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A Digital Synthesis Model of Double-Reed
Wind Instruments

Ph. Guillemain

We present a real-time synthesis model for double-reed wind instruments based on a nonlinear physical model. One specificity of double-
reed instruments, namely, the presence of a confined air jet in the embouchure, for which a physical model has been proposed recently, is
included in the synthesis model. The synthesis procedure involves the use of the physical variables via a digital scheme giving the
impedance relationship between pressure and flow in the time domain. Comparisons are made between the behavior of the model with
and without the confined air jet in the case of a simple cylindrical bore and that of a more realistic bore, the geometry of which is an
approximation of an oboe bore.

Keywords and phrases: double-reed, synthesis, impedance.

1. INTRODUCTION

The simulation of woodwind instrument sounds has been in-
vestigated for many years since the pioneer studies by Schu-
macher [1] on the clarinet, which did not focus on digital
sound synthesis. Real-time-oriented techniques, such as the
famous digital waveguide method (see, e.g., Smith [2] and
Välimäki [3]) and wave digital models [4] have been intro-
duced in order to obtain efficient digital descriptions of res-
onators in terms of incoming and outgoing waves, and used
to simulate various wind instruments.

The resonator of a clarinet can be said to be approxi-
mately cylindrical as a first approximation, and its embou-
chure is large enough to be compatible with simple airflow
models. In double-reed instruments, such as the oboe, the
resonator is not cylindrical but conical and the size of the air
jet is comparable to that of the embouchure. In this case, the
dissipation of the air jet is no longer free, and the jet remains
confined in the embouchure, giving rise to additional aero-
dynamic losses.

Here, we describe a real-time digital synthesis model for
double-reed instruments based on one hand on a recent
study by Vergez et al. [5], in which the formation of the con-
fined air jet in the embouchure is taken into account, and on
the other hand on an extension of the method presented in
[6] for synthesizing the clarinet. This method avoids the need
for the incoming and outgoing wave decompositions, since it
deals only with the relationship between the impedance vari-
ables, which makes it easy to transpose the physical model to
a synthesis model.

The physical model is first summarized in Section 2. In
order to obtain the synthesis model, a suitable form of the
flow model is then proposed, a dimensionless version is writ-
ten and the similarities with single-reed models (see, e.g.,
[7]) are pointed out. The resonator model is obtained by as-
sociating several elementary impedances, and is described in
terms of the acoustic pressure and flow.

Section 3 presents the digital synthesis model, which re-
quires first discrete-time equivalents of the reed displacement
and the impedance relations. The explicit scheme solving the
nonlinear model, which is similar to that proposed in [6], is
then briefly summarized.

In Section 4, the synthesis model is used to investigate the
effects of the changes in the nonlinear characteristics induced
by the confined air jet.

2. PHYSICAL MODEL

The main physical components of the nonlinear synthesis
model are as follows.

(i) The linear oscillator modeling the first mode of reeds
vibration.

(ii) The nonlinear characteristics relating the flow to the
pressure and to the reed displacement at the mouth-
piece.

(iii) The impedance equation linking pressure and flow.

Figure 1 shows a highly simplified embouchure model for an
oboe and the corresponding physical variables described in
Sections 2.1 and 2.2.
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Figure 1: Embouchure model and physical variables.

2.1. Reed model

Although this paper focuses on the simulation of double-
reed instruments, oboe experiments have shown that the dis-
placements of the two reeds are symmetrical [5, 8]. In this
case, a classical single-mode model seems to suffice to de-
scribe the variations in the reed opening. The opening is
based on the relative displacement y(t) of the two reeds when
a difference in acoustic pressure occurs between the mouth
pressure pm and the acoustic pressure p j(t) of the air jet
formed in the reed channel. If we denote the resonance fre-
quency, damping coefficient, and mass of the reeds ωr , qr and
µr , respectively, the relative displacement satisfies the equa-
tion

d2y(t)

dt2
+ ωrqr

dy(t)

dt
+ ω2

r y(t) = −
pm − p j(t)

µr
. (1)

Based on the reed displacement, the opening of the reed
channel denoted Si(t) is expressed by

Si(t) = Θ
(

y(t) + H
)

×w
(

y(t) + H
)

, (2)

wherew denotes the width of the reed channel,H denotes the
distance between the two reeds at rest (y(t) and pm = 0) and
Θ is the Heaviside function, the role of which is to keep the
opening of the reeds positive by canceling it when y(t) +H <
0.

