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Note on a paper by A. Granville and K. Soundararajan

J. Wu (Nancy)

Abstract. In this note, we improve some results of Granville & Soundararajan on

the distribution of values of the truncated random Euler product
-1
L, X5y) = [[ (1= X()/p) ",
P<y

where the X (p) are independent random variables, taking the values +1 with equal
probability p/2(p 4+ 1) and 0 with probability 1/(p + 1).

§ 1. Introduction

Let d be a fundamental discriminant and x4 the primitive real character associated to the
modulus |d|. The study on the distribution of the values L(1, x4) originated with the work of
Littlewood [7] and has been extended by many authors such as Chowla, Erdés, Bateman, Barban,
Elliott, Joshi, Shanks, Montgomery, Vaughan, Granville, Soundararajan, etc. The reader can
find a detailed historical description in [8] and [4]. In particular Littlewood [7] proved that under
the Generalized Riemann Hypothesis one has

(1.1) {14+ 0(1)}/(127 %€ log, |d|) < L(1,xq) < {1+ o(1)}2¢7 log, |d|,

where log; denotes the k-fold iterated logarithm and « is the Euler constant. In the opposite
direction, Chowla [1] shew that there are x4, and yg, such that

(1.2) L(1,xa,) Z {1+ o(1)}e” logy |du],
(1.3) L(1,xa,) < {1+ 0(1)}/ (677 %€ log, |dz]).

Only the factor 2 in (1.1) remains in doubt on either side. Very recently Montgomery & Vaughan
[8] returned to this problem and initiated a finer study of these extreme values. Write

log L(1,xa) = 3 Xdem Yy Xi;pu)u-

Since the second sum on the right-hand side is bounded, it is sufficient to consider how large,

in positive and negative directions, the first sum attains. For a typical d, one may expect that

it behaves like
Z Xp/pa
p

where the X, are independent random variables taking +1 with equal probability. Extrapolating
this model, they proposed three conjectures on the distribution of the values of L(1,x4). The
following is the first one.
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Conjecture (Montgomery—Vaughan). The proportion of fundamental discriminants |d| < x
with L(1,xq) > €7log, |d| is > exp(—Clogz/logy x) and < exp(—clogz/log, x) for appropri-
ate constants 0 < ¢ < C' < oo. Similar estimates apply to the proportion of fundamental
discriminants |d| < x with L(1, xq) < 1/(67 2 log, |d|).

This conjecture has been proved very recently by Granville & Soundararajan [4]. To this
end, they introduced a new probability model: For each prime p, let X (p) = X (p,w) denote
independent random variables on the probabilty space ({2, 1), taking the values +1 with equal
probability p/2(p 4+ 1) and 0 with probability 1/(p + 1). Define the random Euler product

(1.4) LX) =] (1= X(p)/p) "

p

The infinite product converges with probability 1, since E(X (p)/ p) = 0 for all primes p and

D E((X(p)/p)?) =Y _1/pp+1) < oo,

p

where E(Y") is the expectation of the random variable Y on (2, ). Further let us introduce the
distributions of L(1, X) and of L(1, xq):

(1.5) ®(t) := Prob(L(1, X) > et),

(1.6) B, (t) = ( Zb 1)/( Zb 1),

ld|<e |d[<a
L(1,xa)>€t

where Zb indicates that the sum is over fundamental discriminants. First by using the saddle-
point method they proved (see [4], Proposition)

(1.7) o) exp{ - e:% [1+o<%)]},

where
L tanh(t * tanh(t) — 1

(1.8) 70;:/ a%mdt+/ %dtzo_&g?.._
0 1

Then they compared ®,(¢t) with ®(¢) and finally shew ([4], Theorem 4)

(1.9) %(t):eXp{_ e:W [1+O(%+%)]}

uniformly for logox > A > e and t < log, « + log,  — 20. This implies a stronger version of

Montgomery & Vaughan’s conjecture on the large value of L(1, xq).
In order to prove (1.7), they considered a more general problem, i.e. to evaluate

(1.10) ®(t,y) := Prob(L(1,X;y) > et),
where L(1, X;y) is the truncated random Euler product given by

L, Xy) =[] (01— X@)/p) "

p<y
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Define
E(s,y) := E(L(l,X;y)s) and Ey(s) == E((l fX(p)/p)_s).

