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Arithmetic properties of

summands of partitions II

Cécile Dartyge and András Sárközy

Abstract. Let d ∈ N, d > 2. We prove that a positive proportion of partitions of an

integer n satisfies the following : for all 1 6 a < b 6 d, the number of the parts congruent

to a (mod d) is greater than the number of the parts congruent to b (mod d). We also show

that for almost all partitions the rate of the number of square free parts is 6

π
2 (1+ o(1)) .

1. Introduction

Let n, d ∈ N and a ∈ Z with 2 6 d 6 n. For a partition λ = (λ1, . . . , λs)
of n = λ1 + · · · + λs with λ1 > . . . > λs we denote by s(λ) = s the number
of parts in λ and we define

Fa,d(λ) :=
∑

16j6s
λj≡a (mod d)

1.

Let P(n) be the set of all partitions of n. We will also use the standard
notation p(n) for the number of partitions of n and we write:

(1·1) C := π

√

2

3
.

In [1] we proved that for almost all partitions the parts are well distributed
in residue classes modulo d but we observed that this uniformity is limited
by the fact that the small parts occur more frequently. The first part of this
article is devoted to the study of this phenomenon. First we will prove a
theorem which sharpens Theorem 1.4 of [1]

Theorem 1.1. Let d > 2. There exists n0 = n0(d) such that for n > n0,

0 < a < b 6 d there are more than
p(n)
12 partitions λ with

(1·2) Fa,d(λ) − Fb,d(λ) >
(a + b)

√
n

50ab
.
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In [1] we stated the inequality |Fa,d(λ) − Fb,d(λ)| > (a+b)
√

n
50ab for at least

p(n)/6 partitions, the novelty of Theorem 1.1 is that there is no absolute
value in it.

In [1] we defined the notion of “d-regular” partitions: these are partitions
λ with Fa,d(λ) > Fa′,d(λ) for any 1 6 a < a′ 6 d. In the first step of
the study of these partitions we will prove that for a positive proportion of
partitions the parts congruent to ≡ 1 (mod d) are more frequent than the
others :

Theorem 1.2. For d > 2, there are more than p(n)/d partitions λ of n
such that F1,d(λ) > Fa,d(λ) for all 2 6 a 6 d.

With combinatorics arguments we will also prove that there are “many”
d-regular partitions:

Theorem 1.3. For d > 2 there are more than
p(n)
d! (1 + O(d!d4

√
n

)) d-regular

partitions.

The second part of this paper is devoted to the study of the number of the
square free parts. We will prove that for almost all partitions this number
is as expected:

Theorem 1.4. For almost all partitions λ of n the number of the square

free parts is s(λ) 6
π2 (1 + o(1)).

When we want to prove that an arbitrary finite sequence A of integers
contains many square free integers, we usually need for large d an upper
bound for the number of integers n ∈ A such that d|n.

Here Proposition 1.5 will play this role:

Proposition 1.5. For any 8 6 d 6 n, there are at most
p(n)
d2 partitions λ

of n such that

(1·3) F0,d(λ) > 100

√
n log n log2 d

d
.

With more work our results could be sharpened slightly. In fact, we will
see that a direct consequence of a lemma of Szalay and Turán [5] is that

for at most p(n)
n2 partitions λ there exists a d > 5

√
6

2π

√
n log n such that

F0,d(λ) > 0.



Arithmetic properties of summands of partitions II 3

2. Proof of Theorem 1.1

Let A and B be the subsets of P(n) defined by

A = {λ ∈ P(n) : Fa,d(λ) − Fb,d(λ) >
(a + b)

√
n

50ab
},

B = {λ ∈ P(n) : Fa,d(λ) − Fb,d(λ) < − (a + b)
√

n

50ab
}.

We know by Theorem 1.4 of [1] that |A∪B| >
p(n)

6 . It remains to show that
|A| > |B|. To do this, it is sufficient to prove that there exists a mapping
H : B → A which is injective. This mapping will be defined by exchanging
the parts ≡ a (mod d) with parts ≡ b (mod d).

(i) Case b 6= 2a.
Since 0 < a < b 6 d, we have b − a 6≡ b (mod d) and b − a 6≡ a (mod d).

