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Abstract

This paper is intended to show the comparison of two closed-loop controllers
performances for a catalytic reverse flow reactor (RFR): a linear quadratic regulator
(LQR) and a model predictive control (MPC) strategy that both use a high-gain
observer. The aim of the RFR is to reduce, by catalytic reaction, the amount of

volatile organic compounds (VOCs) released in the atmosphere. The particularity
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of this process is that the gas flow inside the reactor is periodically reversed in order
to trap the heat released during the reaction inside the process. Very few papers are
dealing with the control of the RFR. The new multivariable optimal control issue
tackled here is to confine the hot spot temperature within two temperature limits,
in order to ensure complete conversion of the pollutant and to prevent catalyst
overheating, while optimizing the process yield and the consumption of electrical
power. Both control laws aim to optimize the tuning of the dilution and the internal
electric heating. The model considered here for control of the RFR is obtained from a
countercurrent pseudo-homogeneous partial differential equation (PDE) model. The
feed concentration (acting as an important input disturbance) and the temperature
profile in the RFR are estimated on-line using a high-gain observer based on three
temperatures measurements. In order to maintain the safe use of the reactor, the
estimate state is injected in the LQR whereas the MPC is based on the estimated
input disturbance. Simulation results allow comparing performances of the LQR

and the MPC.
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1 Introduction

This paper deals with the multivariable optimal control of a catalytic reverse
flow reactor, which topic has not been often be tackled until now. The RFR
aims to destruct VOCs. Even if the definition of VOCs is blurred, it includes
noxious products whose chemical reactivity is likely to influence atmospheric
pollution. For this reason, they are the source of a lot of environmental prob-
lems including: acid rains, woods wasting, greenhouse effect and health haz-
ards. Problems of environmental pollution due to the industrial production
are therefore receiving increased attention and due to the public regulations,
VOCs discharge in the atmosphere becomes strictly limited. Therefore, the
VOCGCs emission reduction represents a priority, especially since the problem
is connected with a large field of activities from large-scale factories to small
and medium-sized firms like dry cleaners.

In a previous work, the single input single output (SISO) control of the RFR
was treated [12]. The aim was to control the RFR such that the outlet gas con-
centration released in the atmosphere was maintained below a maximum level
fixed by public regulations. This control strategy was based on a parabolic
PDE model, an internal model control (IMC) structure and a MPC frame-
work. According to various regimes, it was shown that the proposed controller
was able to tune correctly the control action, i.e. the heating power at the
core of the reactor. In the meantime, for a particular regime, the tempera-
ture inside the reactor was exceeding a threshold temperature that reflects
the deterioration of the catalytic elements. Moreover, the input disturbance
was assumed to be relatively constant and measured, whereas unmeasured and

large stochastic variations need to be accounted for in reality. The aim of this



paper is to provide a multivariable control framework to solve these problems.
This requires modifying the PDE model and the control problem to account
for a new manipulated variable: the cooling action.

The RFR is modelled by a nonlinear PDE system characterized by complex
nonlinearities in the spatial domain. Even with only one spatial dimension,
control of PDE systems is not often treated, especially in the nonlinear case.
Explicitly, transport reaction phenomena with significant diffusive and convec-
tive phenomena are typically characterized by severe nonlinearities and spa-
tial variations, and are naturally described by partial differential equations.
Examples of such processes include tubular reactors, packed bed reactors, ab-
sorption columns, drying or curing processes. In control theory, due to the
complexity of the problem, relatively few studies are devoted to the control
of processes explicitly characterized by a PDE model. Even if various meth-
ods are proposed to control such distributed parameter systems, there is no
general framework yet. In order to implement, with a computer, a low order
model based controller, the original PDE model is usually simplified into an
ordinary differential equation (ODE) model. Such a finite dimensional approx-
imation is based on the finite differences method, the finite volume method,
the orthogonal collocation method or the Galerkin’s method. Other works uti-
lized properties of the initial PDE system before finite dimension controller
synthesis: Recently, Christofides developed order reduction by partitioning the
eigen spectrum of the operator of the PDE system [8,17] and methods based
on approximate inertial manifold for spatial discretization of the PDE [7,2].
Other works for controller synthesis of nonlinear PDE systems are based on
symmetry groups, infinitesimal generators and invariant conditions [32,21].
Concerning [22,40], finite dimensional controllers are obtained through model

reduction based on various methods: singular value decomposition, Karhunen-



Loéve expansion or eigenfunction method. With this method, an interesting
framework is provided with proof of closed-loop stability for the QDMC of a
PDE system [41]. In [3], stability conditions for closed-loop control of linear
PDE with finite dimensional controller are given in time domain and frequency
domain through semigroup analysis. In [38], based on semigroup theory, proofs
were given for the closed-loop stability of PI control for a linear PDE system.
This paper is not intended to propose a new PDE model based control frame-
work but rather to show how advanced control strategies may be used for
the control of the RFR. Indeed, few works are dealing with the control of
such process described by a nonlinear PDE model. In this paper, two model-
based control strategies for the constrained optimal control of the RFR are
compared: LQR and MPC which both use a high-gain observer. The LQR
is used here in a classical framework [25]. MPC was developed for ordinary
differential equation models and is well dedicated to solve a constrained prob-
lem [1,29,27,36,34]. MPC was applied for a few PDE systems in [15,33,37,23],
where accurate high order dimension models are accounted for. Very recently
[41], singular value decomposition and Karhunen-Loéve expansion was used in
a QDMC framework. In this paper, we use a MPC strategy [12,13] that aims
to reduce, during the sampling period, the on-line calculation time due to the
PDE model based optimization task resolution. This approach is based on a
strategy combining the IMC structure and a two-phase approach to account
for an approximated model into the controller. This approximated model com-
bines the nonlinear PDE model solved off-line and a time-varying linearized
PDE model solved on-line. Such MPC approach combined with IMC, even
if a low order model is used to approximate the model, allows reaching the
required closed-loop performances [14].