2.2. Nonlinear characteristics

2.2.1. Physical bases

In the case of the clarinet or saxophone, it is generally rec-
ognized that the acoustic pressure pr(t) and volume velocity
vr(t) at the entrance of the resonator are equal to the pressure
p j(t) and volume velocity v j(t) of the air jet in the reed chan-
nel (see, e.g., [9]). In oboe-like instruments, the smallness of
the reed channel leads to the formation of a confined air jet.
According to a recent hypothesis [5], pr(t) is no longer equal
in this case to p j(t), but these quantities are related as follows

p j(t) = pr(t) +
1

2
ρΨ

q(t)2

S2
ra

, (3)

where Ψ is taken to be a constant related to the ratio between
the cross section of the jet and the cross section at the en-
trance of the resonator, q(t) is the volume flow, and ρ is the
mean air density. In what follows, we will assume that the
area Sra, corresponding to the cross section of the reed chan-
nel at the point where the flow is spread over the whole cross
section, is equal to the area Sr at the entrance of the resonator.

The relationship between the mouth pressure pm and the
pressure of the air jet p j(t) and the velocity of the air jet v j(t)
and the volume flow q(t), classically used when dealing with
single-reed instruments, is based on the stationary Bernoulli
equation rather than on the Backus model (see, e.g., [10] for
justification and comparisons with measurements). This re-
lationship, which is still valid here, is

pm = p j(t) +
1

2
ρv j(t)

2,

q(t) = S j(t)v j(t) = αSi(t)v j(t),

(4)

where α, which is assumed to be constant, is the ratio be-
tween the cross section of the air jet S j(t) and the reed open-
ing Si(t).

It should be mentioned that the aim of this paper is to
propose a digital sound synthesis model that takes the dis-
sipation of the air jet in the reed channel into account. For
a detailed physical description of this phenomenon, readers
can consult [5], from which the notation used here was bor-
rowed.

2.2.2. Flow model

In the framework of the digital synthesis model on which
this paper focuses, it is necessary to express the volume flow
q(t) as a function of the difference between the mouth pres-
sure pm and the pressure at the entrance of the resonator
pr(t).

From (4), we obtain

v j(t)
2 = 2

ρ

(

pm − p j(t)
)

, (5)

q2(t) = α2Si(t)
2v j(t)

2. (6)

Substituting the value of p j(t) given by (3) into (5) gives

v j(t)
2 = 2

ρ

(

pm − pr(t)
)

−Ψ
q(t)2

S2
r

. (7)

Using (6), this gives

q2(t) = α2Si(t)
2

(

2

ρ

(

pm − pr(t)
)

−Ψ
q(t)2

S2
r

)

, (8)

from which we obtain the expression for the volume flow,
namely, the nonlinear characteristics

q(t) = sign
(

pm − pr(t)
)

× αSi(t)
√

1 + Ψα2Si(t)2/S2
r

√

2

ρ

∣

∣pm − pr(t)
∣

∣.
(9)

2.3. Dimensionless model

The reed displacement and the nonlinear characteristics are
converted into the dimensionless equations used in the syn-
thesis model. For this purpose, we first take the reed displace-
ment equation and replace the air jet pressure p j(t) by the
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expression involving the variables q(t) and pr(t) (equation
(3)),

d2y(t)

dt2
+ ωrqr

dy(t)

dt
+ ω2

r y(t) = − pm − pr(t)

µr
+ ρΨ

q(t)2

2µrS2
r

.

(10)

On similar lines to what has been done in the case of single-
reed instruments [11], y(t) is normalized with respect to the
static beating-reed pressure pM defined by pM = Hω2

rµr .
We denote by γ the ratio, γ = pm/pM and replace y(t) by
x(t), where the dimensionless reed displacement is defined
by x(t) = y(t)/H + γ.

With these notations, (10) becomes

1

ω2
r

d2x(t)

dt2
+

qr
ωr

dx(t)

dt
+ x(t) = pr(t)

pM
+

ρΨ

2pM

q(t)2

S2
r

(11)

and the reed opening is expressed by

Si(t) = Θ
(

1− γ + x(t)
)

×wH
(

1− γ + x(t)
)

. (12)

Likewise, we use the dimensionless acoustic pressure
pe(t) and the dimensionless acoustic flow ue(t) defined by

pe(t) =
pr(t)

pM
, ue(t) =

ρc

Sr

q(t)

pM
, (13)

where c is the speed of the sound.
With these notations, the reed displacement and the non-

linear characteristics are finally rewritten as follows,

1

ω2
r

d2x(t)

dt2
+

qr
ωr

dx(t)

dt
+ x(t) = pe(t) + Ψβuue(t)

2 (14)

and using (9) and (12),

ue(t) = Θ
(

1− γ + x(t)
)

sign
(

γ − pe(t)
)

× ζ
(

1− γ + x(t)
)

√

1 + Ψβx
(

1− γ + x(t)
)2

√

∣

∣γ − pe(t)
∣

∣

= F
(

x(t), pe(t)
)

,

(15)

where ζ , βx and βu are defined by

ζ =
√
H

√

2ρ

µr

cαw

Srωr
, βx = H2 α

2w2

S2
r

, βu = H
ω2
rµr

2ρc2
.