(We supposed that b 6= 2a, and we have 2a − d < a < b). To any λ ∈ B
with λ : n =

∑n
j=1 jxj we associate H(λ) : n =

∑n
j=1 jyj with











ya+`d = xb+`d for 0 6 ` < n/d
yb+`d = xa+`d for 0 6 ` < n/d
yb−a = xb−a + Fb,d(λ) − Fa,d(λ)
yj = xj if j 6≡ a, b (mod d) and j 6= b − a.

Note that yb−a > xb−a > 0 by λ ∈ B. It is clear that H is injective because
if λ : n =

∑n
j=1 jxj and λ′ : n =

∑n
j=1 jx′

j are such that H(λ) = H(λ′),
then λ and λ′ are two partitions of n with xj = x′

j for all j 6= b − a. We
check now that H(λ) is a partition of n :

n
∑

j=1

jyj =
∑

`>0

(a + `d)xb+`d +
∑

`>0

(b + `d)xa+`d

+ (b − a)(xb−a + Fb,d(λ) − Fa,d(λ)) +
∑

j 6≡a,b (mod d)
j 6=b−a

jxj

= n − (b − a)Fb,d(λ) + (b − a)Fa,d(λ) + (b − a)(Fb,d(λ) − Fa,d(λ)) = n.

Finally we show that H(λ) ∈ A:

Fa,d(H(λ)) − Fb,d(H(λ)) = Fb,d(λ) − Fa,d(λ) >
(a + b)

√
n

50ab
.



4 Cécile Dartyge and András Sárközy

(ii) Case b = 2a.
We take H : B → A defined by











yb+`d = xa+`d for ` > 0
ya+`d = xb+`d for ` > 1
ya = Fb,d(λ) − Fa,d(λ) + xb

yj = xj for j 6≡ a, b (mod d).

and we prove in the same way as in the previous case that this mapping is
well defined and injective.

This completes the proof of Theorem 1.1.

3. Regular partitions

3.1. On weakly regular partitions and proof of Theorem 1.2

We will say that a partition λ of n is weakly regular if for all 0 < a < a′ 6 d
the inequality Fa,d(λ) > Fa′,d(λ) holds. Note that in the definition of d-
regularity we have > instead of >.

In this paragraph we will prove

Lemma 3.1. There are at least
p(n)
d! weakly d-regular partitions.

Proof. For 1 6 j 6 d, let Pj(a1, . . . , aj) be the set of λ ∈ P(n) such that for
all 1 6 b 6 d with b 6∈ {a1, . . . , aj} we have

Fa1,d(λ) > . . . > Faj ,d(λ) > Fb,d(λ).

We will prove that for 1 6 j 6 d (with P0 = P(n)) we have :

(3·1) |Pj(1, 2, . . . , j)| >
|Pj−1(1, 2, . . . , j − 1)|

d − j + 1
.

Since
Pj−1(1, 2, . . . , j − 1) = ∪j6a6dPj(1, 2, . . . , j − 1, a),

it is sufficient to show that for all j < a 6 d :

|Pj(1, 2, . . . , j − 1, a)| 6 |Pj(1, 2, . . . , j − 1, j)|.

Now we fix j < a 6 d. We define a mapping F : Pj(1, 2, . . . , j − 1, a) →
Pj(1, 2, . . . , j − 1, j) in the following way: to any λ ∈ Pj(1, 2, . . . , j − 1, a),
λ : n =

∑

k>1 kxk we associate F (λ) : n =
∑

k>1 kyk with

yk =







xa+`d if k = j + `d with ` > 0 and k 6= 1
xj+`d if k = a + `d with ` > 0
xk if k 6= 1 and k 6≡ a, j (mod d),
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and

y1 =

{

x1 + (a − j)(Fa,d(λ) − Fj,d(λ)) if j 6= 1
xa + (a − 1)(Fa,d(λ) − F1,d(λ)) if j = 1.

So that the mapping F exchanges the parts congruent to ≡ a (mod d)
with the parts congruent to ≡ j (mod d), and then y1 is chosen so that
F (λ) is a partition of n. In the same way as in the proof of Theorem 1.1 we
check that F is injective and F (λ) ∈ Pj(1, . . . , j). This completes the proof
of (3·1). Now we apply this inequality with j = d − 1, . . . , 1 :

|Pd−1(1, 2, . . . , d − 1)| >
|Pd−2(1, d − 1, . . . , d − 2)|

2
> . . . >

P(n)

d!
,

and Lemma 3.1 is proved.
The j = 1 special case of inequality (3·1) gives Theorem 1.2.