The paper is structured as follows: in section 2, the RFR, the new PDE model



and the discretized model are presented. Section 3 aims to remind the ob-
server previously designed. Section 4 deals with the LQR and MPC strategies
used here. Finally, simulation results given in section 5 allow comparing the

performances of the LQR and the MPC.

2 Process and modelling

2.1 Process description

A medium-scale RFR for VOC combustion, as schematically shown in Figure
1 (see [35] for instance) has been considered in this work. Cordierite monoliths
(corning) of square cross sections with channels of 1 X 1 mm are packed in
the reactor. Monolith in the core region is catalytically active and is inert in
both end sections. A blower located downstream of the RFR keeps aspiration
at a constant flow rate. Liquid pollutant (xylene), is injected into ambient
air through a capillary tube and is then vaporized before entering the cat-
alytic layer. An electric heater is installed in the core region to increase the
temperature, while fresh air dilution (which results in a small feeding rate
in the upstream) is employed to reduce the temperature. Fast flow reversal
(the period is 16 s) is needed to keep the highest temperature moving in the
catalytic region [30,31]. The reactor is encapsulated in a rectangular box and
is thermally well insulated. Therefore the packed layer is adiabatic, except in
the core region where heat loss is inevitable due to both the installation for
air dilution and the high temperature in this region. Moreover, the core is not
airtight (even if it is closed) and, as a result of leakage, a small net amount of

fresh air is aspirated into the core: 5 m3/hr when the flow rate is 100 m3/hr.



Three thermocouples are installed in the reactor and will be used to estimate

the temperature profile and the inlet pollutant concentration. The reverse flow

Dilution by
fresh air Instantaneous Dilution
Thermocouples i 75,355 mm aQ reaction (1-0)Q
L A m T Al m
P i M ML' ] Heat
Inert I-Ileatelr Catalyst Tl 50 mm o T, exchange
NI G T " H2
Adiabatic Heat  Adiabatic f }
loss/supply x=0 x=& x=1

Fig. 1. Left: main geometrical characteristics of the RFR. Right: the countercurrent

model.

reactor used here allows high temperatures in catalyst bed whereas the inlet
and outlet gas stream temperatures are close to ambient temperature. Indeed,
through periodic flow reversal, the heat released by the reaction is first trapped
in the packing and is then used to heat up the feed when the flow direction is
reversed. Because of the high efficiency of heat exchange between gas and solid
phases, autothermal operation is possible even for a feed with a low adiabatic
temperature rise (below 15K). Moreover, owing to the large heat capacity of
the packing, the high temperature plateau established in the packed bed is
poorly sensitive to abrupt changes in the inlet concentration. These features

make therefore RFR highly competitive for VOCs combustion.

2.2 Countercurrent pseudo-homogeneous model

Taking advantage of the high frequency of flow reversal, this reactor can be
approximated by the countercurrent reactor model [31], as illustrated in Figure
1. This countercurrent reactor model is a heterogeneous model described by a
set of three nonlinear PDEs and one algebraic equation. In order to homogenize

and simplify this model, the following model has been introduced by Edouard



et al [16]. It is based on the method described in [4] and it assumes that the
kinetic reaction can be neglected under strong mass transfer limitation. It
allows obtaining the following pseudo-homogeneous model described by (1)-
(5): it features one PDE, two algebraic equations to account for mass transfer
limitation, and a periodic frequency correction. Normalizing some variables,

we obtain:

1 1+ a? 0*Ty(x,t) 1— adTs(z,t) OT,(z,t)
’ : PyAT, 4 (t ) =7———=
(Pm t 55 ) o T 3 o TDATatvet) =r—p
Owy(x,t Ows(x,t
a% + Pywq(z,t) =0, — % + Pywo(z,t) =0
(1)
with:
(
h- ha H 1_2%’ P1 _ 23, _
Uy Com T ax
PotluoCpmg " (HpotwoCpmg)(1 = o)
. (1 —€)pscps H AH wi(z,t) + wa(z, 1)
T = — ) A110. t) = w t ) l‘at = x ’
P ATt) = a0, vlet) = pl0) )
I
T H)2

(2)
where z is the normalized space variable, ¢(z) accounts for the type of mono-
liths: ¢(z) = 0 in the inert monoliths (z < &) and ¢(z) = 1 in the catalytic
monoliths (z > &). The boundary conditions are:

at £ = 0:

w1 (.’,E, t) = wlo(t)

T (2) = T(, ¢) — 29T@D _pp



at x = 1:

\

Qj
1+ N'Y(T t)—Ty) = (T t) =T Qo
(14 N)(Tiale, 1) = To) = ol T (1) = To) +
B a 0T,(x,1)
Tgl(l',t) = Ts(xat) - FHT
) 1 0T, (a,1)
ng(.T,t) == Ts(xat) + FHT

awi (z,t) = wa(zx, t)

Initial conditions are at t = 0:

Tgl(.’E,t) = ng(i,t) = Ts(.’E,t) = T()

(5)

In the above equations, T is the ambient temperature and the feed tempera-

ture, T} is the solid temperature and T};; and 7}, are upstream and downstream

gas temperatures respectively. Heat loss, in terms of transfer units N’, dilution

rate (1 — «) (percentage of fresh air in downstream flow), and heating power

@, (in watts) are accounted for in the boundary condition at z = 1.