By the independence of X (p)’s and its definition, we have

(1.11) E(s,y) = 1:[ Ep(s)
and 7
N R

Let ko = ko(t,y) be the unique positive solution of the equation

> log(1 —1/p)~" tanh(o/p) = logt +
P<y
and define
R(k,y) = > p~*cosh™(k/p).

p<y

They proved the following estimate ([4], Theorem 3.1)

E(ro,y) { ( £ ) }
1.13 d(t,y) = 1+0| —
(149 ) = o Rl ) et
uniformly for ¢+ > 3 and logy >t + 1. Further if 0 < XA < e~%, then
(1.14) D(te ™, y) — B(t,y) < Bt y) ("X + >y~ ogy).

The aim of this note is to improve their estimates (1.7), (1.13) and (1.14). Define

(1.15) Hs,y) :=1log B(s,y),  ¢nls,y) = 5>

(s,9) (n=0).
Let k = k(t,y) be the unique positive solution of the equation

(1.16) o1(K,y) =logt + .

According to Lemmas 2.1 and 2.2 below, the saddle point x(t,y) exists when ¢t > 1 and y > 2¢?
and we have (t,y) =< e! in this domain. Finally define o, := ¢, (k,y) for n > 0. We preserve
these notation for the duration of this paper.

Our results are as follows:

Theorem 1. We have

(1.17) 2(t.y) = %{”O(i)}

uniformly for t > 1 and y > 2¢t. Further for any € € (0,1), we have
(1.18) Ote ™, y) — Dt y) << O(t,y) (N +y7)

uniformly fort > 1, y > 2et and 0 < \ < e,
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Theorem 2. For each integer N > 1, we have

N

@(t,y):exp{—li[z I +0N(RN(m,y))H

“— (log k)"

uniformly for t > 1 and y > 2e!, where *

(1.19) an = /OOO (%)I(logu)"—ldu

with
log cosh(u) if0<u<l,
(1.20) flu) = '
logcosh(u) —u ifu> 1.
The error term Ry (k,y) is given by
1 K
1.21 R = .
(1.21) v (%) (log k) N+1  ylogy
Corollary 3. For each integer N > 1, there are computable constants af, ..., a} such that the

asymptotic formula

N

B(t.y) = exp{ _ et {Z ‘;—E + ON(RN(et,y))] }

n=1

holds uniformly for t > 1 and y > 2e*. Further we have

2 o]
ai =1, a;:%—%o—/ f:;)(logu)duzl.&---.
0

In particular for each integer N > 1, we have

o(t) exp{ —elTe {i j_: +ON<HV%)]}

n=1

uniformly for t > 1.

Remark. (i) Granville & Soundararajan also investigated Montgomery & Vaughan’s con-
jecture for the small value of L(1, x4) and obtained similar estimates for

U(t,y) = Prob(L(1, X;y) < 1/(672e7t)).

Clearly we can also improves their corresponding estimates.

(ii) As in [4], we shall apply the saddle-point method to prove our theorems. { But our
choice for the saddle-point is different from theirs. It will be seen that our choice is more natural
and is one of key reasons for the improvement on (1.13) and (1.14). Another new idea is to use
the exponential sum method to improve lemma 3.2 of [4] (see Lemma 2.4 below). Indeed, if we
further apply the Vinogradov method as in [6] instead of the simple van der Corput method (see
3]) used here, the terms y¥1/¢ in (1.18) and Lemma 2.4 will be sharpened to eF¢(98%)" with
some absolute constant ¢ > 0, respectively.

* By convention, we define f( (1) = f(")(1—) for all integers n > 1.
1 The saddle-point method was firstly applied to the number theory by Hildebrand & Tenen-
baum [5]. Interested readers are referred to [9] for an excellent paradigm.
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§ 2. Preliminary lemmas

This section is devoted to estalish some technique lemmas in the saddle-point method for

our purpose.
Lemma 2.1. For any integer N > 1, we have
N

(2.1) b1(0,y) = logya + 7+ 3 (MZ—U) + Ox (Rx(0,1))

uniformly for y > o > 2, where ~ is the Euler constant and Ry (o,y) is defined as in (1.21). The
constant b,, is given by

(2.2) by, = /OOO ) (og 4y du,

U
In particular by = .
Proof. First we prove

1 eo/p
B (o) —log(l——)—i—O( ) if p <o,
o
(2.3) P = P P

Ey(o) 1 1
? — tanh <5>1og (1—) +o<—2+%) if p>ol/2
p p P p

where the implied constants are absolutes.