(16)

This dimensionless model is comparable to the model
described, for example, in [7, 9] in the case of single-reed in-
struments, where the dimensionless acoustic pressure pe(t),
the dimensionless acoustic flow ue(t), and the dimensionless
reed displacement x(t) are linked by the relations

1

ω2
r

d2x(t)

dt2
+

qr
ωr

dx(t)

dt
+ x(t) = pe(t),

ue(t) = Θ
(

1− γ + x(t)
)

sign
(

γ − pe(t)
)

×ζ
(

1− γ + x(t)
)

√

∣

∣γ − pe(t)
∣

∣.

(17)

In addition to the parameter ζ , two other parameters βx
and βu depend on the height H of the reed channel at rest.
Although, for the sake of clarity in the notations, the vari-
able t has been omitted, γ, ζ , βx, and βu are functions of time
(but slowly varying functions compared to the other vari-
ables). Taking the difference between the jet pressure and the
resonator pressure into account results in a flow which is no
longer proportional to the reed displacement, and a reed dis-
placement which is no longer linked to pe(t) in an ordinary
linear differential equation.

2.4. Resonator model

We now consider the simplified resonator of an oboe-like in-
strument. It is described as a truncated, divergent, linear con-
ical bore connected to a mouthpiece including the backbore
to which the reeds are attached, and an additional bore, the
volume of which corresponds to the volume of the missing
part of the cone. This model is identical to that summarized
in [12].

2.4.1. Cylindrical bore

The dimensionless input impedance of a cylindrical bore
is first expressed. By assuming that the radius of the bore
is large in comparison with the boundary layers thick-
nesses, the classical Kirchhoff theory leads to the value of
the complex wavenumber for a plane wave k(ω) = ω/c −
(i3/2/2)ηcω1/2, where η is a constant depending on the radius
R of the bore η = (2/Rc3/2)(

√

lv + (cp/cv − 1)
√

lt). Typical val-
ues of the physical constants, in mKs units, are lv = 4.10−8,
lt = 5.6.10−8, Cp/Cv = 1.4 (see, e.g., [13]). The trans-
fer function of a cylindrical bore of infinite length between
x = 0 and x = L, which constitutes the propagation filter
associated with the Green formulation, including the prop-
agation delay, dispersion, and dissipation, is then given by
F(ω) = exp(−ik(ω)L).

Assuming that the radiation losses are negligible, the di-
mensionless input impedance of the cylindrical bore is clas-
sically expressed by

C(ω) = i tan
(

k(ω)L
)

. (18)

In this equation, C(ω) is the ratio between the Fourier
transforms Pe(ω) and Ue(ω) of the dimensionless variables
pe(t) and ue(t) defined by (13). The input admittance of the
cylindrical bore is denoted by C−1(ω).

A different formulation of the impedance relation of a
cylindrical bore, which is compatible with a time-domain
implementation, and was proposed in [6], is used and ex-
tended here. It consists in rewriting (18) as

C(ω) = 1

1 + exp
(

− 2ik(ω)L
) − exp

(

− 2ik(ω)L
)

1 + exp
(

− 2ik(ω)L
) . (19)

Figure 2 shows the interpretation of (19) in terms of
looped propagation filters. The transfer function of this
model corresponds directly to the dimensionless input
impedance of a cylindrical bore. It is the sum of two parts.
The upper part corresponds to the first term of (19) and the
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Figure 2: Impedance model of a cylindrical bore.

ue(t) pe(t)xe
c

D

C−1(ω) −1

Figure 3: Impedance model of a conical bore.

lower part corresponds to the second term. The filter having
the transfer function −F(ω)2 = − exp(−2ik(ω)L) stands for
the back and forth path of the dimensionless pressure waves,
with a sign change at the open end of the bore.

Although k(ω) includes both dissipation and dispersion,
the dispersion is small (e.g., in the case of a cylindrical bore
with a radius of 7 mm, η = 1.34.10−5), and the peaks of the
input impedance of a cylindrical bore can be said to be nearly
harmonic. In particular, this intrinsic dispersion can be ne-
glected, unlike the dispersion introduced by the geometry of
the bore (e.g., the input impedance of a truncated conical
bore cannot be assumed to be harmonic).

2.4.2. Conical bore

From the input impedance of the cylindrical bore, the di-
mensionless input impedance of the truncated, divergent,
conical bore can be expressed as a parallel combination of
a cylindrical bore and an “air” bore,

S2(ω) = 1

1/
(

iωxe/c
)

+ 1/C(ω)
, (20)

where xe is the distance between the apex and the input. It is
expressed in terms of the angle θ of the cone and the input
radius R as xe = R/ sin(θ/2).