3.2. Proof of Theorem 1.3

Let R̄(d) denote the set of the weakly d-regular partitions and R(d) the
set of the d-regular partitions. By Lemma 3.1 it suffices to prove that

(3·2) |R(d)| = |R̄(d)| + O(
d4p(n)√

n
).

The basic idea of the proof of (3·2) is to assign to almost all λ ∈ R̄(d) a
partition J(λ) such that for 2 6 j 6 d

(3·3) Fj,d(J(λ)) = Fj,d(λ) − j − 1.

This will assure J(λ) to be regular. This mapping will be defined so that
it replaces for each 2 6 j 6 d, 1 6 m 6 j − 1, a part equal to j + md by
a convenient number of parts ≡ 1 (mod d). It is a direct consequence of the
Proposition p. 159 of the paper of Erdős, Nicolas and Sárközy [3] that there
is such a transformation for almost all partitions of n.

We recall their notation : if A = {a1, . . . , ak} then r(n,A) is the number
of partitions of n with no parts belonging to A.

Proposition 3.2(Erdős, Nicolas and Sárközy [3] p. 159). There

exists c > 0 such that, if A = {a1, . . . , ak} satisfies u(A) := a1+· · ·+ak 6 cn
then when n tends to infinity, we have

(3·4) r(n,A) 6
(

k
∏

i=1

ai

)

p(n)
( π√

6n

)k(

1 + O(
1√
n

)
)

,

r(n,A) >
(

k
∏

i=1

ai

)

p(n)
( π√

6n

)k
exp(

u(A)√
n

).
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We will use the upper bound (3·4) to obtain the following

Corollary 3.3. For almost all partitions of n with at most O( d4
√

n
p(n))

exceptions, and for all 2 6 j 6 d, 1 6 m 6 j − 1, there is at least one part

equal to j + md.

Proof. Let E be the number of partitions not having the property in
Corollary 3.3. We have :

E 6

d
∑

j=2

j−1
∑

m=1

r(n, {j + md})

¿
d

∑

j=2

j−1
∑

m=1

(j + md)
p(n)√

n

¿ p(n)
d4

√
n

,

by (3·4) which proves Corollary 3.3.

Let R̄+(d) be the set of the partitions of R̄(d) which have the property in

Corollary 3.3. We have |R̄+(d)| = |R̄(d)|+O(d4p(n)√
n

). We define a mapping

J : R̄+(d) → R(d) in the following way: for λ : n =
∑

k>1 kxk, let
J(λ) : n =

∑

k>1 kyk with

yk =











xj+dm − 1 if k = j + dm with 1 6 m < j 6 d
x1+dm + d − m if k = 1 + dm with 1 6 m 6 d − 1

x1 + (d − 1)2 + · · · + 12 = x1 + d(d−1)(2d−1)
6 if k = 1

xk otherwise.

Note that since λ ∈ R̄+(d), for all 1 6 m < j 6 d, we have xj+dm > 1 and
yj+dm > 0. First we show that we have n =

∑

k>1 kyk. We put

F = {1 + md : 0 6 m 6 d − 1} ∪ {j + md : 1 6 m < j 6 d}.
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∑

k>1

kyk =
∑

k 6∈F
kxk +

d
∑

j=2

j−1
∑

m=1

(j + dm)(xj+dm − 1)

+
d−1
∑

m=1

(1 + dm)(x1+dm + d − m) + x1 +
d(d − 1)(2d − 1)

6

= n −
d−1
∑

m=1

d
∑

j=m+1

(j + dm)

+
d−1
∑

m=1

(1 + dm)(d − m) +
d(d − 1)(2d − 1)

6
.

Then we remark that

d−1
∑

m=1

d
∑

j=m+1

(j + dm) =
d−1
∑

m=1

d
∑

j=m+1

(1 + dm) +
d−1
∑

m=1

d
∑

j=m+1

(j − 1)

=
d

∑

m=1

(1 + dm)(d − m) +
d

∑

j=2

(j − 1)

j−1
∑

m=1

1

=
d

∑

m=1

(1 + dm)(d − m) +
d(d − 1)(2d − 1)

6
.