By using (1.12), a simple calculation shows that

(2.4) E, (o) _ a%loga+b” logb7
E,(0) a® +b +c

where a := (1 —-1/p)~Y, b:=(1+1/p)~! and c:=2/p.
Since a” > /P > 1 > b° for any prime p and any o > 2, we easily see, for p < o,

E; b7 log(b/a) — cl
EPEU) roga s Vlo80/) —cloga
»(0) a® +b° +c

670-/p
10ga+0< )
p

This proves the first estimate of (2.3).
In order to verify the second, we write, in view of (2.4),

E,(0) a®loga+b°logh <e_‘7/p>

E,(o) a® +b° p?
a’® — b’ e=o/p
a® +be 0ga+0( P2 )

If p > 0'/2, we have
a® —b° ea/p+0(0/p2) _ e*U/PJFO(U/PQ)

a’ + be - eo’/p-‘rO(U/Pz) + e_U/p+O(0'/p2)

o (5)o(3)

Putting all these estimates together, we obtain the second formula of (2.3).
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Now we are ready to prove (2.1). According to (1.11), we have

$1(0vy) =Y Ep(0)/Ep(0).

p<y

We use the first asymptotic formula of (2.3) for p < 02/3 and the second for 0%/3 < p < y to

write

(25)  diow)= Y logl—1/p) + Y tanh(o/p)log(1— 1/p)~" +O(c~ 1)

p<o?/3 o2/3<p<y
=> log1—=1/p)" '+ > flo/p)log(1—1/p)~ +0(c7/%).
p<o 02/3<p<y

With the help of the prime number theorem of form

(26) > log(1—1/p) " =logyo +7 + o(e—%/@),

p<o
we can write
Yy / t
(27) S femosi-1/m = [ LD g oy,
/5 <m<y o2/3 tlogt

where
y

Ry = f/<%)62,/1ogy +f’(01/3)e*\/@+0/ |f’/(tg/t)|672\/@dt.

2/3

In view of the following simple facts that

w? ifo<u<l,
u) =< -
) {1 if u>1,

u ifo<u<l,
e ifu > 1,
{1 ifo<u<l,

e ifu>1,

(2.8) f'(u) =
f(u) =

it is easy to deduce that

i o
R<< %efx/logy+€72al/d +O’/

672J/t72\/10gt% + O'/y e,Q,/logt%
02/3 o
< gefy/logy + efy/loga'.

Yy

In order to evaluate the integral of (2.7), we use the change of variable u = ¢/t to write

Yo/t )
s2/8 tlogt d _/U/y ulog(o/u)
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where
—1/3

N T O R IR O I
1 ._/0 ulog(o/u) d +/0 ulog(o/u) d
o 7t/? du 7/y du
< / log(o/u) / log(o/u) "

1 o
<

ol/3logo * ylogy’
On the other hand, we have

1/3

U Fw) N (o) by +1(0)
Lo wlog(o/n) " = 2 Togoy *ON(aogo)NH)’

/: I (10g uy=1 du

—1/3 u

o1/3

where

o
3
—
Q
N
I

Inserting these estimates into (2.7), we find that

(2.9) 3 g(%) log (1 - %) o XN: b on (Rn(o,1)).

s2/r ey (log o)

Now the required result follows from (2.5), (2.6) and (2.9). O

Lemma 2.2. For each integer N > 1, there are computable constants c1,...,cy such that the
asymptotic formula

N C
(2.10) K(ty) = et%{1 +> o+ ON (R}“v(t,y))}

n=1
holds uniformly for t > 1 and y > 2e', where
1 et
Ry (¢ = —_=—+ —.
N(vy) tN+1+y10gy
Further we have ¢; = —1b3 — bs.
Proof. By Lemma 2.1 and (1.16), we have

