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Arithmetic properties of
summands of partitions 11

Cécile Dartyge and Andras Sarkozy

Abstract. Let d € N, d > 2. We prove that a positive proportion of partitions of an
integer n satisfies the following : for all 1 < a < b < d, the number of the parts congruent
to a (mod d) is greater than the number of the parts congruent to b (mod d). We also show
that for almost all partitions the rate of the number of square free parts is ﬂ% (1+0(1)) .
1. Introduction

Let n,d € N and a € Z with 2 < d < n. For a partition A = (A1,...,As)
of n =AM + -4+ Ag with A\; > ... > A\; we denote by s(\) = s the number
of parts in A and we define

Foa(M) = > L

1<jss
Aj=a (mod d)

Let P(n) be the set of all partitions of n. We will also use the standard
notation p(n) for the number of partitions of n and we write:

2

In [1] we proved that for almost all partitions the parts are well distributed
in residue classes modulo d but we observed that this uniformity is limited
by the fact that the small parts occur more frequently. The first part of this
article is devoted to the study of this phenomenon. First we will prove a
theorem which sharpens Theorem 1.4 of [1]

Theorem 1.1. Let d > 2. There exists ng = no(d) such that for n > ny,

0 < a < b < d there are more than % partitions A with

(a+b)y/n
(1-2) Fa7d(>\) — Fb,d()\) > W
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In [1] we stated the inequality |F, 4(\) — Fpa(N\)| > w;&%ﬁ for at least
p(n)/6 partitions, the novelty of Theorem 1.1 is that there is no absolute
value in it.

In [1] we defined the notion of “d-regular” partitions: these are partitions
A with F, 4(A) > Fy qa(\) for any 1 < a < o/ < d. In the first step of
the study of these partitions we will prove that for a positive proportion of
partitions the parts congruent to = 1 (modd) are more frequent than the
others :

Theorem 1.2. For d > 2, there are more than p(n)/d partitions A of n
such that Fy q(A\) > Fo q(X) for all 2 < a < d.

With combinatorics arguments we will also prove that there are “many”
d-regular partitions:

Theorem 1.3. For d > 2 there are more than %(1 + O(%)) d-regular
partitions.

The second part of this paper is devoted to the study of the number of the
square free parts. We will prove that for almost all partitions this number
is as expected:

Theorem 1.4. For almost all partitions \ of n the number of the square
free parts is s(A) % (14 o(1)).

When we want to prove that an arbitrary finite sequence A of integers
contains many square free integers, we usually need for large d an upper
bound for the number of integers n € A such that d|n.

Here Proposition 1.5 will play this role:

Proposition 1.5. For any 8 < d < n, there are at most PC([;) partitions \
of n such that

logn log” d

(1.3) Fou(\) > moﬁongog,
With more work our results could be sharpened slightly. In fact, we will
see that a direct consequence of a lemma of Szalay and Turdn [5] is that

for at most 27 partitions A there exists a d > %\/ﬁ logn such that

n2

F07d(>\> > 0.
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2. Proof of Theorem 1.1
Let A and B be the subsets of P(n) defined by

A={XePn): FoaA) — Fpa(X\) > %ﬁ},
B={XeP(n): F,a\) — Fpa() < _%}.

We know by Theorem 1.4 of [1] that |[AUB| > %. It remains to show that
|A| > |B|. To do this, it is sufficient to prove that there exists a mapping
H : B — A which is injective. This mapping will be defined by exchanging
the parts = a (mod d) with parts = b (mod d).

(i) Case b # 2a.

Since 0 < a < b < d, we have b —a # b(modd) and b — a # a (modd).
(We supposed that b # 2a, and we have 2a —d < a < b). To any A € B
with A :n = Z?zl jxj we associate H(\) :n = Z?zl Jy; with

Yat+td = Toyed for 0 <l <n/d

Yotred = Tated for0 </l <n/d

Yp—a = Tv—a + Fy,a(N) — Fya(N)

Yj = if j # a,b(modd) and j # b — a.

Note that yp_q > xp_q = 0 by A € B. It is clear that H is injective because
ifA:n= Z?ZI jrjand N :n = Z;LZI jx are such that H(A) = H(X'),
then A and A" are two partitions of n with z; = 2} for all j # b —a. We
check now that H(\) is a partition of n :

S gy = (a+ td)wpiea+ > (b + bd)rasea
j=1

£>0 >0

+(b—a)(xp—q + Fpa(N) — Faa(N) + Z I
j;éa,i(rnod d)
i#b—a

=n—(b—a)Fpq(A\)+(b—a)Fua(X)+ (b—a)(Fpa(X) — Foa(N) =n.