The first term in the left hand side of (1) involves an effective axial heat

conductivity given by:

4

1 +1+C¥2 )\eff

P.. 2P, 6
0 0 PoUyoCpmgH [2(1 — Z)

14 a? (pouvocpmg)2
2 ha,

Aeff = Aoz T

\

When o =1 (i.e. there is no dilution), A. ;s reduces to the well-known estimate

of [39] as used by Nieken et al. [31]. Finally, this model has been shown to

experimentally match the process behaviour during open-loop control and

identification [16].



2.8 Spatial discretization of the model

The discretization techniques used to solve the model [16] is based on the fi-
nite difference method. The discretization points are denoted by z;. In order to
obtain a satisfactory temperature profile, simulation requires 201 discretiza-
tion points. (Ty(xzo,1), ..., Ts(x100,t)) and (Ts(x101,t), - -, Ts(z201,t)) are the
respective discretized temperature profile in the inert monolith and the cat-
alytic monolith. The temperature T;(xo,t) and Ts(xo01,t) are given by the

boundary conditions (3) and (4). In the sequel, we will use the following no-

tation:
Ty(1,1) X (t)
Xt) = : =
T (2100, 1) Xioo(t)
Xz(t) = TS (.’L’101, t)
T (33102; t) X% (t)
T (2200, t) X3(2)

With this notation, the candidate discretized system used for the control takes

the following form:
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4

X1(t) = AN a(t)XH(t) + GH(at) X?(t) + d*(a(t)) To(?)
X2(t) = A(a(t)) X*(t) + GR(e(t)) Xiog (£) + G3((t)) X3 (2)
) +d2(u(t)) AT,q(t) (7)

X3(t) = A%(a(t)) X3(t) + G* () X (1) + B (a(t))Q5 (1)

| +di(a(t)) ATaa(?) + d3(a(t)) To(?)

A" B', G and d! expressions are given in the appendix.

3 High-gain observer

In practice, a model-based control or a supervision strategy may require the
knowledge of the temperature profile inside the reactor. One way to obtain
such unknown state consists in using physical sensors. However, in many cases,
due to cost consideration and physical constraints, the number and types of
sensors may be very limited. To avoid this problem, one solution is to design
an observer. This method combines a priori knowledge about a physical sys-
tem (nominal model) with experimental data (some on-line measurements)
to provide an on-line estimation of the state and/or the model parameters.
In our case, the LQR requires the temperature profile and the MPC strategy
is based on the inlet concentration. The observer described and experimen-
tally validated by Edouard and al [16] permits to estimate on-line both the
inlet concentration and the temperature profile. The pollutant concentration
is considered here as an unknown disturbance to estimate. Edouard et al [16]

assumes that AT,,(t) can be considered as the response of a second order

11



system. This assumption is not a strong one since any physical signal can be
approximated by a response of such a second order filter. The model used
to design this observer is therefore a combination of the model (7) and the

following second order system:

d

S AT () = C(t

ZATalt) = (1) .
d

Z¢) =)

where v(t) is an unknown and bounded signal. The observer synthesis derives
from the high-gain techniques (see for instance [5,11,20,18]). Only three tem-
perature measurements are available for the observer design: the temperature
at the inlet of the inert monolith (75(xy,t)), the temperature at the inlet of
the catalytic monolith (75(z101,t)) and the temperature at the outlet of the
catalytic monolith (T (z200,1)).

In the sequel, we use the following notations for the estimate state X(t):

X (t) Xa(t) X&)
X(t) = X2(1) | where X!(t) = : X2(t) = X2,(1) and
X2(t) Xeroo(t) X&(t)
Xa ()
Xo(t) =
Koo (t)

12



X2(t)

are respectively the state estimates of the vector states X!(¢), AT,a(t)
[

¢(®)
and X3(t). AT,4(t) and ((t) are given in (8).

The output measurements are denoted by y1(t) = X{(t) = Ts(x1,1), yo(t) =
X2(t) = Ty(z101,t) and y3(t) = X3 (t) = Ts(wa00,t). With these notations, the

high-gain observer takes the following structure:

4

X3 (1) = A (a(t)) X2 () + GH(al))y*(2)

+d' (1)) To () + L (1)) (Xer — w1 (t))

X2(t) = A2(a(t)) X2(8) + G () X oo (1) + G5 (1) XE (1)
+L2(a(t)) (X2 — v2(1))

X2 (1) = A% (1)) X2(2) + G*(al(t) )a(t)

\

The matrices A', A2 and A® and the observer gains L',L? and L? are given in
the appendix. This observer has been experimentally validated [16]: it gives a
satisfactory estimation of both the temperature profile and inlet concentration
(even when very stochastic variations (see Figure 2) occur). This observer is
used here in both control strategies: to estimate the state required by the LQR

and to estimate the input disturbance AT,4(t) required in the MPC.