N+1

(2.11) logt =logy K+ Y "+ On(Rn41(r,y)),
“— (log k)

where Ry (k,y) is defined as in (1.21). Clearly this implies
(2.12) logr =t +0O(1)

and

N+1
t= (log '“5) ]:‘[1 exp { (1027;)71 } eXp {ON (RN-H(’%) y))}

— (log k) Jﬁl{ Nf m%,( (102”@")% +Ox (RNH(m,y))}.

n=1 my,=0 '




Developping this product, it follows that

N+1 ,

(2.13) t = (log n){ Z (1ognf£)" + On (Ry+1(k,y)) }a
n=0
where
pm LN
p o= 1 N4+
n Z m1! e mN-i-l!

m120,....mN4120
mi+2mo+--+(N+1)my41=n

Since by = 1 and b} = 7o, the preceeding asymptotic formula can be written, in view of (2.12),

as
Ny
(2.14) t =log Kk + o + ; (103,:)" +On(tRn41(e!,y)).
With the help of (2.14), a simple recurrence leads to
N
(2.15) t:1ogn+70+ZZ—§+oN(R;V(t,y)),

n=1

where the 7, are constants. In particular we have v; = b}, = %b% + bs.
In fact taking N = 0 in (2.14), we see that (2.15) holds for N = 0. Suppose that it holds
for 1,..., N — 1. Inserting these into (2.14), we find

b i Ry_ Y\ " .
tZlOgl‘i-‘r’Yo-‘rZ 1—2 5 +On - +ON(RN(tay))

with the convention R*,(¢,y) := 1. Obviously the preceeding estimate implies (2.15).

Now the result of Lemma 2.2 is an immediate consequence of (2.15) with

_ ymitedma AN
Cn > (-1) .

my!---mpy!
m1>0,...mn>0 1 N

mi1+2mao+---+Nmy=n

This completes the proof. ([

In the next lemma, we estimate o;. This is necessary for controlling the error terms in the
proof of our theorems.

Lemma 2.3. Fort > 1 and y > 2e?, we have

(2.16) o1 =logy k + O(1),
1 1 1
2.17 = O
(2.17) 2 klog K + (/ﬁ(log K)? + ylogy>7
(2.18) o; < 1/(k" " 'logk) (j=3,4).

Proof. The first estimate follows immediately from the definition of oy and (2.1).
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In order to prove (2.17), we write, in view of (2.4),
<EI’,(R) >/ _ (ab)"(loga —logb)? + c(a”(log a)? + b"(log b)?)
Ey(k)) (a + b5 + ¢)?

_ (ab)"(loga — logb)? Lo e n/P
- (aﬁ+bﬁ)2 p3

~ 4(ab)” e H/P
- p2(an+bﬁ)2 +O< p3 )

4(ab)" 460 (/)

P2(aF +b%)2  p2(en/ptO(s/p?) L e—r/p+O(s/p?))2

4 K
- p2(er/P + e—r/P)2 {1 +0 (F) }

1 e r/P
S ]
p? cosh®(k/p) ( p? )

On the other hand, for p < k'/2 we have

(2.19)

If p > k'/2, then

(ab)fi 1 e—ﬁlog(a/b) e—2n/p e—fi/p
p*(a* +b7)* = p*(a/b)" A & p?

Similarly we can prove, for p < x'/2,

1 e—2r/p e r/P
p2eosh’(k/p) P
Thus we can write, in all cases,
4(ab)" 1 e r/p
p?(ag +)b~>2 ~ Peosll(s/n) O( >
Inserting it into (2.19), it follows that

(5&:3) - e O(e;;/p)'

From this we deduce easily, as before, asymptotic formula (2.17).

We have
(E,g(n))“ (@) log(a/b)(a™ %) ya*(loga)® + b (logh)’
E, (k) (a® +b" + ¢)? (a® 4+ b +¢)3

B ca“ (a® — 2b%)(log a)® + b*(b"™ — 2a™)(log b)? + 3(ab)"(log a)(log b) log(ab)
(a® +b" +¢)?

Since a® > /P > 1 > b7, it is apparent that
B\ _ e
< —.
Ep(“) p
From this we deduce

Y e*l{/u 1 r/3log kK du 1 3logk ve—v
03 K 3 du<<—3 37+—2 ——dv
5 ullogu K3 Jy udlogu = K% /),  log(k/v)

k2logk’
Similarly we can prove o4 < 1/k3log k. This completes the proof.

