for p # 1

max{p, 2}

1/p
s) — m(sNYP(t — s) VP for q s Gy
ap‘l_p,> (M (s) —m(s))/P(t — s)~ /P for allt > 5 >0. (1.7)

|NMM@§<

For the proof we are using the Bernstein technique. This method can be found
in [, [, {7 and [, where formulas similar to ([.§) and ([L.7) are obtained for
the Cauchy problem in RY. This method has also been used by Ph. Benilan [
in order to obtain remarkable estimates for the solutions of “the porous medium
equation”

In the next result we are going to analyze the large time behavior of the solutions
for problem ([L.T]).

Theorem 1.3 Consider a € R,a # 0, p > 0 and Q a bounded and convexr domain.
Let py € C(Q) and denote by u a solution of problem corresponding to .
Then:

i) If p € (0,1), the extinction of the gradient of u in finite time occurs, in other
words:
there exists T* € [0,400) and c € R such that:

u(t,z) =c for allt > T* and x € Q,



ii) If p € [1,+00), then u(t,-) converges uniformly on Q to a constant, ast — oco.
Moreover the decreasing rate is given by:

M(t) - m(t) < (%Z/Q)y Vi 0,

where f is defined in (f.23) and v in ({.3).

Remark 1.4 From ([{.23) we have:

<8f<t/2>>% _ { Cit 50t if p=1,

2 —_a+l )
t Cst =D 4f p>1.

where v and o are given by {f.3) and {.3), and C1,Ca,Cs are positive constants
which depends only on p, N, 7.

The proof of Theorem [[.J follows the same ideas as in [§. In this paper, the authors
investigate the large time behaviour for the Cauchy problem in the whole space RY
and for initial data periodic functions. We mention that the key arguments of the
proof are the relations ([.6) and ([.7) above.

Remark 1.5 Theorem [[.3 is valid for any a € R,a # 0, while in [} and [§] the
result is proved for a < 0.

The next result is a simple consequence of Theorem and Theorem [L.3 above.

Corollary 1.6 Let Q2 be a bounded and conver domain with smooth boundary and
let a € Rya # 0. Then:

i) If p € (0,1) and po is a bounded Radon measure, the extinction in finite time
of the gradient of any weak solution u of problem ([1.1) occurs.

ii) The weak solution u(t,-) of problem ([[_]) converges uniformly in Q, to a con-
stant ¢ € R, as t — oo, in the two cases below:
a) p €1, %—ﬁ) and po is a bounded Radon measure,

b) p € [5t2,2) and po € LI(Q), q > g = 21

This paper is organized as follows: In section 2, we give some preliminary results. In
section 3, we introduce the technique of Bernstein to obtain some uniform estimates
for the gradient of the solution of problem ([L.I)) and we prove the Theorem [.3. Finally
section 4 is devoted to the proof of Theorem [[.3, which concerns the large time
behaviour of solutions.



2 Preliminary results

We start with some auxiliary results.

Lemma 2.1 Let Q C RN be a bounded domain with smooth boundary and consider

wo € C(Q). Denote by m = migll wo(z) and M = maéquo(x).
Te Te
Then, there exists a sequence (ul),>1 C C3T5(Q), (B € (0,1)) such that:

ug \ o as m— 00, (2.1)
1 . 1
and Sy
% =0 on 09. (2.3)
Proof:

For any n € N*, denote by v = o + 2%, then (v}), C C(Q). For t > 0 let us set:
v (t) = S(t)vg.
Then v" € C(Qoo) N C®(Qr.o0) for all 7 € (0,00), and:

aa%(t,x) =0 forall (¢,x) € I'p.

Since v" € C(Qoo), there exists t,, close enough from 0 such that:

0" (tn, ) — 0 (2)] < vz € Q. (2.4)

on+2’
Denote by:

ug(x) =v"(tn,z), x €l
Then uf € C*(Q2) and satisfies condition (R.3). Moreover, thanks to (2.4) we have
on the one hand:

1 1 1
US_NOZ(US_US)‘{'(US_NO)SW+—<

on the other hand:
ug — po = (ug —vg) + (vg — po) > _W+2_n > oni1
which yields (R.2).
To prove that (ug), is a decreasing sequence, let compute:
1 1 1 1

+1_ +1 +1 +1 —

And finally we obtain (R.1)). O



Lemma 2.2 Let Q C RY be a convex and bounded domain and q a real number such
that ¢ > N. From the Sobolev embedding, W14(Q) — C(Q), for all u € W14(Q),

the following quantities:

M, = maxu(z) and m, = minu(x),
reQ z€Q

are well defined. Moreover we have :
M, —m, < C||Vulq, (2.5)
where C' is a positive constant depending only on q, N and €.

Proof: The proof is similar to that of Lemmas 7.16 and 7.17 in [[4]. Q being a
convex set, for all z,y € Q we have (1 — t)z +ty € Q for any ¢t € [0,1]. Let
u € WH(Q), then:

1
u@%wmnz/VMﬂ—ﬂx+w%@—yMu
0

which yields:

1
u(z) — 1 u(y)dy = L//Vu((l —t)x +ty) - (r —y)dtdy.
Q Q0

Denote by:

Then,

1

1
lu(z) — uq] § //Vu 1 —t)z +ty)|dtdy < //Vu (1 —t)x + ty)|dydt.
0 0

We replace (1 — t)x + ty = ¢ and, for any t € [0, 1], we denote by € the set:
Q={C=010—-t)r+ty;y € Q} CQ,

then:
1

d -N
!W%mﬁﬁ/ﬁwwtﬁw

0 Q



Using the Holder inequality for ¢ > N we get:

1

1
ue) —ual < g [ [ [ 1vatorac] o= a
0 Q
d 1
< g1Vl /tN<1—1/q>t—Nym1—1/q dt
0
1

d _ d q
IVull, - / K LT
0

< —_
= o/ S jofig-N

Finally, for x,y € {2 we obtain:

2d
u(z) —u(y)| < |u(z) — ual + [ug — u(y)| < Q- q_LNHVUHq,
and relation (2.5) follows. Thus, the Lemma P.J is achieved. O

Lemma 2.3 Let Q C RY be a conver and bounded domain, then for u € C%*(Q)

such that @

o loo= 0, we have:

Q\Vulz <0 on 0.
ov
For the proof see Lemma 1.1, p. 350 in [BJ].