This proves that
∑

k>1 kyk = n.
It is clear that condition (3·3) is satisfied and that J is injective. Thus we

have
|R(d)| > |R̄+(d)|

> |R̄(d)| + O(
p(n)d4

√
n

)

>
p(n)

d!
(1 + O(

d!d4

√
n

)),

This ends the proof of Theorem 1.3.

4. Parts in residue classes of large moduli

In this paragraph we prove Proposition 1.5.
When d is large we will use a result of Szalay and Turán [5]. Recall that

at the beginning of the introduction we defined λ1 as the greatest part of
the partition λ.
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Lemma 4.1(Szalay and Turán [5] Lemma 4 p.137). The inequality

λ1 6
5
√

6

2π

√
n log n

holds with the exception of at most 0(p(n)n−2) partitions λ.

By this Lemma it is clear that for almost all partitions with at most
0(p(n)n−2) exceptions we have

F0,d(λ) = 0 for all d >
5
√

6

2π

√
n log n.

Now we suppose that

(4·1) d 6
5
√

6

2π

√
n log n.

Consider a partition λ satisfying (1·3), and let λi1 = dµ1, . . ., λit
= dµt

denote the parts divisible by d (so that t=F0,d(λ)), and write

(4·2) µ1 + · · · + µt = u.

Then µ = (µ1, . . . , µt) is a partition of u with

(4·3) t = F0,d(λ) > 100

√
n log n log2 d

d
=: Z

by (1·3), and the λj ’s different from λi1 , . . ., λit form a partition of n− du.
Thus the number of partitions λ of n satisfying (1·3) is

(4·4) 6
∑

u6n/d

H(u)p(n − ud)

where H(u) is the number of partitions of u into at least Z parts, which
is the same as the number of partitions of u with the property that the
greatest part λ1 is > Z.

When u is “small”, u 6 U with

(4·5) U :=
100n log2 d

d2
,

we will use an upper bound of H(u) obtained by Szalay and Turán [5] and
when u > U is “large”, p(n − du) will be small and it will be sufficient to
take H(u) 6 p(u).
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Lemma 4.2(Szalay and Turán [5] Lemma 3 p. 136). If β = β(n) is

restricted by

(4·6) 0 < β <
π

2
√

6

√
n

log n
− 1

2

then the relation

(4·7) λ1 6 (1 + 2β)

√
6

2π

√
n log n

holds with the exception of O(p(n)n−β) λ’s at most.

Remark: Lemma 4.1 is the β = 2 special case of Lemma 4.2.
We start with the splitting

(4·8)
∑

u6n/d

H(u)p(n − ud) =
∑

Z6u6U

H(u)p(n − ud) +
∑

U<u6n/d

H(u)p(n − ud)

= S1 + S2.

For S2 we use the upper bound H(u) 6 p(u) and then we apply the well
known estimation of Hardy and Ramanujan [4]

p(n) =
1

4n
√

3
eC

√
n(1 + O(n−1/2)).

Thus we have

S2 ¿
∑

U<u6n/d

exp(C
√

u + C
√

n − du)

u(n − du)
.

Now we use the elementary facts that 1
u(n−ud) = 1

nu + d
n(n−ud) and 1

u 6
d

n−ud

if and only if u >
n
2d . This yields to the upper bound

S2 ¿
∑

U<u6 u
2d

p(n)
exp(C

√
u + C

√
n − ud − C

√
n)

u

+ p(n)
∑

u
2d

<u6 n
d

d exp(C
√

u + C
√

n − ud − C
√

n)

n − ud
.
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The function u → √
u +

√
n − ud is decreasing on the interval [n/(d2 +

d), n/d] and by (4·5) U > n/(d2 + d):

(4·9)

S2 ¿ p(n) log(
n

2dU
) exp(C

√
U + C

√
n − Ud − C

√
n)

+ p(n)d log n exp(C

√

n

2d
+ C

√

n

2
− C

√
n).

When d > 8, the second term in the right member of (4·9) is less than

p(n)d log n exp(−0.04C
√

n) ¿ p(n)d−2.