The third lemma is an improvement of Lemma 3.2 of [4].
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Lemma 2.4. For any ¢ € (0,1), we have

6—017—2/(;%10;;&) jf|7-| <k

‘E(n +iT, y)‘ e-alrlfleslrlif k < 7| <y
E(k,y) e—c2(@y/logy  ify < |7| < yl/e
1 if 7| > y'/e
uniformly for t > 1 and y > 2e!, where ¢; > 0 is an absolute constant and cz(g) > 0 a constant

depending on € only.

Proof. With the help of (1.12), we can write

(220) Byl tir) = (1— 1/p) " {ry f raeim 8@ 0/ 1) |y cirlosi=t/p))
where
ry = L(l —1/p)™", ro 1= L(l +1/p)7", r3 = L
2(p+1) 2(p+1) p+1

A simple calculation shows that
|Ey (K + i) 2 < (11 + 72 +13)% — 2r17m0[1 — cos(T£(p))],

where f(z) :=log((z +1)/(z —1)). In view of 1 —x < e~ " for 0 < z < 1, we deduce

r1ir2

(2.21) |Ep(k +i7)| < IEp(ﬁ)IeXP{ Tt

U—w%#@M}

for all primes p. Clearly for p > k, we have r173/(r1 + ro + r3)? < 1. Thus there is an absolute
constant ¢ > 0 such that

(2.22) |E(s,y)| < |B(k,y)e e,

where

Sr(k,y) =Y (1 —cos[tf(p)]).

RIPLY
Next we give the required lower bounds for S;(k,y) according the size of |7|.
(i) The case of |T] < K

For all primes p in (k/2, k) we have

1= cos[rf(p)] > 2n*[rf(p)]* > |7* /17,

which implies
Sr(ry)>c Y |m1?/p° = 7P/ (rlogk).
k/2<p<k
(ii) The case of k < |7| <y
We apply the above argument with the primes in (|7, 2|7|) getting the desired lower bound.
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(iii) The case of y < |7| < y>/?

We let § := 10719 and divide the interval (y/2,y) into subintervals of length §y?/|r| (with
possibly the last interval possibly being shorter). Call an interval good if cos[r f(p)] < cos(4/10)
for all primes p in that interval, and bad otherwise.

For every prime p in a bad interval, then there exists a unique positive integer ¢ such that
|7f(p) — 2] < §/10. From this, we have

(2.23) t<(|7lf(p) +6/10)/2m < |7|/y.
Let p; > p2 be two primes in the bad intervals corresdonding to the same integer ¢, then

|7f(p1) = 7f(p2)| < |7f(p1) — 2ml| + |7 f(p2) — 27| < 6/5.
On the other hand, we have

ITf(p1) — 7f(p2)| = |7|(p1r — p2)/(p1 — 1)(p2 + 1)
> |7|(p1 — p2)/(2y%).

Thus |p1 — p2| < 2y?6/5|7| < y?§/|7|. This shows that there are at most 2 bad intervals corre-
sponding to the same integer. In view of (2.23), there are at most 2|7|/y bad intervals. Accord-
ing to Brun-Titchmarsh theorem, each bad interval contains at most 2(5y?/|7|)/log(dy?/|7|) <
56y2/(|]7|logy) primes. Thus the number of primes in the bad intervals is at most

(I71/y)56y* /(|| log y) = 5dy/logy
and there are at least y/3logy primes in the good intervals. For each good prime p, we have
1 — cos[Tf(p)] > 1 — cos(6/10) > 2[5/(107)]>.

This gives the lower bound of Lemma 2.4 in this case.
(iv) The case of y*/? < |1 < y'/¢

Let e(u) := €2™* and define

Sy = > e(rfp).

y/2<p<y

By integration by parts, we can write

S(y) <

sup ’ > (logp)e(Tf(p))‘

logy y/2st<y y/2<p<t

sup A)e(rf )] +v*2,
l0gy y/2<t<y y/2z<:p<t

where A(n) is the von Mangoldt function. Using Vaughan’s identity ([2], (24.6)), we can write

(2.24) Sy) <y® sup  (|St|+|Sm]) + Y2,
y/2<t<y
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where