The following lemma is a comparison principle for parabolic nonlinear equations,
which generalize the result obtained in [[L9], to less regular functions.

Lemma 2.4 Let Q C RN be a convex and bounded open set with smooth boundary
and denote by N, the nonlinear parabolic operator, defined by:
ou
N(u) = Frie Au— f(t,z,u,Vu)
where f is a uniformly continuous function satisfying:
for all r > 0 there exists L, > 0 such that:

’f(tﬂl%yl’vl) - f(t7x7y277}2)‘ < LT’(’yl - yZ‘ + ‘Ul - UQ‘)a

for all (t,x) € Qr and y1,y2 € (—r,7), v1,v2 € B.(0), (2.6)

where:
B,(0) = {¢ e RY; [¢] < r}.



Let u' and u? be two functions in CO1(Qr) N CY3(Qr), such that:

Nt (t,z) <0< N(W?)(t,z) for all (t,z) € Qr

dv — Ov
ul(0,z) < u?(0,2) for all z € Q

Then
ul < u? on Qr.

We begin the proof by the following useful remark:

Remark 2.5 Let Q be a convex open set in RN with smooth boundary 09, which
contains the origin. For x € 02, denote by v(x) the unit outward normal on O at
the point x. Then:

x-v(z)>0.

Proof of Lemma R.4: Supposing first that 2 is a convex open set which contain
the origin and denoting by

R =max{ sup |ui(t,x)]; sup |Vui|(t,z); sup |ua(t,z)|; sup |Vusa|(t,x)},
(t,x)eQT (t,x)eQT (t,x)eQT (t,x)eQT

then, from (P.6]), there exists Lg > 0 such that:
|f(t,z,ur, Vu)—f(t, z,u2, Vuz)| < Lr(Jug—uz|+|Vur—Vus|), (t,x) € Qp. (2.8)
For any ¢ € (0,1) consider the function:
2t @) = ui(t,7) — un(t, ) — e (1 + |2]?)7,
where C = 2Lr + N. Then, using the regularity of u; and us we deduce that:
2 € C%(Qr) N C*(Qr).
For any t € [0, 7] let us define the function:

¢(t) = max{sup z(t, r); 0},
e

then ¢ € C([0,T1]), and for any ¢ € (0,T] we can define:

() = limsup plt) = olt = 1) .
NG h
Thus, in order to prove that:
2z <0in Qr, (2.9)



we need to show that:
o' (t) < Lpp(t) for all t e (0,T). (2.10)

Indeed, as ¢(0) = 0 and ¢ > 0, we can apply Theorem 4.1 in [[[§] to the differential
inequality (R.10) and we deduce that ¢ = 0. Which implies (R.9).

Proof of (2.10): Consider t € (0, 7.

There are two possibilities. Either ¢(#) = 0 and (R.10) holds because, in this case,
@' (t) <0. Or ¢(t) > 0, and in particular, there exists xg € Q such that:

z(t,zo) = @(t) > 0.
We claim that zg ¢ 0. Indeed, if xg € 92, on the one hand:

0z . 2(t,xo + Av) — 2(t, z0)
s —1
o (0) = Jin A

> 0.

On the other hand, thanks to hypothesis (2.7) and to Remark R.5 we have:

0z Ou; Ous TV TV
:___—560757 <—€60t71 <0onI7.

v v 4eP)t T (L+laP)

So, we have a contradiction. Consequently, zg € 2 is a positive maximum point for
the function Q 3 z — z(¢,x). In particular we have:

Vz(t,zg) =0 and Az(t,zg) <0. (2.11)
Since, for any h > 0, z(t — h,xo) < p(t — h), we deduce:
— z(t,x9) — 2(t —h,m0) Oz

'(t) < li = — . 2.12
7)< lim : O (1) (2.12)
On the other hand, thanks to (R.§) and (B.11]), at (¢, ), we have:
aZ o aul 8UQ Ct o\ 1
E(t,xo) = E(t,xo) — E(t,xo) —eCe™" (1 + |zol)2

< Aug —ug)(t, o) + f(t, zo,ur, Vuy) — f(t, o, uz, Vug) — esCeCt(l + \xo\Q)%

_ 2
< Az 4 ccCHHOMI) | p Lty ] 4 Ll Wy — Vag| — eCeC (1 4 [aof?)}

< EeCt (N +LR%> +LRz(t7x0) — E(LR + N)eCt(l + ’1'0‘2)%

B (14 [zo]?)2

< Lpz(t,z0) + e(N + Lg)e® — e(N + Lp)eC (1 + |20|%)% < Lri(t).
(2.13)
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Recall that C = 2Lg + N and z(t,z9) = ¢(t). Combining (R.19) and (R.13) we
deduce (R.10). Thus (R.9) holds. We may let € \, 0 in (R.9) and we get:

Ul S u9 in QT-

For the general case when 2 do not contains the origin, it is possible to translate
the problem on a domain which contains the origin since the first equation of ([L.1)
is invariant to the translation. For example we can carry the study of the problem
on €, =Q — xo, where z¢ € Q. ]

In the sequel we denote by G : (0, +00) x Q2 x Q the heat kernel for the homogeneous
Neumann boundary value problem, then, for fix y € Q, G(-,-,y) verifies:

9G 1o y) = AuGltsary) in O,

%

G(t,z,y) o dy(x) weakly in My(£2).