Finally we show that H(\) € A:

Fua(H(N) ~ Foa(H) = Fya(X) — Faa(y) > CEDV
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(i) Case b = 2a.
We take H : B — A defined by

Ybied = Tated for £ >0

Yat+td = Thted for £ > 1

Yo = Fp.a(N) — Fua(A) + b

Yj =T, for j # a,b(modd).

and we prove in the same way as in the previous case that this mapping is
well defined and injective.
This completes the proof of Theorem 1.1.

3. Regular partitions

3.1. On weakly reqular partitions and proof of Theorem 1.2

We will say that a partition A of n is weakly regular if for all0 < a < o’ < d
the inequality Fj 4(\) > F,/ q4(\) holds. Note that in the definition of d-
regularity we have > instead of >.

In this paragraph we will prove

Lemma 3.1. There are at least %

Proof. For 1 < j < d, let Pj(ai,...,a;) be the set of A € P(n) such that for
all 1 <b<dwithb¢{ai,...,a;} we have

weakly d-regular partitions.

FaraA) = ... 2 Fa, a(N) = Fya(N).
We will prove that for 1 < j < d (with Py = P(n)) we have :

, |Pi-1(1,2,...,5 —1)]
-1 Pi(1,2,... > .

Since
:ijl(l’2’ ce ,j - 1) = Ujgagdipj(l,z,. .. ,j - 1,a),

it is sufficient to show that for all j < a < d :
1P;(1,2,...,7—1,0)| <|P;(1,2,...,5 —1,j)|

Now we fix j < a < d. We define a mapping F' : P;(1,2,...,j — 1,a) —
Pi(1,2,...,5—1,7) in the following way: to any A € P;(1,2,...,j —1,a),
Artn =35, kxy we associate F(A) :n =3, -, kyy with

Tateq fk=j+0dwith¢>0andk #1
Yk = Lj4ed 1fk::a+£dvv1th£>0
Tk if k# 1 and k # a,j (mod d),
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and

To + (@ — 1)(Foa(A) = F1a(N)) ifj=1.

So that the mapping F' exchanges the parts congruent to = a(modd)
with the parts congruent to = j (modd), and then y; is chosen so that
F()) is a partition of n. In the same way as in the proof of Theorem 1.1 we
check that F' is injective and F'(A\) € P;(1,..., ). This completes the proof
of (3-1). Now we apply this inequality with j =d —1,...,1:

|ﬂ)d—2(17d_1a"'7d_2)| :P(TL)

Pa1(1,2,...,d—1)| > 5 >...>2Y

o {x (@ ) (Faa(N) = Fja(N) ifj#1

and Lemma 3.1 is proved.
The j = 1 special case of inequality (3-1) gives Theorem 1.2.

3.2. Proof of Theorem 1.3

Let R(d) denote the set of the weakly d-regular partitions and R(d) the
set of the d-regular partitions. By Lemma 3.1 it suffices to prove that

d4p(n))

vn
The basic idea of the proof of (3-2) is to assign to almost all A € R(d) a
partition J(A) such that for 2 < j < d

(3-3) Fja(J(N) = Fja(A\) —j—1.

This will assure J(\) to be regular. This mapping will be defined so that
it replaces for each 2 < j < d, 1 < m < j — 1, a part equal to j + md by
a convenient number of parts = 1 (mod d). It is a direct consequence of the
Proposition p. 159 of the paper of Erdds, Nicolas and Sarkozy [3] that there
is such a transformation for almost all partitions of n.

We recall their notation : if A = {aq,...,ax} then r(n,.A) is the number
of partitions of n with no parts belonging to A.

Proposition 3.2(Erd8s, Nicolas and Sarkézy [3] p. 159). There
exists ¢ > 0 such that, if A = {aq, ..., a;} satisfies u(A) := a1+ - -+ap < cn
then when n tends to infinity, we have

(3-2) IR(d)| = [R(d)] + O

k

(3-4) r(n, A) < (] ai)p(n)(

T 1
i=1 vVon

)" (1+0(

)

B

r(n, .A) 2 (H ai)p(n) (\/%)k exp(%).

~—
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We will use the upper bound (3-4) to obtain the following

Corollary 3.3. For almost all partitions of n with at most O(\‘j—%p(n))

exceptions, and for all 2 < j < d, 1 < m < j — 1, there is at least one part
equal to j + md.