Sy = Z Gm Z e(Tf(mn)),

m<yl/3 y/2<mn<t

Sy = Z G Z bne(Tf(mn)),

y1/3<m<yt/2 y/2<mn<t

and |a.,| <1 and |b,| < 1.
By applying the exponent pairs (k,!) to the sum over n in Sy ([3], Chapter 3), we deduce

sr< >0 (Urlm/y)Ew/m)! + (rlm/y*) ™)
mgyl/s
< |T|ky(1—2k++2l)/3 + |T|—1y2 log y.
This implies that for any § > 0,
(2.25) Sr<y'™  (y*0logy < |7| < yHIHE-D/SR=I/KY,

It remains to estimate S;;. For this we define

Srr(M,N) : ZamZbeTfmn

m~ M n~N

where /3 < M < 42, MN = y and m ~ M means M < m < 2M.
By Lemma 2.5 of [3], it follows that

|S17(M,N)]> < (MN)*H~' + MNH Y Z‘ 3" e(rlf(mln + h)) - f(mn)])}.

h<Hn~N m~M

for any 1 < H < N. By applying the exponent pairs (k,!) to the sum over m, we deduce

S (M, N)]> < (MN?*H™' + MNE' Y Y ( |T|hn/y3)le+(|T|hn/y3)*1)
h<H n~N
< (y2H_1 + |T|ky1—2k+lN1—lHk) lOgy
Optimizing H over [1, M] yields
[Srr(M, NP < ((rPhyP+) Y439 4 y573) logy.
This implies, for any § > 0,

(2.26) Sir <yt (y<Irl < y[1+6k7l710(1+k)6]/3k)_

Inserting (2.25) and (2.26) into (2.24) and taking (k,l) = A7 %(1,1) = (555.1— 2qq__12),
where A is the Weyl-van der Corput process ([3], Chapter 3), we find that

S(y) <y 710" (YO <7 < y?B).

This implies the required result. (]
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§ 3. Proof of Theorem 1

We shall divide the proof in several steps which are embodied in the following lemmas. The
first one is (3.6) and (3.7) of [4]. For the convenience of readers, we give here a detailed proof.

Lemma 3.1. Lett > 1,y > 2¢e and 0 < A\ < e~t. Then we have

1 [T B(s,y)e* —1 N
3.1 d(t,y) < — : ds < O(te™
(3.1) )< 5 [ TG,
1 [FHe0 B(s,y) e — 1 ,
3.2 D(te > ) — D(t.y) < — Y E T L As L o8 (s,
( ) ( ‘ ,y) ( 7y) T 2mi /nfioo (e'yt)s As? (e ‘ ) s

Proof. For any ¢ > 0 and A > 0, we have, by Perron’s formula ([10], Lemma II.2.1.1),

1 fetioo s 1 [r/ 1 fefie s ds
3.3 — s ds = = — 0 88 g
(3:3) 270 J o ioo Y72 @ )\/0 <27ri /C_ioo (ye”) s> v
0 if0<y<e™,
=4 1+ (logy)/A€[0,1] ife?<y<I,
1 if y > 1.

Let 1{ueq:r(1,X3y)>evt} (W) be the characteristic function of the set {w € Q : L(1, X;y) > eVt}.
Then by (3.3), we have

1 e FLL X y)\ et — 1
Hweara,xim>enny (W) < 2mmi /n—ioo ( evt As2 ds.

Integrating over €2 and interchanging the order of integrations yields

1[5 AL, X y)\ et — 1
O(t,y) S/g(Q_m /Kﬂ_oo < p > 2 ds> dp(w)

1 R B(s,y) et — 1
- 2mi (ent)s  As?

K—100

This proves the first inequalityof of (3.1). The second can be treated by noticing that

1{w€ﬂ:L(1,X;y)>e"*)‘t} (UJ) = 1{w€ﬂ:L(1,X;y)>e‘Vt}(w) + 1{w€ﬂ:e’YtZL(1,X;y)>e'f*)‘t}(w)

K+1i00 . S s _
> i L1, X;y)\ e lds.
271 J o ioo et As?
From (3.1), we can deduce
1 [ B(s,y) e —1 1 [ B(s,y) e —1
Dte ™, y) — Bt,y) < — =5y S 5 Y) d
(te™"y) (t,9) < 270 Jy—ioo (EY7AE)S AS2 270 Jy—ioo (EYTAE)S A2 s