(t7x7y) = 0 on I\C>O7

The proof of the following property on the heat kernel can be found in [[[f, [[].

Lemma 2.6 [14, [14] Let Q be a bounded open set with smooth boundary and G the
heat kernel for the homogeneous Neumann boundary value problem. Then for any
1 €N and o € NV, and for any T > 0, there exists two positive constants ¢ > 0 and
C(T) > 0 such that:

2
_lz—yl
¢ t

DS DIG(t,2,y)| < C(T) 3 +5 +0e (2.14)

for all (t,z,y) € (0,T) x Q x €.

Consider, pp € L*>(Q) and S(t)puo the solution of the heat equation with initial data
o and with homogeneous Neumann boundary condition. Then:

S(t)polz) = / G(t, 2,y)oly) dy.
Q

Thanks to (R.14), for any I € N and a € NV and for any 7' > 0 we have:

_(lal
1D DS (t)poloe < C(T)|olloct ™70, (2.15)

where C(T) is a positive constant.
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3 Proof of Theorem

We prove the theorem for a > 0. If @ < 0, then —a > 0 and we notice that if v is

the solution of problem ([[.1)) with initial data —ug instead of ug and —a instead of

a, then © = —wv is the solution of problem (@) corresponding to data a and pyg.
The proof follows five steps:

First step: “Smoothing”.

Consider 9 € C(Q) and denote by M (0) = max po(x) and m(0) = min pg(z). Then,
from Lemma .1, there exists a sequence of xfinctions (U )n>1 sati;fifsi]ng:
ug "\, fo as m — oo,
% =0 (3.1)
m(0) + 1 <up <M(©0)+ 2, Vn>1.
As in [f] and [I]] we need to introduce a smooth function, related to & — al€|P. So,
for any € € (0,1) we consider the application F. : RN — R defined by:

ale + |€]?)P/? if 0<p<1,
F(&) =13 al—e+|€2)(e+ €)= if 1<p<2, (3.2)
alg|P if p>2.

With p > 0 fixed, let us show that for any &;,& € B,(0) and € € (0,1) we have:
|Fe(&1) = Fo(&)] < Kpmrm10hje, — gyt (3.3)

where K is a positive constant depending only on p and a.

To prove (B.3) we can distinguish among the three cases. So, using the Mean Value
Theorem there exists A € [0, 1] such that:
The case 0 < p < 1:

|Fo(61) = Fx(&2)] = al(e + &*)P? — (e + |£2|2);’/2] < al(e + &) 2 = (e + &) 2P

A6+ (1 — N)&
a<(6+|)\£1+(1_)\)£Z|2)1/2|£1—52|> §a|£1_£2|p‘

The case 1 <p < 2:

[Fe(61) — Fe(&2)] < [VE(A + (1= A)&2) - (&1 — &)
< 28+ (- N6l (2 + B(A + (1= N&f® —¢))
- (e + A& + (1 = N)&p[2)2-P/2
<4alAér + (1= N&fPHér — &of <dapP™Hér - &l.
The case p > 2:

|FL(61) — Fe(&2)| < [VF(A + (1= MN)&)|[& — &2
<ap - [M1+ (1 — N)&fP7HE — & < appP~ e — &l

&1 — &

12



Moreover, F. € C°°(R"™) and satisfies the following inequalities:

(VE)(E) - € — Fe(§) <alp -1 if0<p <1,
(VE)(E) - €= Fe(§) = alp—1)[¢P if p> 1.

Indeed, when 0 < p < 1 we have:

1 e G [ I O O
(VF.)(€) - § = F(§) =a e+ [E)r2 a(g ¥ [ER)P2
— ( )‘5’2 _ €+(1_p)‘§’2 ( +‘§’2)p/2
R A e e
 (=p)e+lEP)

a
- e+ g
If 1 < p <2 then:

(VF)(&) - &€ — F.(§) (e + |€]2)2-P/2
> a(p—1)(e + [¢*)P? > a(p - 1) €],

and finally, for p > 2 we have:

(VE)(€) - € = FL(€) = apleP72¢ - € — aléP = a(p — 1)[EPP.
For any n € N, let denote by:

pn = sup{|Vug|(2)}.
€

Then, there exists 6 € (0,1) and a function F, ., such that:
E,. € C*P(RY),
Fn,e(g) Fe(&) if 5 € Banrl(O),

Fre(€) = va(L+[€%) if [€] = pn +2,
|[Foe (O] S va(1+[¢7) for all €€ RY,

where v, is a positive constant which depends only on p,, and p.
With F, . defined above we consider the problem:

— Au = F, .(Vu) in Qr,

gu =0 on I'p,
u(O, ) =uf in Q.

_ =D+ €77 +322 - p)l¢* + (2~ p)

(e €12 < —a(l —p)(e + E7)P? < alp — DIEP.

(3.6)

W w
© oo

W o~ —~

(3.11)

Thanks to the regularity of u2 and to relations (B.1)), (B.7), (B.g), (B.9) and (B.10)
we can apply Theorem V.7.4 in [R{] to the problem (B.1I). Thus, there exists
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™t € C1H/22(Qr),a € (0,1), the unique solution of problem (B:I1). For any
(t,z) € Qr let denote by:

Ine(t,z) = F, -(Vu™)(t, x). (3.12)

Then, thanks to the regularity of F), . and «™* it follows that: f,. € C HTQ’HO‘(@)
and u™¢ verifies:

Hume
= — AU = foo in Qr,
€
8gy —0 on Tp. (3.13)

u™*(0,-) =uf in Q.