13
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4 Model based control strategies of the RFR

According to the operating conditions, various problematic behaviours can

take place during the operation of the RFR:

e When the feed of pollutant concentration is too rich, the release of heat due
to the reaction produces thermal overheating that deteriorates the catalysts.
The temperature inside the reactor has therefore to be maintained under
the maximum temperature specified as 600K [35].

e If the feed of pollutant concentration is too lean, low heat released during the
reaction leads to the extinction of the reactor. The temperature inside the
reactor has therefore to be maintained over the lowest temperature specified
as 450K [35].

e Ideal operation of such reactor is finally an operation without control. This
is possible when the feed concentration is such that the reaction temperature
falls within an envelope outlined by the two previous boundary tempera-
tures. This ideal case is called autothermal operation and no control action

is required.

Except for the autothermal case, the controller to design has to compensate
the influence of the input disturbance AT, while preserving the stability of the
system. On the other side, most of the reaction takes place at the inlet of the
catalytic monoliths and is instantaneous [30,31,35]. Therefore, instead of the
full temperature profile, only 7(z101,%) has to be maintained between 450K
and 600K. Concerning the input disturbance, AT,,; varies between 0K and
30K in real industrial use. But in order to prevent any accident, worst cases

have to be evaluated. The equivalent concentration AT, is therefore assumed

14



to vary randomly between 0K and 115K (Figure 2) and if no control is applied
to the RFR, the hot-spot temperature can not be maintained between both
temperature limits (450K and 600K) (Figure 3). This clearly justifies the need

for closed-loop control.
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4.1 QOverview of RFR control

Different reactor configurations of RFR have been proposed to provide efficient
means of temperature control [31]. For rich feed, one can use cold gas injec-
tion, hot gas withdrawing, or heat recovery through internal heat exchangers
to suppress temperature run-away; while for lean feed, hot gas supply, or in-
ternal heating can be applied to prevent extinction [10]. Nieken and al [30]
demonstrated that structured packing with catalytic, less thermal conductive
inert part and more thermal conductive outer part is more effective to re-
duce the maximum temperature than hot gas withdrawal. It is also efficient
to prevent early extinction by ensuring an efficient heat exchange between feed
and effluent. The first complete study on RFR control has been written by
Budman et al. [6]. In this paper, a parametric study of the reactor allows char-
acterizing the operating use of the reactor with respect to two manipulated
variables: the coolant flow rate and the cycle time. Moreover, Budman et al.
developed two SISO control approaches (coolant flow rate is the manipulated
variable) in the case where temperature and concentration at the reactor in-
let where assumed to be constant input disturbances. First, a PID controller,
based on a local linear model, is given. Secondly, a feed forward controller
is given but it is not usable during transient conditions and it is not robust
with respect to modelling errors. [9] gives some guidelines for the control of
such process accounting for auto thermal and overheating phenomena. Re-
cently, to avoid extinction and overheating, [24] proposed a simple switching
control law strategy by on-line tuning of the switching time. In our previous
work [12], SISO control strategy was developed to minimize the consumption

of electrical power accounting for the constraint dealing with limitation of

17



pollutant released at the process outlet. Limitation of this strategy was con-
cerned with the impossibilities to control overheating and to handle relatively

strong stochastic variations of the inlet concentration, which is addressed here.

4.2 LQR formulation

The above control strategies are each based on a linear model obtained from
the linearization of the nonlinear system (7) around a nominal steady state
that we will define below. Obviously, the choice of the steady state around
which the system is linearized is important for the control performance. Based
on this remark, the nominal steady states can be calculated by solving the
algebraic linear equation corresponding to (7) in which X? = 0. We proceed

as follows:

- At the lower limit, we take the following values: AT, = 0K, o® = 0.95,
T(x101) = 450K. We deduce Q9 = 500W and the steady state profile

Z°(see Figure 4).

ZlO XIO
70 = 2 | = 20

VA X

Z30 X30

- Similarly, at the higher limit: AT}, = 115K, T (z101) = 600K, Q} = 0W.

We deduce o' = 0.75 and the corresponding steady state profile Z' (see

18



Figure 4). Z' = | yn | == | y=

Z31 X31

Both systems are summarized in the following fashion:

,

\

. . 1 . 1
AXL(t) = A () AXL(E) + aé()WZ%MwHT(OAXﬁQ a%()hzma
8d1
8( )|alT0( ) Aa
2 2( 4 2 aAQ() 24 2( 4 1 2( i 3
AXA(t) = A*(o") AXA(t) + 5o ——— g 27 Aa + G (") A Xy () + G5(a") AX (1)
2 2 2
+p%gﬂwzﬁﬁa+a%waZﬂhﬁﬁM()WAﬂJM%d%QAAﬂA#m)
. . 3 . 3
AX3(t) = A3(af) AX3(t) + a%(ﬁwﬁma+G%0AX%o &é(ﬁwwm
3 3
—i—aBa( )|MQ1A + B3« i)AQj 8da( )|azAT;dAa

L 9dy(@)

5 — | To () A + d3 () AAT 44(2)

Where AX7 = X7 — 77 with j = 1,2,3 and ¢ = 0 or 1. The above linearization

le’ Xlz'
is achieved around each steady state Z° = 72 | = | x2i | with,i=0,1.
Z3i X3z'
Both systems are summarized as:
AX () = A(a")AX (1) + Bl Aa(t) + BLAQ;(t) (11)
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Remark 4.1 A discussion often arises at this point: what is the need to de-
velop an accurate and complex nonlinear model (like here) if a linearized model
is finally used for the control synthesis ¢ It is known that the advantage is that
the on-line computational effort is less important, while the drawbacks are the
linearization errors. In the case of the RFR, the linearization errors around
the nominal steady state have been shown to be not very important: indeed,
the accurate nonlinear model (1-5) is a nonlinear model with respect to the
input, but a linear model with respect to the state. Therefore, errors due to the

linearization are very reasonable.