Using the inequality
√

1 − t 6 1 − t/2 for t ∈ [0, 1] and the definition of
U in (4·5) the first term is

¿ p(n)(log d) exp(10C
log d

d

√
n − 50C log2 d

√
n

d2
)

¿ p(n)(log d) exp(−40C
log2 d

√
n

d
)

¿ p(n)(log d) exp
(

− 32π2

9
log d

)

¿ p(n)d−2,

when 8 6 d 6 5
√

6
2π

√
n log n. Thus we have

(4·10) S2 ¿ p(n)d−2.

Now we will use Lemma 4.2 to obtain an upper bound for H(u) in S1.
We will take

(4·11) β = β(u) =
πZ√

6u log u
− 1

2
.

The inequalities in (4·6) are satisfied if we have

u log2 u <
2π2Z2

3
and u > 2Z.

With our choices of Z and U , (4·3) and (4·5), we see that the first inequality

is satisfied when u 6 U . The inequality β < π
2
√

6

√
u

log u − 1
2 in (4·6) is verified
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if u > 2Z. For Z 6 u 6 2Z we will replace H(u) by H̃(u) the number of
partitions of u with at least Z/4 parts:

(4·12) S1 6
∑

Z6u62Z

H̃(u)p(n − ud) +
∑

2Z<u6U

H(u)p(n − ud).

By Lemma 4.2 we have

H(u) ¿ p(u)u−β(u) for 2Z < u 6 U

H̃(u) ¿ p(u)u−β̃(u) for Z 6 u 6 2Z
,

with β̃(u) = πZ
4
√

6u log u
− 1

2 . With these upper bounds, we obtain for(4·12)

(4·13)

S1 ¿
∑

Z6u62Z

p(u)p(n − ud) exp
(

−
( π

√
Z

4
√

6u log u
− 1

2

)

log u
)

+
∑

2Z6u6U

p(u)p(n − ud) exp
(

− (
π
√

Z√
6u log u

− 1

2
) log u

)

¿ p(n)
(
√

Z exp(
−π

√
Z

8
√

3
) +

√
U exp

(

− πZ√
6U

))

.

When 8 6 d 6
5
√

6
2π

√
n log n, we have

√
Z exp(−π

√
Z

8
√

3
) 6 10

√
2π

√

5
√

6
log

(5
√

6

2π

√
n log n

)

exp
(

− 5π

4
√

3

√

2π

5
√

6
log n

)

¿ n−2.

By (4·5) and (4·3) we also have

√
U exp

(

− πZ√
6U

))

6
10n

d log d
exp(−10π√

6
log n log d).

We have proved that S1 6 p(n)n−2, which completes the proof of Proposi-
tion 1.5.
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5. The number of the square free parts ; proof of the

Theorem 1.4

Let N(λ) denote the number of the square free parts in the partition λ
and recall that s(λ) is the number of parts of λ. Erdős and Lehner [2] proved

that for almost all λ, s(λ) =
√

n log n
C (1 + o(1)). Let K be arbitrarily large

but fixed. Let M :=
∏

p6K p2 and

M := {1 6 a 6 M : a 6≡ 0 (mod p2) for all p < K}.

It follows from Theorem 1.3 in [1] that for a ∈ M and for almost all
partitions we have

Fa,M (λ) =

√
n log n

MC
(1 + o(1)).

Thus for almost all partitions the number N1(λ) of parts without a divisor
p2 with p 6 K is

N1(λ) =

√
n log n

MC
|M|(1 + o(1))

=
∏

p6K

(1 − 1

p2
)

√
n log n

C
(1 + o(1))

=
6

π2
(1 + O(K−1))

√
n log n

C
(1 + o(1)).

It remains to show that for more than (1 − ε)p(n) partitions the number
N1(λ) − N(λ) of parts divisible by some p2 with p > K is small enough.
This will be done by using Proposition 1.5 :

N1(λ) − N(λ) 6
∑

p>K

F0,p2(λ)

6
∑

p>K

100

√
n log n(log p2)2

p2
¿

√
n log n log K

K

for almost all partitions with at most
∑

p>K
p(n)
p4 ¿ p(n)K−3 exceptions.
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