Applying Theorem I11.12.2 in [B{], on the local regularity of solution for parabolic
problem of (B.13) type, we get:

,3 « P arA—
€ .00 (Qr) n oYy,

In the sequel, we show that, for € € (0,1),
|IVu5(t,x)| < pp, V (t,x) € Qr, (3.14)

where p, is given by (B.6). For this, we will use the Bernstein technique. First we
introduce the parabolic operator £ defined on C%'(Qr) N CH2(Qr) by:

L(v) = % — Av+b(t,z) - Vo,

where b € [L>®(Qr)]"V is given by:
b(t,z) = —(VF,)(Vu™)(t,z) in Q7.
Setting w = |Vu™¢|2, then w € C%Y(Q7) N CH2(Qr) and verifies:

82 n,e 2
-9 <
Z <8x 336]) =0,

Z]f

hence, thanks to Lemma and to relations (B.1]) and (B.6) we have:

g—w <0 on Iy and w(0,z) <p? in Q.
v

Then, by the Comparison Principle (Lemma R.4), we obtain: w < p2 in @Qr and
relation (B.14) is proved.

14



Combining (B.§), (B-11) and (B.14), we finally obtain that: u™* € Clgia’fﬂ_a(QT) N

C1*e/22+2(Qr) is the solution of the initial boundary value problem:

8—1; — Au = F,(Vu) in Qr,

-0 on T'p, (3.15)
v

u(0,) =wugy in Q.

Moreover, we notice that, in (B.15), F. is independent of n.

Second step: “Estimates for u"°¢ ”.

For € > 0 and n a positive entire let set:
1
My e =m(0) + — —ae?’?. T (3.16)
n

and 5
M. = M)+ = +ac?? - T. (3.17)
n

The next proposition gives some estimates of u™¢ which will allow us to pass to the
limits in (B.19), as € tends to 0:

Proposition 3.1 For all p € (0,+00), the solution

u™® € Cloi ’3+a(QT) N Ce/2242(Qr) of problem (3.13) satisfies:
Mpe < U™ < M, in Qr, (3.18)
1\ /2 1 1
90l < (5) (e =t 1) pr e 01, (319
and, if p # 1:

(Ve < (BN G e e oy allt € (0.7, (3.20)
~ \ap|l —p| ’ T ’

Proof: The two inequalities in (B.1§) are simple consequences of Lemma P.4.
Instead, to prove (B.19) and (B.20) we will use the Bernstein technique and the proof
is similar to that given in [0,[[7] and RJ]. Let denote by w the function defined on

Qr by:

_ ’vun,€’2
o Q(Un,e) ’
where 6 is a strict positive function of C?([my, c, My, ]) class, which will be chosen

later according to the exponent p.
Then, thanks to the regularity of function u™¢ we have:

w e C¥Y(Qr) N CY*(Qr).

(3.21)
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Moreover:

ow 1 o|\vure)? n ney OU™®
ERIE | o | O(u™) — [Vu™<[* - ' (u ’8)—81/ )
1 O|Vue|? on T
T W] ow &

Since 6 is a positive function, this last relation and Lemma P.J imply:

ow <0onI'r. (3.22)
v

Denote by A the semi-linear parabolic operator defined on C%!(Q7)NCY2(Qr) by:

ov

N(v) = 57 = Ao =b(t,x) - Vo —c(t, 2)0* — d(t, 2)o' 72
where 20" (u™°)Vu™* (t, x)
n,e u LT
bt z) = (VE) (VU™ )t o) + —presasy)
ct, x) = 0" (u")(t, ),
and

d(t,z) = a(p — 1)9%(2/1’6)(75, 2)0 (U™ (t, x). (3.23)
The function w being introduced by (B-21) we have:

N 2
- 2 82un,5 Hl(un,a) e e
N(w) - _9(u"75) i]gz:l (63:28:::) + 92(un,5) [(VFa)(VU ) -Vu (3.24)

—F.(Vu™) — a(p — 1)|Vu™¢|P]|[Vu™¢ 2.
To prove (B.19) we will distinguish between the two cases below.

i) The case 0 < p < 1. We take # in (B.21)) as follows:

1 1 1
9(5) = §(Mn,e — Mpe+ E)z - §(Mn,€ - 5)25 5 € [mn,z-:a Mn,e],

where m,, . and M, . are defined by (B.16) and (B.17). So 6 verifies:

1 / 1
6(5) 2 2—n27 0 (5) = Mn,e - 57 9 (’LL) = _17

and we deduce that:

and



Combining these last points with (B.4) and (B.24) it follows that:
N (w) < 0. (3.25)
Taking into account (B.6) and (B.13) we have:

_ Vg
0(ug)

w(0) < 2p2n”.

So, for n a fixed entire, choose 17 > 0 such that:

1
w(0) < 2p2n? < e (3.26)
and denote by v the function defined on Q7 by:
olt,z) = (t+ 7).
Since a > 0 and p € (0,1) we have:
N () = —d(t,z) - (t +n)"0P/2 > 0. (3.27)

So, recalling (B.29),(B.25), (B:24), (B.27) and Lemma R.4 we get:

w(t,z) < (t+n)"t <ttt forall (t,z) € Qr,

and we deduce that (B.19) holds for p € (0, 1].

ii) The case p > 1. In (B.21]) we consider the function 6 defined by:

1 1,

1
0(5) = §(Mn,6 — Mpe+ E) - 5(5 - mn,a)Qa § € [mn,zsa Mn,a]7

then 0 satisfies:
1
0(5) Z W? 01(5) - mn,a - 57 61/(5) = _17

and we deduce that:

and
d(t,z) = a(p — 1)9¥(u"’5)(t,x)ﬂ'(u"’a)(t,x) <0.

Combining these last points with (B.5) and (B.24) it follows that:
N(w) <0.