The parameter η involved in the definition of C(ω) in
(20), which depends on the radius and characterizes the
losses included in k(ω), is calculated by considering the ra-
dius of the cone at (5/12)L. This value was determined em-
pirically, by comparing the impedance given by (20) with an
input impedance of the same conical bore obtained with a se-
ries of elementary cylinders with different diameters (stepped
cone), using the transmission line theory.

Denoting by D the differentiation operator D(ω) = iω
and rewriting (20) in the form S2(ω) = D(ω)(xe/c)/(1 +
D(ω)(xe/c)C−1(ω)), we propose the equivalent scheme in
Figure 3.

2.4.3. Oboe-like bore

The complete bore is a conical bore combined with a mouth-
piece.

The mouthpiece consists of a combination of two bores,

(i) a short cylindrical bore with length L1, radius R1, sur-
face S1, and characteristic impedance Z1. This is the
backbore to which the reeds are attached. Its radius
is small in comparison with that of the main conical
bore, the characteristic impedance of which is denoted
Z2 = ρc/Sr , and

(ii) an additional short cylindrical bore with length L0, ra-
dius R0, surface S0, and characteristic impedance Z0.
Its radius is large in comparison with that of the back-
bore. This role serves to add a volume correspond-
ing to the truncated part of the complete cone. This
makes it possible to reduce the geometrical dispersion
responsible for inharmonic impedance peaks in the
combination backbore/conical bore.

The impedance C1(ω) of the short cylindrical backbore
is based on an approximation of i tan(k1(ω)L1) with small
values of k1(ω)L1. It takes the dissipation into account and
neglects the dispersion. Assuming that the radius R1 is large
in comparison with the boundary layers thicknesses, using
(19), C1(ω) is first approximated by

C1(ω) ≃ 1− exp
(

− η1c
√
ω/2L1

)

exp
(

− 2iωL1/c
)

1 + exp
(

− η1c
√
ω/2L1

)

exp
(

− 2iωL1/c
) , (21)

which, since L1 is small, is finally simplified as

C1(ω) ≃ 1− exp
(

− η1c
√
ω/2L1

)(

1− 2iωL1/c
)

1 + exp
(

− η1c
√
ω/2L1

) . (22)

By noting G(ω) = (1 − exp(−η1c
√
ω/2L1))/(1 +

exp(−η1c
√
ω/2L1)), and H(ω) = (L1/c)(1 − G(ω)), the

expression of C1(ω) reads

C1(ω) = G(ω) + iωH(ω). (23)

This approximation avoids the need for a second delay line
in the sampled formulation of the impedance.

The transmission line equation relates the acoustic pres-
sure pn and the flow un at the entrance of a cylindrical bore
(with characteristic impedance Zn, length Ln, and wavenum-
ber kn) to the acoustic pressure pn+1 and the flow un+1 at
the exit of a cylindrical bore. With dimensioned variables,
it reads

pn(ω) = cos
(

kn(ω)Ln
)

pn+1(ω) + iZn sin
(

kn(ω)Ln
)

un+1(ω),

un(ω) = i

Zn
sin
(

kn(ω)Ln
)

pn+1(ω) + cos
(

kn(ω)Ln
)

un+1(ω),

(24)

yielding

pn(ω)

un(ω)
= pn+1(ω)/un+1(ω) + iZn tan

(

kn(ω)Ln
)

1 + (i/Zn) tan
(

kn(ω)Ln
)(

pn+1(ω)/un+1(ω)
) . (25)

4



ue(t)

C1(ω)

S2(ω)

D(ω)

Z1

Z2

−V
ρc2

1

Z2

pe(t)

Figure 4: Impedance model of the simplified resonator.

Using the notations introduced in (20) and (23), the input
impedance of the combination backbore/main conical bore
reads

p1(ω)

u1(ω)
= Z2S2(ω) + Z1C1(ω)

1 +
(

Z2/Z1

)

S2(ω)C1(ω)
, (26)

which is simplified as p1(ω)/u1(ω) = Z2S2(ω) + Z1C1(ω),
since Z1 ≫ Z2.