The LQR control aims binding the catalytic temperature in the optimal op-
erating conditions defined by the temperature envelope. Therefore, two cost
functions are considered, which allows diagonalizing the system. Indeed, it
seems natural to avoid both heating and cooling together. With this linear

system, the control strategy is defined by the two following cost functions:

- When the pollutant concentration is too low, the controller aims to tune
the internal heating power such that the temperature is kept over a lower
bound threshold. In the LQR stategy, this aims to minimize the following

cost:
TR AX0) + (a0 12)

- When the pollutant concentration is too high, the controller aims to tune

the fresh air dilution such that the temperature is kept below an upper

20



bound threshold. In the LQR strategy, this aims to minimize the following

cost:

| B AX2 @) + p(Aa()ar (13)

In both cases, the control obtained from the minimization of these cost func-
tions is a linear feedback of the form AQ;(t) = —F°AX or Aa(t) = —F'AX
with AX = X,(t)—Z" where (i = 0,1) and X,(¢) is the estimate state given by
the observer. The gains of the feedback matrix are obtained from the solution

of the classical algebraic Riccati equation:

4

FO = () (BY)"S°
SA(0?) + (A(@®))TS° + CTC = S°BY(3) 1 (BYTS" = 0

F' = (o)) (BY'S'

S'A(a") + (A(a))"S' + CTC — S'BL(ph) = (BI)TS' = 0

\

where C = [Cl e Cl()() 0101 . 0200] with [Cl . CIOO] = [0 . 0] and [0101 e 0200] =
[10...0].
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Fig. 4. LQR: Nominal temperature profiles in high and low temperature operations.
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4.8 MPC formulation

From a practical point of view, one of the drawbacks of the MPC is the com-
putational time aspect, especially when the model becomes more complex and
more accurate, like the model of the RFR model presented here. Indeed, the
model is intended to predict the future dynamic behaviour of the process out-
put over a finite prediction horizon and has to be solved during the on-line
constrained optimization problem resolution. The method used here to reduce
this computational time [13] is now reminded. The idea is to use two mod-
els on-line: the nonlinear parabolic PDE model (1-5) solved off-line combined
with a linearized time-varying PDE model (11) solved on-line during the opti-
mization task. The use of the IMC structure allows using less accurate (hence
less time consuming) finite dimensional approximation of the linearized time-
varying PDE model (11) hence introducing robustness with respect to model
approximation [14]. Indeed, for the model approximation, two tuning strate-
gies are possible for the number of nodes used in the finite difference method:
First possibility, the number of nodes is tuned to a “small” value (“small” with
respect to the large number of nodes to find an accurate approximation of the
nonlinear parabolic PDE system solution). In this case, less time is required
for the model resolution and more time can be spent for the optimization
task. But since the MPC formulation is an open loop predictive optimization
procedure, large errors due to the PDE model solution approximation used
in the optimization task may degrade closed-loop control results. The second
possibility for the tuning is to increase the number of nodes to find a more
accurate approximated solution of the PDE system. This leads to increase

the time needed to solve the model and to decrease the time dedicated to
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the optimization task resolution. The drawback is that the optimizer may not
have the time to find a solution during the sampling time. Clearly speaking,
a trade-off exists for this tuning: even if it leads to a loss of accuracy in open
loop input output behaviour, it allows reaching the closed-loop performances
specified while providing a less time-consuming resolution task [14].

Here, two types of constraints are handled: hard constraints are those who
should never be violated while soft constraints may sometimes be violated
[34]. Hard input constraints (magnitude and velocity constraints for the ma-
nipulated variables (MVs)) are handled through a transformation method: it
guarantees that the actions always respect these constraints. Soft output con-
straints (constraints on the controlled variables (CVs)) are accounted for in
an exterior penalty method [19]: this allows handling for unfeasibility issue
that main happened during the constrained optimization task resolution.

Finally, the control problem is formulated in the MPC framework as:

min J(Q]( ), a(k)) = (wq [M] + wa[2 a(k)— Cmax |2)

Q;(k)alk) @ max—Qj. min Gmax—Cmin

with constraints on MVs magnitude:

Qjomin < Qi(7) < Qjmax Vi € Jg" " ={k, k+hy—1}

Omin < @(j) < max  VJ € Jh” ! (15)
with 2 constraints on the CVs:

Ts.min < Ts(z101,7)  (with j € {k+ hpt, k+ hp{})

Ty(z101,7) < Tomax  (with j € {k + hpi, k + hp}})
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where k is the actual discrete time index, j is the discrete time index. The
tuning parameters are the horizons: hp! and hp{ (resp. hpb and hpg) are
the initial and future prediction horizons describing the lower (resp. upper)
temperature constraint whereas h, = maa;(h,p{ , h,pg). wg and w, are positive
weights. In the meantime, in order to decrease the computational burden,
the tuning of the control horizon is one. Even if it is true that this tuning
reduces strongly the degrees of freedom to solve the optimization problem, it
allows decreasing the computational time, which is an important issue here.
Indeed, the control horizon is the number of arguments that characterizes
the sequence of future control moves involved in the optimization task: the
closed-loop performances improve when the control horizon increases but at

the expense of increasing the computational burden [34].