As previously, we can prove (B.19) for the case p > 1 by comparing w and v.
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To prove (B.2() we will distinguish among three cases:
i) The case 0 < p < 1. In (B.21)), we consider the following function:

016) = (o (M = ) 7 (6 = ), €€ M
Thus
9 2/p ) ,
GE [m} L 0O 20 and 0'(6) =0, €€ [mac, Mo (3.28)
w being given by (B.21]), thanks to relations (B.4) and (B.24) we obtain:

N(w) <0 (3.29)
Taking into account (B.11) and (B.2), we can choose 1 > 0 such that:

anp(1 — p) 2/p 1

w(0) = < 2p? [
where p,, is given by (B.§).
Let v be a function defined on Q7 by:
o(t,x) = (t+n)"2P.
With d given by (B.2d), and 6 being chosen as above we have:

2

M, . — Ly 2z
d(t7x):_g< n,e mn,e+n> g_g
p

1
b U_mn,e‘{'ﬁ

And we deduce that:
N (@)= (=d=2/p)(t +n)""F 20 (3.31)
Combining relations (B-22),([B.29),(B-37).(B-31), and Lemma P.4 we get:
w(t,z) < (t+n)2P <t~2P for all t > 0,

and we deduce (B.20), for 0 < p < 1.
ii) The case 1 < p < 2. In (B.21]), we choose the following function 6:

2 2/p 1.2-»p 1
9(5) = [m} (Mn,s — Mpe+ E) P (Mn,s —&+ E), €€ [mn,z-:a Mn,e]
Thus:
2 2/p , P
002 || 0O S0 and 076 =0, €€ fmne Mo (3:32)
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and we get (B.20) as previously.
iii) The case p > 2. This time we prove (B.2(]) in the two cases above, by taking:

006) = [y Mo =6+ )]s € € mncs M)

We came back to the problem (B.15) and we notice that
e — F.(§) is a nondecreasing function for 0 <p <1

and
e — F.(§) is a decreasing function for p > 1.

Then, thanks to relations (B.d) and (B.1§) we can apply Lemma P.4 and we obtain
that the set (u™¢).~0 is bounded and monotone with respect to e, and consequently,
there exists u™ € L (Qr) such that

u S u"in Qr ase 0, if 0<p<1

and

TN\ u" in Qr as e\, 0, if p>1.
Moreover, from relations (B.1)) and (B.1§), the hypotheses of Theorem V.7.2 in [(]
are satisfied and we deduce that the solutions u™* of (B.15) verify:

<C (3.33)

Hun7€ ||C%6,1+5(QT)

where § € (0,1) and C are two positive constants which depend only on m, M, ||ug ||g)
and Q. Thus, we deduce that for all n, the set {u™¢,0 < ¢ < 1} is bounded in

C 1%6’1‘“5(@). Let be f,. the function given by (B.12), then, thanks to the regu-
larity of F. and to (B-33), the set {f,,0 < ¢ < 1} is bounded in C%/%%(Qr). Since

u™* e’ 1%6’1‘“5(@) is the solution of problem (B.15), the hypotheses of Theorem
IV.5.3 in [R{] on the regularity in Holder spaces of solutions for parabolic equations,
are verified and therefore we get:

uve e Cl+6/272+6(@)
moreover, there exists a constant C' > 0, not depending on ¢ € (0, 1), such that:
Hun’eﬂcua/z,zw(@) < C(”U8”02+6(§) + an,e”cé/w(@) <Cn (3'34)

Thus, the set {u™,0 < ¢ < 1} is bounded in C'+¥/22%9(Qr). Since for any 0 <
v<90
Cl+6/2’2+6(m) <, Cl+u/2,2+u(@)

)
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with compact embedding, we deduce that {u™%,0 < € < 1} is a precompact set in
C'Hv/224v(Qr) and it follows that, “to a subsequence” we have:

U™ — u in CHY/22H(Qr) as e N\, 0 (3.35)
On the other hand, for all £ € RY:
Fe(€) — alg]? as e 0,

So, we can pass to the limit in (B.15), as € \, 0, and we obtain that " € C*+/22+(Qr)
is a solution of the following initial boundary value problem:

a n

% — Au" = a|Vu"P in Qr,

ou” =0 on I'p, (3.36)
Oov

u™(0,z) = ug(z) in .

Applying the Comparison Principle, [Theorem 1 in [[[J]], we get also that this solu-
tion is unique in C12(Qr).

Third step: “Estimates for u™ ”.
The aim of the following proposition is to prove that (u™),, satisfies also the estimates

(B-19), (B-19) and (B-20) for £ = 0, and is bounded in a Hélder space.

Proposition 3.2 The solution u™ € C**/22t(Qr) of problem (3.36) satisfies the
following properties:

m(0) + % < () < M(0) + % (3.37)
1\'/2 2. 1
[Vu" () ||oo < <§> (M(0) —m(0) + E) -t72, forallt e (0,T), (3.38)

and, if p # 1 then:

/p
[Vu"(t)]loo < (MY (M (0) — m(0) + %)w 7P for all t € (0,T).

ap|1 — p|
(3.39)
Moreover, there exists 6 € (0,1) such that, for all T € (0,T):
the sequence (u™),, is bounded in CYTO/2H9(Q 7). (3.40)

(This bound depends only on 7,82, p,m(0) and M(0).)
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Proof: Relations (B.37), (B-3§) and (B-39) are direct consequences of (B.1§), (B.19),
(B-20) and (B.3§). In order to prove (B.4() we denote by f, the function defined on

Qr by:

N—

fu(t,x) = a|Vu™|P(t, x).

Then u” € C'*227(Q7) is the solution of the following problem:

%_Aun:fn in Qr,
O _ o on Ty, (3-41)
v

Consider 7 € (0,7"). Thanks to relation (B.33), f, € L*(Q,r) and:
1l ioe(@uir) < oz (M(0) = m(0) + 2777, ¥ meN (3.42)
Consequently, the sequence (fy,),>0 is uniformly bounded in L>(Q, ).