In the same way, the input impedance of the whole bore
reads

p0(ω)

u0(ω)
= p1(ω)/u1(ω) + iZ0 tan

(

k0(ω)L0

)

1 + (i/Z0) tan
(

k0(ω)L0

)(

p1(ω)/u1(ω)
) , (27)

which, since Z0 ≪ Z1, is simplified as

p0(ω)

u0(ω)
= p1(ω)/u1(ω)

1 + (i/Z0) tan
(

k0(ω)L0

)(

p1(ω)/u1(ω)
) . (28)

Since L0 is small and the radius is large, the losses in-
cluded in k0(ω) can be neglected, and hence k0(ω) = ω/c
and tan(k0(ω)L0) = (ω/c)L0. Under these conditions, the in-
put impedance of the bore is given by

p0(ω)

u0(ω)
= 1

1/
(

p1(ω)/u1(ω)
)

+ iω/c
(

L0/Z0

)

= 1

1/
(

Z2S2(ω) + Z1C1(ω)
)

+ iω/c
(

L0S0/ρc
) .

(29)

If we take V to denote the volume of the short addi-
tional bore V = L0S0 and rewrite (29) with the dimension-
less variables Pe and Ue (Ue = Z2u0), the dimensionless in-
put impedance of the whole resonator relating the variables
Pe(ω) and Ue(ω) becomes

Ze(ω) = Pe(ω)

Ue(ω)

= 1/Z2

iωV/
(

ρc2
)

+ 1/
(

Z1C1(ω) + Z2S2(ω)
) .

(30)

After rearranging (30), we propose the equivalent scheme in
Figure 4.

It can be seen from (30) that the mouthpiece is equivalent
to a Helmholtz resonator consisting of a hemispherical cavity
with volume V and radius Rb such that V = (4/6)πR3

b, con-
nected to a short cylindrical bore with length L1 and radius
R1.

ue(t)

Ze(ω)

H, pm

(

ζ, βx , βu, γ
)

f

Reed
model

x(t)

pe(t)

pe(t)

Figure 5: Nonlinear synthesis model.

2.5. Summary of the physical model

The complete dimensionless physical model consists of three
equations,

1

ω2
r

d2x(t)

dt2
+

qr
ωr

dx(t)

dt
+ x(t) = pe(t) + Ψβuue(t)

2, (31)

ue(t) =
ζ
(

1− γ + x(t)
)

√

1 + Ψβx
(

1− γ + x(t)
)2

×Θ
(

1− γ + x(t)
)

sign
(

γ − pe(t)
)

×
√

∣

∣γ − pe(t)
∣

∣,

(32)

Pe(ω) = Ze(ω)Ue(ω). (33)

These equations enable us to introduce the reed and the
nonlinear characteristics in the form of two nonlinear loops,
as shown in Figure 5. The first loop relates the output pe to
the input ue of the resonator, as in the case of single-reed
instruments models. The second nonlinear loop corresponds
to the u2

e-dependent changes in x. The output of the model is
given by the three coupled variables pe, ue, and x. The control
parameters of the model are the length L of the main conical
bore and the parameters H(t) and pm(t) from which ζ(t),
βx(t), βu(t), and γ(t) are calculated.

In the context of sound synthesis, it is necessary to calcu-
late the external pressure. Here we consider only the propa-
gation within the main “cylindrical” part of the bore in (20).
Assuming again that the radiation impedance can be ne-
glected, the external pressure corresponds to the time deriva-
tive of the flow at the exit of the resonator pext(t) = dus(t)/dt.
Using the transmission line theory, one directly obtains

Us(ω) = exp
(

− ik(ω)L
)(

Pe(ω) + Ue(ω)
)

. (34)

From the perceptual point of view, the quantity
exp(−ik(ω)L) can be left aside, since it stands for the
losses corresponding to a single travel between the em-
bouchure and the open end. This simplification leads to the
following expression for the external pressure

pext(t) =
d

dt

(

pe(t) + ue(t)
)

. (35)

5



3. DISCRETE-TIME MODEL

In order to draw up the synthesis model, it is necessary to
use a discrete formulation in the time domain for the reed
displacement and the impedance models. The discretization
schemes used here are similar to those described in [6] for
the clarinet, and summarized in [12] for brass instruments
and saxophones.

3.1. Reed displacement

We take e(t) to denote the excitation of the reed e(t) =
pe(t) + Ψβuue(t)2. Using (31), the Fourier transform of the
ratio X(ω)/E(ω) can be readily written as

X(ω)

E(ω)
= ω2

r

ω2
r − ω2 + iωqrωr

. (36)

An inverse Fourier transform provides the impulse response
h(t) of the reed model

h(t) = 2ωr
√

4− q2
r

exp

(

− 1

2
ωrqr t

)

sin

(

1

2

√

4− q2
rωr t

)

. (37)

Equation (37) shows that h(t) satisfies h(0) = 0. This prop-
erty is most important in what follows. In addition, the range
of variations allowed for qr is ]0, 2[.