5 Simulation results

51 LQR

By use of the observer, full states of the system can be estimated in real time,
which makes implementation of LQR possible. For the LQR control, we have:
-Aa(t) = —F'AX and AQ;(t) = —F°AX(t) with AX(t) = X.(t) — Z'(¢)
(where X,(t) is the estimated state).

Since the feedback gain can be determined off-line, the time used to compute
control actions online is negligible. The weights are tuned as follows: P =
Pl =1, P) =5 x 107" and P} = 500. Simulations results show that, in spite
of the steep changes in feed concentration (Figure 2), the temperature at the

inlet of catalytic zone is tightly controlled between the two limits (Figure 5).
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The LQR correctly tune both manipulated variables: indeed, between 500s and
1550s, the lean feed leads to decrease the temperature inside the reactor. LQR
tunes the internal heating (Figure 6) to a value needed to keep the temperature
above the extinction temperature. In the meantime, no dilution is taking place
(Figure 7). After 1550s, rich feed induces an increase of temperature inside the
reactor. LQR tunes the dilution rate (Figure 7) such that the temperature is
maintained below the maximum temperature (Figure 5). There is no heating
(Figure 6). At the end of the run, the average of electrical power Q; is 83.4W,

the average of dilution rate & is 0.894, whereas constraints are always satisfied.
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5.2 MPC

Simulation runs are now discussed for the use of the proposed MPC strategy.

They allow seeing different closed-loop behaviours according to:

e the tuning of the controller, i.e. the 2 initial receding horizons and the 2
final horizons,

e the use of the observer into the control loop.

5.2.1  Tuning of the controller

It is clear that the tuning of the controller parameters directly influences the
constrained optimization problem and therefore closed-loop control results.
Moreover, this constrained optimization problem uses the estimation of the
input disturbance (the adiabatic temperature rise AT,;) which has an evident
impact over the closed-loop performances (especially the constraints satisfac-
tion). Regarding the impact of the input disturbance over the optimization
task and the constraints satisfaction required, some guidelines for the tuning

of the controller parameters are first given in the table 1.

It clearly underlines that the tuning will be uneasy due to the impact of
the input disturbance over the closed-loop performances and due to the non
minimum phase behaviour of the temperature as well. Indeed, according to
the tuning of the manipulated variables, the temperature inside the reactor
may feature a non-minimum phase behaviour, as it can be seen on Figure 8: it
depicts the evolution in time of the sensitivity of the temperature with respect
to the dilution rate at two different locations in the reactor. The reason of this

non minimum phase behaviour is not clear for the moment. But one can see
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that when the dilution action is increased, two phenomena occur: first, as
expected, the action of dilution allows decreasing the temperature inside the
reactor (the sensitivity takes positive final values). In the meantime, the flow
rate inside the thermal monolith is decreased hence increasing heat exchange
between the gas and the solid part (the sensitivity takes negative values).
Therefore, before the expected influence of dilution action appears, dilution

action is acting as a heating action.
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Impact of AT,y during the opti-

mization task according to ....

Constraints satisfaction during the

optimization task according to ...

the tuning of
the initial horizon

prediction

If some constraints are currently
saturated, they may no more be sat-
isfied in the very close future due to
possible strong variations of ATy,.
Conclusion: the smallest initial pre-

diction horizon is required.

The cooling action creates a non-
minimum phase behaviour in the
temperature involved in output con-
straints. Therefore, initial predic-
tion horizon has to be tuned suf-
ficiently large such that this be-
haviour is not accounted for into
the controller, especially when con-
straints are saturated. Conclusion:
a sufficiently large initial prediction

horizon is required.

. the tuning of
the final horizon

prediction

Table 1

Since AT,q4 is used in the prediction
framework, is strongly stochastic
and has a large impact over closed-
loop performances, large prediction
horizons will forecast an uncertain
future. Conclusion: the smallest fi-

nal prediction horizon is required.

The dynamic of the temperature in-
volved in the output constraints is
relatively low and has to be ac-
counted for into the constrained
optimization problem. Conclusion:
a sufficiently large final prediction

horizon is required.

Guidelines for the tuning of the initial and final prediction horizons.
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Fig. 8. Time evolution of 2 distributed sensitivities of the temperature with respect

to the dilution rate.