Proof. Let E be the number of partitions not having the property in
Corollary 3.3. We have :

by (3-4) which proves Corollary 3.3.

Let RT(d) be the set of the partitions of R(d) which have the property in
Corollary 3.3. We have |[RT(d)| = |R(d)| + O(délp—\/gl)). We define a mapping
J : R(d) — R(d) in the following way: for A : n = 37, kxy, let
JA) :n= Zk>1 kyr with

Tjydm — 1 ifk=j+dnwithl<m<j<d
) Tipgm +d—m ifk=1+dmwithl<m<d-1
Z ot (d—1)2 4 412 =y 4 LEDEED g g

Tr otherwise.

Note that since A € RY(d), for all 1 < m < j < d, we have Tjtdm = 1 and
Yjt+dm = 0. First we show that we have n = Zk>1 kyi.. We put

F={l+md:0<m<d-1}U{j+md:1<m<j<d}.
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d j-1
ke =Y kre+ Y Y (G + dm)(@jpgm — 1)
k>1 kgF j=2m=1
d—1
dld—1)(2d — 1
—l—Z(l—i—dm)(:cHdm—i-d—m)—i-xl—l— ( i )
m=1 6
d—1 d
=n— Z Z (j +dm)
m=1j=m+1
d—
dld—1)(2d — 1
Z +dm)(d —m) + ( )6( )
Then we remark that
-1 d d—1 d d—1 d
SN Gram =3 > a+dn)+ > Y (G-
m=1 j=m+1 m=1j=m+1 m=1 j=m+1
d Jj—1
=) (A +dm)(d—m)+ (G —1) 21
m=1 Jj=2
d
dld—1)(2d — 1
:Z(l—i-dm)(d—m)—i— ( )6( )

This proves that 3, kyr = n.
It is clear that condition (3-3) is satisfied and that J is injective. Thus we
have _
[R(d)] = [R¥(d)]

p(n)d*

> |R(d)| + O( )

B

d'd*

M(1+O(%

d!
This ends the proof of Theorem 1.3.

);

4. Parts in residue classes of large moduli

In this paragraph we prove Proposition 1.5.

When d is large we will use a result of Szalay and Turdn [5]. Recall that
at the beginning of the introduction we defined A\; as the greatest part of
the partition .
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Lemma 4.1(Szalay and Turdn [5] Lemma 4 p.137). The inequality

5v6
\/_\/ﬁlogn

A < —
! 2

holds with the exception of at most 0(p(n)n~2) partitions .

By this Lemma it is clear that for almost all partitions with at most
0(p(n)n—2) exceptions we have

5v6
Fy.a(A) =0 for all d > —2\[\/5105.’; n.
T

Now we suppose that

5v 6
(4-1) d< i\/ﬁlogn.
2
Consider a partition A satisfying (1-3), and let \;;, = du1, ..., Ai, = due

denote the parts divisible by d (so that t=Fp 4())), and write
(4-2) pa e =

Then = (p1,-..,pte) is a partition of v with

vnlognlog?d _. 7

(43) t = Fyq(\) > 100 v

by (1-3), and the A;’s different from A;,, ..., A\j; form a partition of n — du.
Thus the number of partitions A of n satisfying (1-3) is

(4-4) < 3 H(up(n - ud)

ugn/d

where H(u) is the number of partitions of u into at least Z parts, which
is the same as the number of partitions of u with the property that the
greatest part A\; is > Z.

When u is “small”, v < U with

U - 100n log® d

(45) 223

we will use an upper bound of H(u) obtained by Szalay and Turdn [5] and
when u > U is “large”, p(n — du) will be small and it will be sufficient to
take H(u) < p(u).
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Lemma 4.2(Szalay and Turdn [5] Lemma 3 p. 136). If 3 = (B(n) is
restricted by

T vnooo1
4-6 0 _— — =
(4:6) <h< 2v6logn 2
then the relation
(4-7) A < (1+20) \/_flogn

holds with the exception of O(p(n)n=?) \’s at most.

Remark: Lemma 4.1 is the § = 2 special case of Lemma 4.2.
We start with the splitting

(4-8)
> Hpn—ud) = > Hupn—ud+ Y  Hup(n—ud)
usn/d Z<uU U<ugn/d

=51 +55.