The discrete-time version of the impulse response uses
two centered numerical differentiation schemes which pro-
vide unbiased estimates of the first and second derivatives
when they are applied to sampled second-order polynomi-
als

iω ≃ fe
2

(

z − z−1
)

,

−ω2 ≃ f 2
e

(

z − 2 + z−1
)

,
(38)

where z = exp(iω̃), ω̃ = ω/ fe, and fe is the sampling fre-
quency.

With these approximations, the digital transfer function
of the reed is given by

X(z)

E(z)
=

z−1

f 2
e /ω2

r + feqr/
(

2ωr

)

−z−1
(

2 f 2
e /ω2

r−1
)

−z−2
(

feqr/
(

2ωr

)

−f 2
e /ω2

r

) ,

(39)

yielding a difference equation of the type

x(n) = b1ae(n− 1) + a1ax(n− 1) + a2ax(n− 2). (40)

This difference equation keeps the property h(0) = 0.
Figure 6 shows the frequency response of this approxi-

mated reed model (solid line) superimposed with the exact
one (dotted line).

This discrete reed model is stable under the condi-
tion ωr < fe

√

4− q2
r . Under this condition, the mod-

ulus of the poles of the transfer function is given by
√

(2 fe − ωrqr)/(2 fe + ωrqr) and is always smaller than 1. This
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Figure 6: Approximated (solid line) and exact (dotted line) reed
frequency response with parameter values fr = 2500 Hz, qr = 0.2,
and fe = 44.1 kHz.

stability condition makes this discretization scheme unsuit-
able for use at low sampling rates, but in practice, at the CD
quality sample rate, this problem does not arise for a reed res-
onance frequency of up to 5 kHz with a quality factor of up to
0.5. For a more detailed discussion of discretization schemes,
readers can consult, for example, [14].

The bilinear transformation does not provide a suitable
discretization scheme for the reed displacement. In this case,
the impulse response does not satisfy the property of the con-
tinuous model h(0) = 0.

3.2. Impedance

A time domain equivalent to the inverse Fourier transform
of impedance Ze(ω) given by (30) is now required. Here we
express pe(n) as a function of ue(n).

The losses in the cylindrical bore element contributing to
the impedance of the whole bore are modeled with a digi-
tal low-pass filter. This filter approximates the back and forth
losses described by F(ω)2 = exp(−2ik(ω)L) and neglects the
(small) dispersion. So that they can be adjusted to the ge-
ometry of the resonator, the coefficients of the filter are ex-
pressed analytically as functions of the physical parameters,
rather than using numerical approximations and minimiza-
tions. For this purpose, a one-pole filter is used,

F̃(ω̃) = b0 exp(−iω̃D)

1− a1 exp(−iω̃)
, (41)

where ω̃ = ω/ fe, and D = 2 fe(L/c) is the pure delay corre-
sponding to a back and forth path of the waves.

The parameters b0 and a1 are calculated so that
|F(ω)2|2 = |F̃(ω̃)|2 for two given values of ω, and are so-
lutions of the system

∣

∣

∣F
(

ω1

)2
∣

∣

∣

2
(

1 + a2
1 − 2a1 cos

(

ω̃1

))

= b2
0,

∣

∣

∣F
(

ω2

)2
∣

∣

∣

2
(

1 + a2
1 − 2a1 cos

(

ω̃2

))

= b2
0,

(42)
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where |F(ω(1,2))2|2 = exp(−2ηc
√

ω(1,2)/2L). The first value

ω1 is an approximation of the frequency of the first
impedance peak of the truncated conical bore given by ω1 =
c(12πL+9π2xe+16L)/(4L(4L+3πxe+4xe)), in order to ensure
a suitable height of the impedance peak at the fundamental
frequency. It is important to keep this feature to obtain a real-
istic digital simulation of the continuous dynamical system,
since the linear impedance is associated with the nonlinear
characteristics. This ensures that the decay time of the fun-
damental frequency of the approximated impulse response
of the impedance matches the exact value, which is impor-
tant in the case of fast changes in γ (e.g., attack transient).
The second value ω2 corresponds to the resonance frequency
of the Helmholz resonator ω2 = c

√

S1/(L1V).
The phase of F̃(ω̃) has a nonlinear part, which is given

by− arctan(a1 sin(ω̃)/(1− a1 cos(ω̃))). This part differs from
the nonlinear part of the phase of F(ω)2, which is given by
−ηc

√
ω/2L. Although these two quantities are different and

although the phase of F̃(ω̃) is determined by the choice of
a1, which is calculated from the modulus, it is worth not-
ing that in both cases, the dispersion is always very small,
has a negative value, and is monotonic up to the frequency
( fe/2π) arccos(a1). Consequently, in both cases, in the case of
a cylindrical bore, up to this frequency, the distance between
successive impedance peaks decreases as their rank increases,
ωn+1 − ωn < ωn − ωn−1.