31



5.2.2  Correct tuning of the controller

In run #778, the tuning of the controller parameter are the following one:
hpy =2, hpi =4, hpy = 1, hp; = 12 (16)

In this run, one assumes that the estimation of the input disturbance AT,
(Figure 2) is fed into the controller. This run shows that this controller’s
tuning allow to satisfy the constraints at any time (Figure 9), which is the
most important point required by the constrained optimization problem. One

can see 2 different time intervals:

e For 0 < t < 1300s, AT,4 is small (Figure 2) and extinction of the pro-
cess is avoided feeding electrical power into the reactor (Figure 10). In the
meantime, there is no cooling action (except a peak at the beginning) and
the maximum amount of gas is therefore treated (Figure 11) as expected in
these conditions.

e When ¢ > 1500s, AT,; becomes important and overheating of the process
is avoided (see the upper bound constraint on Figure 9) due to the correct
use of cooling action (Figure 11). The drawback is that the controller may
sometimes require both heating and cooling actions at the same time (Figure
10 and 11), which should not happen: optimization should be improved to

avoid this issue.
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Fig. 9. MPC, run #778: Hot spot temperature.
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Fig. 11. MPC, run #778: Dilution rate.
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5.2.8 Bad tuning of the controller

In the previous simulation, constraints were always satisfied. In the meantime,
cooling and heating action were sometimes acting at the same time, which
should not happened with the RFR. Therefore, in order to improve the tuning
of the control actions, the controller parameters were retuned as follow in run

#7187 accounting for the remarks made in table 1:
hpi =1, hpl =3, hpl, = 8,hpl =8 (17)

In this run, one assumes that the estimation of the input disturbance AT,
(Figure 2) is fed into the controller. The most important changes between
runs #787 and #778 is dealing with hp,. Its tuning allows accounting more
correctly for the temperature’s NMP behaviour: both cooling and heating
are not acting at the same time after 1500s (Figure 13 and 14). The NMP
behaviour is much less influencing the optimization task. But the drawback
of such tuning is evident over the constraints (Figure 12): as predicted in
table 1, the temperature is going beyond the maximum threshold due to the
strong impact of AT,,; and since near future time is no more accounted for
into the constrained optimization task. Therefore, the controller reacts only

after constraint’s violation.
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5.2.4  Comparison of the two previous tunings of the controller

Finally, even if the rules given in table 1 are very important to correctly tune
the controller, the MPC tuning is clearly an uneasy task. For such process,

the MPC may be tuned according to two different strategies:

e run #787: the output constraints may not be satisfied at any time (soft
constraints): this leads the controller to a correct decoupling of the two
actions while the output constraints are not always satisfied.

e run #778: the output constraints have to be satisfied at any time (hard
constraints): this leads the controller to tune both actions such that the
output constraints are always satisfied while the two actions may sometimes

act at the same time.

Here, run #778, even if leading to less interesting results than run #787 in
term on control actions, features the best controller tuning for this constrained
control problem which is very sensitive with respect to the stochastic input
disturbance AT,;. At the end of the run #778, overall optimization is inter-

esting: the average of electrical power Q; is 274.6WW, the average of dilution

rate & is 0.849, whereas constraints are always satisfied.

5.2.5 Need for the observer

Previous runs are assuming that the measure of the stochastic input distur-
bance AT,, is available. One present here results obtained in run #798, which
is similar to run #778, but where no estimation of AT, is used by the con-
troller. It clearly shows the strong need for the use of the observer since both

output constraints are not always satisfied (Figure 15). This also clearly under-
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lines, as expected, the strong impact of the stochastic input disturbance over
closed-loop control results and the difficulty to handle it in the optimization

task.
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5.8  Comparison between LQR and MPC results

With both control strategies, the temperature can be maintained into the
specified temperature envelope, in spite of large input disturbance due to the
feed concentration. Concerning the optimization performances, LQR leads to
better results than MPC: Q; = 83.4W and & = 0.894 for LQR, Q; = 274.6W
and o = 0.849 for MPC. LQR is therefore more interesting since it requires
less heating action while treating more gas. This difference is mostly due to
the impact of the stochastic variations of the input disturbance over MPC.
Indeed, the estimation of the disturbance AT,, is directly used in the MPC,
where it is assumed constant in the future. This forces the MPC to over eval-
uate the need for heating and cooling. In the meantime, such assumption is
not required by the LQR which makes it more interesting for control purpose,
even if the estimation of AT, is not directly used by the LQR. In the mean-
time, a switching control structure is used for the LQR: therefore, heating and
cooling action are decoupled and can not acting at the same time as expected.
The drawback is that it introduces a severe nonlinearity for stability anal-
ysis. Concerning the MPC approach, most of the time, cooling and heating
are not acting at the same time. But due to the large impact of the input
disturbance, due to the non minimum phase behaviour of the process, due to
the prediction aspect and due to the uneasy task of horizons tuning, heat-
ing and cooling actions may be sometimes required at the same time. This is
clearly an unexpected behaviour which degrades the closed-loop performance.
In the meantime, the proposed MPC approach is a general framework for mul-
tivariable control problem whereas the LQR assumes decoupling. Moreover,

constraints are explicitly accounted for in the MPC formulation whereas they
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are handled in a logical decision level in the LQR.

6 Conclusion

This paper is dealing with the performances comparison of two multivariable
observer based controllers of a catalytic RFR used to decrease noxious VOC
amount released in the atmosphere. The complexity of this process includes
distributed aspect, nonlinear dynamic behaviour and periodic reversing of the
circulation of gas. Until now, very few papers have dealt with the control of
such process, especially the multivariable optimal control. In this paper, we
compare a LQR and a MPC both based on a high-gain observer. The new key
control issue tackled here is to confine the hot spot temperature within two
temperature limits, in order to ensure complete conversion of the pollutant
and to prevent catalyst overheating, while optimizing the control actions. In
spite of a large input disturbance due to the stochastic variations of the feed
concentration, both observer based controllers are very robust since the tem-
perature can be maintained inside the specified temperature envelope. The
controlled RFR may therefore be used under various operating conditions,
which is very interesting for the industrial use. Since the LQR directly uses
the state estimation (whereas the MPC directly uses the input disturbance es-
timation), the large input disturbance has less impact over LQR performances
than MPC performances. Therefore, the LQR leads to a better optimal opera-
tion of the RFR than MPC: less heating action is required while treating more
gas. In the meantime, LQR strategy is based on two decoupled optimization
tasks and a logical decision level whereas MPC is based on a general multi-

variable optimization task where constraints are explicitly accounted for. This
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makes MPC more suitable for general multivariable control problems. It is also

shown how the MPC tuning is an uneasy task due to the process behaviour,

the optimization problem and the impact of the input disturbance.
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7 Appendix