In the sequel, we decompose the problem (B.41) into two parts.
On the one hand, we denote by v™ the solution of the heat equation on Q3 7:

a n
aai —Av" =0 in Qr/s,T,

" 3.43
e 0 on I'zsr, (3.43)

v"(1/3,2) =u"(7/3,z) in Q.
Thanks to the regularity effect of the heat equation it follows that:
v" € C%(Qar/31) (3.44)

and from Lemma P.6 and relations (R.15) and (B.37), for all l € N and o € NV we

have:

1D3 Dy |lo0.@sr j5.r < C(T, 2)(M(0) +m(0) + D50, (3.45)
Next, we denote by w” the solution of the problem:
ow™ n .
ot —Auw" = fn(tax) m QT/B,T,

8811; —0 onTr, (3.46)

w™(7/3,-) =0 in .

Taking into account (B.3), we have f, € C A (Qr) and we deduce that w" €
CH”/Q’?*”(QT/&T). Since f, € L®(Q;/3,r), we have in particular f, € LY(Q, /3 1)
for all ¢ > 1. Thus, we can apply Theorem 7.20 in [R1], on the regularity of parabolic
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solutions in LY spaces, and we get that, there exists a constant C' > 0, independent
on n, such that:

1D20" g5 » + 1D g 2 < Clliullars 2 < ClQ5 2 fullsg e (347
Combining (B.42) with (B.47) we get:
1D g0 5+ 1D20 gy, < COLO),m(0),p 7, T, 0. (3.48)

Since u™ = v" 4+ w", from (B.45) and (B.48) we get on the one hand:

HDtun|’q7Q27/3,T + HD:?:uanvQ%—/S,T < C(M(O)7 m(0)7 p,q,7,T,Q). (3'49)
On the other hand relations (B-37) and (B.3§) yield:
[ [0, @ar 5.0 < C1(M(0),m(0)) (3.50)
and
HDiBun||007Q27—/3,T < CQ(M(O)a m(O),p, T)' (351)

So, combining (B.49), (B.50) and (B.51]) we get:

HunHW;,Q(Q%/S’T) < C(M(0),m(0),p,q,7,T,9Q) for all n € N and ¢ > 1.

We choose ¢ > N + 2, then, applying Lemma I1.3.3 in [20] (on the embedding of
Sobolev spaces into Holder spaces), we deduce that, for any [ satisfying 0 < § <
1-— %, there exists a constant C' > 0 such that:

IVu™lls/20@m e < C@ BT TN Iz, .

Since the sequence (uy )y is bounded in W;’2(Q27/3,T), we deduce that (|Vuy|), is
bounded in Cﬁ/zvﬁ(QQT/37T). Consequently the sequence (f, = a|Vu,|P), is uni-
formly bounded in C%%9(Q,, 3,1), where § = §(3,p).

We came back to problems (B.41), (B.43) and (B.46) in Qy,/3 7. By reiterating the
process above we get, thanks to Theorem IV.5.3 in (], that:
i) w" e Cl+5/2’2+5(Q2T/37T) and there exists a constant C' > 0, independent on n
such that:

HwnHCH‘;/Q’H‘S(E) < CanHCé/Q’&(E) < C(m(O), M(O),p, N,7,T, Q) (3.52)
3 3
i1) v™ satisfies relation (B.49) on Q, 7.

Thus, recalling (B.45) and (B.59) we obtain that u" € C’1+5/2’2+6(QT,T) and:

< C(m(0),M(0),p, N,7,T, ), (3.53)

HunHcl+6/2,2+6(7Q27_/37T) =
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which ends the proof of Proposition B.3. O

Four step: “Proof of the existence of solutions”.
On the one hand, thanks to the Comparison Principle, [Theorem 1 in [[d]], and to
relations (B.1)) and (B.37) the sequence (u"),, is decreasing and uniformly bounded.
Consequently, there exists u € L*°(Qr) such that:

u" Nyu in Qr. (3.54)

On the other hand, by Proposition we deduce that, for any 7 € (0,7, the
sequence (u™),>1 is bounded in C*9/22+3(Q) 7). Since for all v € (0,6):

01—1—6/2,2—}—6(%) SN Cl+u/272+u(m)
with compact embedding, “to a subsequence”, we have:
Ut —u in CHYEEV(QI 1) as n— oo (3.55)

Hence, u € C'**/22+V(Q, ) and thanks to relations (B-54) and (B:5) we may let
t — 0o in the first and the second equation of problem (B.36) and we obtain that,
for all 7 € (0,7, u satisfies:

Ou _ Au=a|Vul’ in Q, 1,

gt (3.56)
5 =0 on F7—7T.

Moreover, passing to limits in (8.3§) and (B.39), as n tends to oo, we get ([.f) and
(LA). The relations ([[.4) and (L) are direct consequences of Lemma P.4.

So, we have to identify the initial data pg. For t € (0,T), let denote by v(t) =
S(t)no and v™ = S(t)uf, where (S(t))s>0 is the heat semigroup in L4(€2),q > 1,
for the homogeneous Neumann boundary value problem. Then, by the Comparison
Principle [Lemma R4, for n € N we have:

v <u” in Qr.

Using (B.54), we may let n — oo in the above inequality and we obtain:

v<wu in Qr. (3.57)
Since v € C(Qr), it follows that:
uo(zo) = lim  w(t,z) < liminf wu(t, ), (3.58)
(t,2)—(0,z0) (t,2)—(0,z0)
(t,x)eQr (t,x)eQT

for any zg € 2. Furthermore for n € N we have:

u<u" in Qr,
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then:

limsup u(t,z) < limsup u"(t,z) = ug(zo).
(t,@)—(0,z0) (t,@)—(0,20)

(t,x)EQT (t7$)eQT

Since (ug)n is a decreasing sequence and converges to o we can pass to the limits
in the above inequality and we get

limsup u(t,z) < po(xo). (3.59)
(t,2)—(0,z0)

(t,x)EQT

Combining (B.5§), (B.59) and the fact that xo is anywhere in 2 we deduce that
u € C(Qr) N C /227 (Q, 1) is a classical solution of the problem ([dl). Which
end the existence proof of solutions of problem ([.1), for a > 0.