Using (19) and (41), the impedance of the cylindrical
bore unit C(ω) is then expressed by

C(z) = 1− a1z−1 − b0z−D

1− a1z−1 + b0z−D
. (43)

Since L1 is small, the frequency-dependent functionG(ω)
involved in the definition of the impedance of the short back-
bore C1(ω) can be approximated by a constant, correspond-
ing to its value in ω2.

The bilinear transformation is used to discretize D = iω:
D(z) = 2 fe((z − 1)/(z + 1)).

The combination of all these parts according to (30)
yields the digital impedance of the whole bore in the form

Ze(z) =
∑k=4

k=0 bckz
−k +

∑k=3
k=0 bcDkz

−D−k

1−
∑k=4

k=1 ackz−k −
∑k=3

k=0 acDkz−D−k
, (44)

where the coefficients bck , ack , bcDk , and acDk are expressed an-
alytically as functions of the geometry of each part of the
bore. This leads directly to the difference equation, which can
be conveniently written in the form

pe(n) = bc0ue(n) + Ṽ , (45)

where Ṽ includes all the terms that do not depend on the
time sample n

Ṽ =
k=4
∑

k=1

bckue(n− k) +
k=3
∑

k=0

bcDkue(n−D − k)

+
k=4
∑

k=1

ack pe(n− k) +
k=3
∑

k=0

acDk pe(n−D − k).

(46)
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Figure 7: (a) represents approximated (solid lines) and exact (dot-
ted lines) input impedance, while (b) represents approximated
(solid lines) and exact (dotted lines) impulse response. Geometri-
cal parameters L = 0.46 m, R = 0.00216 m, θ = 2◦, L1 = 0.02 m,
R1 = 0.0015 m, and Rb = 0.006 m.

Figure 7 shows an oboe-like bore input impedance, both
approximated (solid line) and exact (dotted line) together
with the corresponding impulse responses.

3.3. Synthesis algorithm

The sampled expressions for the impulse responses of the
reed displacement and the impedance models are now used
to write the sampled equivalent of the system of (31), (32),
and (33):

x(n) = b1a

(

pe(n− 1) + Ψβuue(n− 1)2
)

+ a1ax(n− 1) + a2ax(n− 2),
(47)

pe(n) = bc0ue(n) + Ṽ , (48)

ue(n) =W sign
(

γ − pe(n)
)

√

∣

∣γ − pe(n)
∣

∣, (49)

where W is

W = Θ
(

1− γ + x(n)
)

× ζ
(

1− γ + x(n)
)

√

1 + Ψβx
(

1− γ + x(n)
)2
.

(50)

This system of equations is an implicit system, since ue(n)
has to be known in order to be able to compute pe(n) with the
impedance equation (48). Likewise, ue(n) is obtained from
the nonlinear equation (49) and requires pe(n) to be known.

Thanks to the specific reed discretization scheme pre-
sented in Section 3.1, calculating x(n) with (47) does not
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require pe(n) and ue(n) to be known. This makes it possi-
ble to solve this system explicitly, as shown in [6], thus doing
away with the need for schemes such as the K-method [15].

Since W is always positive, if one considers the two cases
γ− pe(n) ≥ 0 and γ− pe(n) < 0, successively, substituting the
expression for pe(n) from (48) into (49) eventually gives

ue(n) = 1

2
sign(γ − Ṽ)

×
(

− bc0W
2 + W

√

(

bc0W
)2

+ 4|γ − Ṽ |
)

.
(51)

The acoustic pressure and flow in the mouthpiece at sam-
pling time n are then finally obtained by the sequential cal-
culation of Ṽ with (46), x(n) with (47), W with (50), ue(n)
with (51), and pe(n) with (48).

The external pressure pext(n) is calculated using the dif-
ference between the sum of the internal pressure and the flow
at sampling time n and n− 1.

4. SIMULATIONS

The effects of introducing the confined air jet into the non-
linear characteristics are now studied in the case of two dif-
ferent bore geometries. In particular, we consider a cylindri-
cal resonator, the impedance peaks of which are odd har-
monics, and a resonator, the impedance of which contains
all the harmonics. We start by checking numerically the va-
lidity of the resolution scheme in the case of the cylindrical
bore. (Sound examples are available at http://omicron.cnrs-
mrs.fr/∼guillemain/eurasip.html.)

4.1. Cylindrical resonator

We first consider a cylindrical resonator, and make the pa-
rameter Ψ vary linearly from 0 to 4000 during the sound
synthesis procedure (1.5 seconds). The transient attack cor-
responds to an abrupt increase in γ at t = 0. During the de-
cay phase, starting at t = 1.3 seconds, γ decreases linearly
towards zero. Its steady-state value is γ = 0.56. The other
parameters are constant, ζ = 0.35, βx = 7.5.10−4, βu =
6.1.10−3. The reed parameters are ωr = 2π.3150 rad/second,
qr = 0.5. The resonator parameters are R = 0.0055 m,
L = 0.46 m.