For Sy we use the upper bound H(u) < p(u) and then we apply the well
known estimation of Hardy and Ramanujan [4]

1

= eCvn n=1/2)).
s 0T

p(n) =

Thus we have

Z exp(Cy/u+ Cvn — du).

52 < u(n — du)

U<u<gn/d

Now we use the elementary facts that m nlu + m and % < 5
if and only if u > 5. This yields to the upper bound

S, < Z p(n )exp(Cf+C\/n—u —Cy/n)

U<u<zy

+p(n) Z dexp(Cy/u+ Cvn —ud — \/_)

n — ud

5q <UL

N
als
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The function u — /u + v/n — ud is decreasing on the interval [n/(d? +
d),n/d] and by (4-5) U > n/(d* + d):

Sy < p(n)log( dU)exp(C\/_ +CVn—Ud— Cy/n)

(4:9) n n
+p(n)dlognexp(0\/%+ C\/; —CVn).

When d > 8, the second term in the right member of (4-9) is less than
p(n)dlognexp(—0.04Cy/n) < p(n)d 2.

Using the inequality v/1 —t < 1 —t/2 for ¢ € [0, 1] and the definition of
U in (4-5) the first term is

logd 50C log® dv/n
< p(n)(log d) exp(10C & \/ﬁ—d—gg\/_)
log? d
< p(n)(logd) exp(_4()COgT\/ﬁ)
2
< p(n)(log d) exp ( — —5—logd)

< p(n)d2,
when 8 < d < 52—‘/5\/ﬁlog n. Thus we have
(4-10) Sy < p(n)d—>.

Now we will use Lemma 4.2 to obtain an upper bound for H(u) in S;.
We will take

wZ 1
(411) §=B) = oo 5

The inequalities in (4-6) are satisfied if we have

2z2
and u > 2Z7.

ulog?u <

With our choices of Z and U, (4-3) and (4-5), we see that the first inequality

is satisfied when u < U. The inequality § < 5 \/— lgu — = in (4-6) is verified
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if u> 2Z. For Z < u < 2Z we will replace H(u) by H(u) the number of
partitions of w with at least Z/4 parts:

(4-12) S1 < Z H(u)p(n — ud) + Z H(u)p(n — ud).

Z<u<2Z 27 <u<U

By Lemma 4.2 we have

H(u) < p(u)u™P™ for 27 < u <U
H(u) < p(u)u_é(“) for Z<u<2Z

with B(u) = 4\/£Zlogu — 1. With these upper bounds, we obtain for(4-12)

™ Z
S < Z p(u)p(n — ud) exp (— (————
Z<ucaz 4\/@logu

W\/Z 1)10 )
_—— = u
Véulogu 2 s

1
— 5) log u)

(413)  + Y plup(n —ud)exp

2Z<ugU
A

—W\/Z
)+\/ﬁexp(—ﬁ)).

< p(n)(VZesp(— 7

When 8 < d < %ﬁéﬁlogn, we have

Z Ver 56
\/Eexp(—7T )< 10 log \/_logn exp logn
) <10 Jesp (- 27 [ 2 o)
<n 2
By (4-5) and (4-3) we also have
Z 10n 107
VUexp (- il < exp(———=lognlogd).
p ( \/@)) dlogd P /g leenlogd)

We have proved that S; < p(n)n~2, which completes the proof of Proposi-
tion 1.5.
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5. The number of the square free parts ; proof of the
Theorem 1.4

Let N(A) denote the number of the square free parts in the partition A
and recall that s(\) is the number of parts of A\. Erdés and Lehner [2] proved

that for almost all A, s(\) = %(1 + 0(1)). Let K be arbitrarily large
but fixed. Let M := Hpng2 and

M:={1<a<M:a#0(modp?) for all p < K}.

It follows from Theorem 1.3 in [1] that for a € M and for almost all
partitions we have

Fune() = YIBR () 1 o1)),

Thus for almost all partitions the number N;(\) of parts without a divisor
p? with p < K is

N () = VB i1 4 0(1))

~ - Lyvrosn gy

ik P C
= %(1 + O(K‘l))@(l +o(1)).

It remains to show that for more than (1 — €)p(n) partitions the number
Ni(A\) — N()) of parts divisible by some p? with p > K is small enough.
This will be done by using Proposition 1.5 :

Ni(A) =N <D Fope(N)

p>K

vnlogn(logp?)?  /nlognlog K
< > 100 2 < i

p>K

p(n)
p>K p*

for almost all partitions with at most > < p(n)K 3 exceptions.
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