1 [ B(s,y) e —1, N
- ? s _ ,—AS d .
271 (e7t)s s (e ) ds

K—100

This completes the proof. (I
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Lemma 3.2. Let ¢t > 1,y > 2e! and 0 < kA < 1. Then we have

1 K+ik E(s,y) e)\s -1

E(k,y) log k
— ds = 14+ 0( kA .
210 Jo_ie  (€76)5 As2 3 K\ 2mog(e7t)" { * (FJ + K

Proof. First we write, for s = k + i1 and |7| < &,

E(Say) = eXp {0‘0 + 10T — %7-2 _ ’i%TB + 0(0,47_4)},

e —1 1 7 72
£ i Yrio(me )L
As? K{ HT+ <H +I€2>}

Since o1 = logt + v, we have

E(s,y) e =1 _ B(KY) _(sy/2)r2 i .03 3
= LEVRIL I (L
(e7t)s  As? n(e'ﬁ)""e k6 +O(R(7))

with

R(7) := kA + k272 + oyt + 0375,

Now we integrate the last expression over |7| < k to obtain

1 AR B(s,y) et — 1 E(k,y) rtin —(02/2)r?
(34) 2—7” /’iiin (e'Yﬁ)s \s2 ds = 271‘[4;(@’)’1‘;)5 / e 2 {1 + O(R(T)) } dT;

K—1K

where we have used the fact that the integrals involving (i/k)7 and (iogs/6)7> vanish.

On the other hand, by using Lemma 2.3 we have

Ktk R D) 1
/ e~ (02/D7" 47 = —ﬂ-{l-i-O(eXp{——IiQO’g})},
K—ik 02 2
wtie o /272 1 1 02 o4
/K e~ (02/2) R(r)dr < = <I€>\ + Zog + —g + —2)

ik Oy 03
1 log k
A .
< Jos (:‘i + p )

Inserting these into (3.4), we obtain the required result.

Lemma 3.3. For any ¢ > 0, we have

(3.5) /Niioo E(s,y) ers 1 ds < E(k,y) e—cr/logr 4 y—l/a
| e (07 A ® ky/o2(eTt)" X ,
K100 E(S y) eAs 1 E(H y) 1
3.6 ’ As _ _—As d _ Eky) \ 1
() /“*m e e (&) ds < NGO (ff + y2/a)\),

uniformly for t > 1, y > 2e! and 0 < kX < 1.

Proof. We split the integral in (3.5) into three parts according to

k<t <y, y<|t|<y¥E, |7 >y
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By using Lemma 2.4 and the inequality (e*® — 1)/s% < 1/72, the integral in (3.5) is

<

- + ” JFW

E(Ii,y) efcka/ log k efcy/logy 1
(evt)rA ( )

This implies (3.5) since y > 2’ < k and o9 < 1/ logk.

Similarly we split the integral in (3.6) into four parts according to

3/e 3/8.

Tl <k, w<lrl<y, y<lrl<y Il >y
By using Lemma 2.4 and the inequalities

(e)\s _ 1)/)\8 < min{l, 1/)\|T|}, (e)\s — e_’\s)/s < min{)\, 1/|T|}a

the integral in (3.6) is, as before,

E
<. ((,,jt’)zi) (A\/m_i_)\efcn/logn _’_)\efcy/logy +)\71y73/€),
e

which implies (3.6), since the second and third terms can be absorded by the first one. [

Now we are ready to complete the proof of Theorem 1. From Lemmas 3.2 and 3.3, we have

1 K+1i00 E(s,y) e)\s -1 B E(H,y)
(3.7) %/K_ioo (evt)s  As? ds = m/27r02(e%)”{1 +O(R))

where

1 —ck/log k —1/e
R:= 08K + KA+ ¢ ty
K A

Taking A = x~2 and noticing y > 2e’ < &, we deduce
(3.8) R < t/é.
Combining (3.7) and (3.8) with (3.1), we obtain

E(k,y) t Y
3.9 P(t,y) < —=2—<1+0| = < O(t
(3.9 ) < et L1 0( £) f < o)

uniformly for t > 1, y > 2e¢f and 0 < A < e
On the other hand, (3.2) and (3.6) imply

_ E(k,y) 1
O (te — ot —— e\
( € ay) ( )y) <<8 K,\/OTQ(G'Yt)K (6 + y2/6)\)
E
< _Blry) et

Ky/O2(eTt)"

when A\ > y~'/¢. Since ®(te=*,y) — ®(t,y) is a non-decreasing function of \, we deduce

E(k,y)
K\/O2(et)"
uniformly for ¢t > 1, y > 2e* and 0 < A < e~ *. Obviously the estimates (3.9) and (3.10) imply
(1.17) and (1.18). This completes the proof of Theorem 1.