7.1 Matrices expression

Al(t) =

A3(t) =

d*(t) =

di(t) =

(47 (t) aq (t)
as (t) Qo (t)

0

Qo (t) a1 (t)
as (t) a9 (t)

by ()

Paw(ﬂhoo)
T

, d*(t)

0

al(t)

al(t)

as (t) a9 (t)

as (t) as (t)

ai (t)

aq (t)

= r(t), with r(t) = 2 9‘”(:”1"1),
0
0
, d3(t)
ba(t)
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0
Gi(t) = , GH(t) = asc(t), G5(t) = a1 (?)
aq (t)
as (t)
0
0
G3(t) = B3(t) =
bs(t)
0

The coefficients a;,a;. and b; are given by:

0= 41 O ol 2O
aa(t) = al0) + 1) s —

0071 T
as(t) = aalt) + an () o

(1; N+ Pgmi " Bz, _Do‘(t)
and ag.(t) = (dz1 + 0x9) 52?({513532 + 5:1(5?’ az.(t) = (5;3(1(%)2) _ 53(5?’
L+ P95.’L'1 (1 * Nl)(l + Pg&l‘g) + Pgdxg a O!(t)
1 1
and bs3(t) = a4 y
PoUV, CpmgS ) 1 a’(t)
(1+N)(1+ Prozs) T Brsn, a(t)

with D(®) = | —;(t)’ A lt) = = ;wa 1 ;;;T(t)

and 0z = 6x; = 8.3651.107% for k = 1 (inert monolith),dzy = dz

1.5513.1073) for k = 2 (catalytic monolith).
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7.2 Gain expression

L'(t) = ar ()01 K1, L2(t) = A(t)Oo k2 and L3(t) = as(t)03K3J

Ki
where, K! =
Ky
square matrices:
Kl 1 0
Kl 0
A =
K}y 0
Kip 0

K? =

K}
and K3 =
Ko
K210
A =1K201
K200

are such that the
K1
K2 0

and A° =
Kg’g 0
K foo 0

are stable (it means that the real part of the eigenvalues of the A"s are nega-

tive).

©; are given by: O

Q 0
0 02
0

a®2

0 QlOO
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= OQQ 0 and
0003




Q 0 ... ... 0
0 02
O3 = | : : where 2 > 0 is the parameter of calibra-
0
0 ... ... 0o Q%

tion of the observer, in our case {2 = 3.

0...001

1 0 0 0r(t) 0 0...010

Finally, A(t) = 01/r(t) 0 A?=1g o 1|andJ =10 . 1 00

0 0 1/r(t) 00 0

10 000

49



Notation

a. = Specific solid-fluid surface area [m™!]

cps =Solid heat capacity [Jkg~'.K™!]

¢pmg = Fluid heat capacity [J.kg™'. K]

H =Total length of monolith [m]

h = Solid-fluid heat transfer coefficient [W.m 2. K ]
kp =Solid-fluid mass transfer coefficient [m.s™!]

M = VOC molecular weight [kg.mol™!]

N'= Number of transfer units for heat loss [-]

P = Peclet number for solid-fluid heat transfer [-|
P,, = Axial Peclet number for heat conduction [-]
Py = P corrected for the finite frequency [-]

(; =External power supply [IV]

S = Total cross-section of the monolith [m?]

Ty, T4 = Gas temperature in the upstream, downstream monolith [K]
To = Inlet and external temperature [K]

Tnee = Maximum solid temperature in the RFR, [K]
T, or T = Solid temperature [K]

t = Time 5]

u,0 = Superficial gas velocity in the reference state [m.s™!]
z = Reduced abscissa, 2z/H[—]

z = Abscissa [m]

a = fraction of feed flow rate -]

AH = Reaction enthalpy [J.mol ']

AT,q = Adiabatic temperature rise [K]
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¢ = fraction of open frontal area [-|

¢(z) = Characteristic function of the catalytic monolith [-]

¥(z) = p()(wi + wa)/(2w10)[-]

p = Fluid density [kg.m™3]

po = Gas density in the reference state [kg.m™°]

ps = Solid density [kg.m ™3]

7 = Heat storage time constant [s]

§ = Period of flow reversal [s]

Wisu, Wasy = VOC mass fraction of solid phase in the upstream,downstream
monoliths [-]

wy,wy = VOC mass fraction in the upstream, downstream monoliths [-]

wip = VOC mass fraction in the feed [-]

¢ = Reduced abscissa of the boundary between the inert and catalytic mono-
liths

& = & corrected for the finite frequency [-]

X = State vector

X, = Estimated state vector

y = Filtered temperature measurements [K]

(2 = Calibration parameter of the observer [-|
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