Fifth step: “Uniqueness of the solution”.
The uniqueness is a direct consequence of the following lemma:

Lemma 3.3 Leta >0, p> 1, Q C RN a bounded and convex open set with smooth
boundary. Let o € C(Q) and u € C(Qr)NCIHV/22+v(Q 1) the solution of problem
found above. Consider wg € C(Q) and w € C(Qr) N C/22(Q, 1) a

function satisfying:

8—1:: — Aw < a|lVwl? ( > alVw|? ) in Qr,

8—w§0(20) on T'r, (3.60)
14
w(0,) = wo < po (resp. wo = po ) in Q.

Then:
w<u (resp. w>u) in Q.

Proof: An analogous result for the whole space RY can be found in [[7] [Lemma 7]
and our proof follows the same arguments.

We suppose first that 2 is a bounded and convex open set which contains the origin
and wg < po.

Consider two real numbers € > 0 and A > 0, and denote by z the function:

2t x) = w(t,x) — u(t,z) — At — e(1 + |z[2)2, (3.61)
where ¢ = min{1, %} Then:
2€ C(Qr)NCH2((0,T] x Q) and 2(0,2) <0 for all z € Q.

Thanks to Lemma R.3 and to hypothesis (B.60) we have:

0z ow ou €TV

a0 = 5, T m g, 0 m) = s
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We claim that
z(t,x) <0 forall (t,z)€ Qr, (3.63)

Indeed, if z is positive anywhere in Q7 then z has a positive maximum in (¢, zg) €
(0,T] x Q since, if (tg,xo) € (0,T] x 09, we have:

0z . 2(to, o + Av) — z(to, o)
gy, fo-#0) = i, A =0

which contradicts relation (B.69).The rest of the proof is standard and follows the
same ideas as the proof of Lemma 7 in [I7]. So, it will be omitted.

In the general case,when ) does not contain the origin it is enough to translate the
problem on a domain which contains the origin, for example €,, = Q — x¢ where

g € (. O

Remark 3.4 The result of Lemma [3.3 is valid for all a € R,a # 0 an so, for any
solution u € C(Qr) N C'T/22H(Q 1) of problem ([1).

4 Proof of Theorem

Let (8 be a positive number satisfying:

2p+1—-N
B> <T>+ (4.1)
and set:
Y=N(B+1) and 5=N(@F+1)—p. (42)
Since 3 satisfies (f.1)) we have:
n>p+1 (4.3)

with this notations, we can state the following proposition which is the key argument
in the proof of Theorem [L.3.

Proposition 4.1 Let 2 C R be a bounded and convex domain with smooth bound-
ary and py € C(). Let denote by u the solution of problem whose existence
was proved in Theorem [[.3. Then:

i) The application t — (1 +t)(M(t) — m(t))" belongs to L*(0,+00),

i) Denoting by y the function defined on [0, +00) by:

) = [(s = 00() — m(s))" s,
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then y € W((0,4+00)) and satisfies the following differential inequality:
Y1)+ Cy(t)* <0, ¥t €0, +00), (1.4)
where the positive constant depends only on p, 3, N,§, (M(0) —m(0)) and

1+n

o= —, 4.5
24+n—p (4:5)

Proof: The proof follows the same ideas as those of Lemma 3 in [ff] and Lemma 12
in [§. Setting:
T* = inf{t > 0; |Vu(t)| = 0}

then T can be also defined by:
T* =inf{t > 0; M (t) = m(t)} = inf{t > 0;y(t) = 0}. (4.6)
First, if ji9 = ¢ then u = ¢, which implies 7% = 0 and Proposition [£.1] is achieved.

We suppose that po is not constant, consequently 7% € (0,+o00]. Consider T €
(0,7*) and t € [0,T). Integrating the first equation of problem ([L.1]) on (¢,7) x €,

and using relations ([.3), ([.3), (L4) and ([L.J) we get:
T
al [ [ 19u(s,a)p de ds < [01(04(0) ~ m(e)

Recalling (1.9) and ({.d) we have: v = N(B3+ 1) = n + p and we deduce that:
IVu(s)ll < [[Vu(s)l[ - IVuls)Pll-

Combining these two last inequalities we get:

I 9

/||Vu(5)||<><f7 Vu(s)|l3ds < H(M(t) —m(t)) (4.7)

t

We distinguish between the two cases below:
(i) The case p # 1. Thanks to relation ([L.7), for all s € (¢,T") we have:

IVa(s)I" > Culs — )P (M (t) — m(t)) "7, (4.8)

where (] is a positive constant which depends only on p > 0.
Applying Lemma P.J we have:

M(s) —m(s) < Ca|Vu(s)l (4.9)
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And combining (f.7),({:§) and ({.9) we get:
T
/(s —t)P(M(s) —m(s))" ds < C3(M(t) —m(t))/? for all t € [0,T],  (4.10)

where the constant C'5 depends only on N, a,p, 3,n and €.
We can pass to the limit in ({.10), as T T*, and we obtain:

-
/ (s — )P (M(s) — m(s)) ds < C3(M(t) —m(t))"/P for all t € [0,T%)  (4.11)

Let fix 6 € (0,7*). Using ([.4),(L.5),[E3) and (E11) we get:
/(1 +5)(M(s) —mf(s))"ds =
0

(1+s)(M(s) —m(s))"ds

%\H*

)
= /(1 +8)(M(s) —m(s))" ds +
0

.
< (14 8)[B(M(0) — m(0))" +5-7/» / $1P(M(s) — m(s))" ds]
)

T*
< (14 6)[6(M(0) —m(0)) + §—n/p / sn/p(M(s) —m(s))" ds.
0

Once again, using ([.4), (L.J) and (f.11) (which is, in particular, valid for ¢ = 0),
this last integral is finite. Consequently:

ts (L+t)(M(t) —m(t)) € L0, +00)). (4.12)