(3.10) D(te N, y) — B(t,y) <- (eX+y71/%)
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§ 4. Proof of Theorem 2

We first establish a preliminary lemma.
Lemma 4.1. For any integer N > 1, we have

N

Z (dinn + ON(RN(va))}

P(o,y) = 010g20+70+0{ Z Tog o)

uniformly for y > o > 3, where Ry (o,y) is defined as in (1.21) and

dy = i) (logu)™ ! du.

0 u?

Proof. For p > o, we have
E, (o) P {1+O<U)}cosh<g>+ !
o) = — —_ — _
P p+1 p2 P p+1
2
{1+O<%>}cosh<g>+0<o—3)
D p p
ol ()
p p
since cosh(o/p) > 1 for p > 0. Thus

(4.1) Y logEy(0)= Y f(o/p)+O(1/logo).

o<p<y o<p<y

In order to treat the sum over p < o, we write

Ep(0) = (1=1/p) 7 E,(0),

where
. D 1+1/p)_0 2( 1)0}
E* (o) := 1+( +—-(1-—- = 1.
o=t () 4505

Thus

(4.2) Z |log Ej(0)| < o/2/logo.

p<ol/?

For o1/2 < p < o, we have (1 — 1/p)” = e=2/P{1+ O(o/p?)} and
Byfo) = 221+ 0( %) beon (2) 4 5
{0l ) e ()
“{reola)ye ()
E,(0) = Ep(o)(1 = 1/p)°

ol ) G)e

Thus
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From this and (4.2), we deduce that

SlogEi()= S flo/p)+O0(c"?/1ogo),

p<o ol/2<p<c

which and (2.7) imply

(4.3) > logEy(o) =0 log(l—1/p)~" + > log B} (o)
p<o p<o p<o
=ologyo + o + Z f<%> +O<Ue*\/loga).
ol/2<p<o

Combining (4.1) and (4.3), we obtain

(4.4) ¢(o,y) =oclogy o + yo + Z f(g) —l—O(Ue_Vlog‘T).
ol/2<p<y P
By using the prime number theorem of form

b odv /1o
7(t) ::21:/2 1ogv+0(te 2 lgt),

p<t

we can prove, similar to (2.9), that

(4.5) 3 f<5> = a{i (log’;)n + ON(RN(o,y))}.

ol/2<p<y P

Now the required result follows from (4.4) and (4.5). O

Now we are ready to prove Theorem 2.

By using Lemma 4.1 and (2.17) of Lemma 2.3, we can write

(4.6) #ﬁmﬁ = exp {qﬁ(fa y) — k(v +logt) + O(log H)}
= exp {mog2 K+ ﬁ[i (lo‘gli"n)n + ON(RN(m,y))} — mogt}.

On the other hand, Lemma 2.1 and (1.16) imply that

N

by

log, k + Z Tog )" +Opn (RN(H, y)) =logt.
n=1

Thus (4.6) can be simplified as

it - en{ S s onan])

A simple integration by parts shows b, — d,, = a,,. This completes the proof. (I
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§ 5. Proof of Corollary 3

By using (2.15), we have

(5.1) 3 (10;)71

n=1

I
WE
%S

N—n —n
a Yi—1 R?anfl (ta y)
1 — _ B St L N
: { > % +oN( t

R t
n +ON< N—2( ay)),

Il
-

n

I
WE
I|?

t2

n=1

where the p,, are constants. In particular we have p; = a; = 1 and ps = vy + as.
Now Theorem 2, (2.10) and (5.1) imply the result of Corollary with

n—1
ai =p1 =1, a;:anrZCipnﬂ' (n >2).
1=1

This completes the proof of Corollary 3. O
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