And we deduce that the function y is well defined on [0,+0c0) and belongs to
W2°((0,400)). Indeed, for t > 0, we have:

+o0
y'(t) = — /(M(s) —m(s))"ds (4.13)
and ,
y'(6) = (M(t) - m(®))". (4.14)
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Using Holder inequality and (f.3) we deduce that the function y verifies:

W) = ([ (s = O3 (5) — m(s))" s}l
t
T* T*
< [ [ =07 0(s) —mis)y as) [ [ r(s) —ms)yas] "

t t

Combining this last inequality with (f.10) we get:
YO < C -y ()P (—y (1) (4.15)

which yields:

y®)" < C-y"(t)- (= ()7, VEe[0,T7), (4.16)
Taking into account the fact that y'(t) < 0, we can multiply ([.16) by (—¢/(¢)) and

integrate over (t,T*). We get:

y(O <O (= ()P, Y e [0,T7),
and thanks to the definition of T™ it follows that:

on éy(t)fzi% <0, V1€[0,400).

Hence ({.4) holds for p # 1.
(ii) The case p = 1. Instead of ([.7) we can use this time ([.§). Thus, for all
s € (t,T), we have:

IVu(s)[I! > Cas = 8)V*(M(t) — m(t)) . (4.17)
Combining relations ([.7), (.17) and ([£.9) we get:

T
/(s —t)"2(M(s) — m(s))" ds < Cs(M(t) — m(t))” for all t € [0,T] (4.18)

where C5 is a positive constant which depends only on N, a,p, 3,1 and €.
Thanks to ([.3) we have n > 2. As previously, we fix § € (0,T*), then, using ([.4),

L3, (3 and EI§) we get:

/(1 +8)(M(s) —m(s))"ds =
0 é T*
= /(1 + 5)(M(s) —m(s)) ds + /(1 + 5)(M(s) —m(s))7 ds
0 é -
< (14 8)BM() — m(0))7 + 572 [ 2(M(s) — m(s) ds].
0
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JFrom ([4), (L5) and ([1§), this last integral is finite. Consequently relation
(B.12) is valid for p = 1, too. As in the first case we deduce that the function y
is well defined on [0, 4+00) and belongs to W2°°((0, +00)), the first and the second
derivatives being given by ([.13) and (f.14). Since n > 2, using Hélder inequality
we get this time:

WO = ([ (5 = D) = mis))" dsy”?
! T* T*

g[/@—WWMH$—m@W@H/Uﬂﬁ—m®W@]

t t

n/2—1

Taking into account ([L1§), (£.19) and (E.14) we deduce:
()" < C -y () (= ()" (4.19)
and by the same arguments as previously we get:
y'(t) + %y(t) <0 for all t € [0, +0c0)
which ends the proof of Proposition [i.1], as p = 1. O
Proof of Theorem [[.3: Let:

Mﬂz/@—mM@%wwﬂw&tGMw%

be the function defined in Proposition i We have obtained that y € W27°°((0, +00))
and there is a positive constant C' depending only on p, 5, N,Q and (M (0) — m(0))
such that y satisfies the differential inequality ([.4):

y'(t) + Cy(t)* <0, for all t € [0, +00),

with a given by (l.5) and y(0) = [ s(M(s) —m(s))” ds > 0.

0
On the one hand if p € (0,1) then o € (0,1) and thanks to ([£4) and (f.6) we get
that 7™ < oo and:
y(t)y=0for t > T

Consequently, for p € (0,1), the extinction of the gradient in finite time of the
solution to problem ([.T]) occurs.

On the other hand, if p > 1 then a > 1 and thanks to ([4) and from the fact that
y is a positive function, we deduce that:

y'(t)
y(1)

1
<~ forall 1€ (0,+00). (4.20)
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We distinguish between the two cases below:
(i) The case p > 1. We have o > 1 and integrating ({.20), over (0,t), t > 0, we

obtain:
(a— 1)t

C )

0 < ( 1 )1/(a1)
Yy - —a a—1)t :
e

(i) The case p = 1. We have o = 1 and integrating ([.20) over (0,t), t > 0 we get
this time:

Yyt~ > y(0)7e +

or else:

/
logy(t) < logy(0) — Yok

or else: )
y(t) <y(0)e @,
Thus, we have obtained the decreasing rate for the function y, as t — oo.

We claim that:
lim M (t) —m(t) =0, (4.21)

t—o0

which implies that, for p > 1, the solution u of problem ([[.I)) converges uniformly
in Q to a constant, as t — oo.
To prove ({.21]) we recall that, the function defined by:

g(t) = (1+t)(M(t) — m(t))” belongs to L*(0,+00).

Since t — (M (t) — m(t)) is a positive and decreasing function on [0,+00), there
exists a positive constant ¢ such that:

¢ = lim (M(t) — m(t))".

t—o0

Then, c¢(1 +t) < g¢(t), and it follows that the function ¢ — ¢(1 + t) belongs to
L(0,+00), which is possible only if ¢ = 0. So assertion ([£.21]) holds. Now, we want
to find a decreasing rate for the application ¢ — (M (t) — m(t)). Denote by f the
decreasing rate of the function y:

y(O)e‘% if p=1,

f(t) = . Vel (4.22)
(W) if P > 1.

Then, for all £ > 0 we have:

t

/ (s — £/2)(M(s) —m(s))" ds < y(t/2) < F(£/2).

t/2
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Since s — (M (s) — m(s)) is a decreasing function, we deduce that

t

(M(t) — m(t))" /(s —t/2)ds < f(t/2), V>0,

t/2
which implies:
1
8f(t/2)\~
M(t) —m(t) < ( > , Vit>0, (4.23)
where f is given by ({.29). This ends the proof of Theorem [.3. ([l
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