Figure 8 shows superimposed curves, in the top figure,
the digital impedance of the bore is given in dotted lines,
and the ratio between the Fourier transforms of the sig-
nals pe(n) and ue(n) in solid lines; in the bottom figure, the
digital reed transfer function is given in dotted lines, and
the ratio of the Fourier transforms of the signals x(n) and
pe(n)+Ψ(n)βuue(n)2 (including attack and decay transients)
in solid lines.

As we can see, the curves are perfectly superimposed.
There is no need to check the nonlinear relation between
ue(n), pe(n), and x(n), which is satisfied by construction
since ue(n) is obtained explicitly as a function of the other
variables in (51). In the case of the oboe-like bore, the re-
sults obtained using the resolution scheme are equally accu-
rate.
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Figure 8: (a) represents impedance (dotted line) and ratio between
the spectra of pe and ue (solid line), while (b) represents reed trans-
fer (dotted line) and ratio of spectra between x and pe+Ψβuu2

e (solid
line).
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Figure 9: Spectrogram of the external pressure for a cylindrical bore
and a beating reed where γ = 0.56.

4.1.1. The case of the beating reed

The first example corresponds to a beating reed situation,
which is simulated by choosing a steady-state value of γ
greater than 0.5 (γ = 0.56).

Figure 9 shows the spectrogram (dB) of the external pres-
sure generated by the model. The values of the spectrogram
are coded with a grey-scale palette (small values are dark and
high values are bright). The bright horizontal lines corre-
spond to the harmonics of the external pressure.
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Figure 10: ue(n) versus pe(n): (a) t = 0.25 second, (b) t = 0.5
second.

−8 −6 −4 −2 0 2 4 6

×10−1

0

2

4

6

8

10

12

14

16
×10−2

(a)

−8 −6 −4 −2 0 2 4 6

×10−1

0

2

4

6

8

10

12

14
×10−2

(b)

Figure 11: ue(n) versus pe(n): (a) t = 0.75 second, (b) t = 1 second.

Increasing the value of Ψ mainly affects the pitch and
only slightly affects the amplitudes of the harmonics. In par-
ticular, at high values of Ψ, a small increase in Ψ results in a
strong decrease in the pitch.

A cancellation of the self-oscillation process can be ob-
served at around t = 1.2 seconds, due to the high value of Ψ,
since it occurs before γ starts decreasing.

Odd harmonics have a much higher level than even har-
monics as occuring in the case of the clarinet. Indeed, the
even harmonics originate mainly from the flow, which is
taken into account in the calculation of the external pressure.
However, it is worth noticing that the level of the second har-
monic increases with Ψ.

Figures 10 and 11 show the flow ue(n) versus the pressure
pe(n), obtained during a small number (32) of oscillation pe-
riods at around t = 0.25 seconds, t = 0.5 seconds, t = 0.75
seconds and t = 1 seconds. The existence of two different
paths, corresponding to the opening or closing of the reed, is
due to the inertia of the reed. This phenomenon is observed
also on single-reed instruments (see, e.g., [14]). A disconti-
nuity appears in the whole path because the reed is beating.
This cancels the opening (and hence the flow) while the pres-
sure is still varying.

The shape of the curve changes with respect to Ψ. This
shape is in agreement with the results presented in [5].
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Figure 12: Spectrogram of the external pressure for a cylindrical
bore and a nonbeating reed where γ = 0.498.
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Figure 13: ue(n) versus pe(n): (a) t = 0.25 second, (b) t = 0.5
second.

4.1.2. The case of the nonbeating reed

The second example corresponds to a nonbeating reed situa-
tion, which is obtained by choosing a steady-state value of γ
smaller than 0.5 (γ = 0.498).

Figure 12 shows the spectrogram of the external pressure
generated by the model. Increasing the value of Ψ results in
a sharp change in the level of the high harmonics at around
t = 0.4 seconds, a slight change in the pitch, and a cancella-
tion of the self-oscillation process at around t = 0.8 seconds,
corresponding to a smaller value of Ψ than that observed in
the case of the beating reed.

Figure 13 shows the flow ue(n) versus the pressure pe(n)
at around t = 0.25 seconds and t = 0.5 seconds. Since the
reed is no longer beating, the whole path remains continu-
ous. The changes in its shape with respect to Ψ are smaller
than in the case of the beating reed.

4.2. Oboe-like resonator

In order to compare the effects of the confined air jet with the
geometry of the bore, we now consider an oboe-like bore,
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Figure 14: (a) represents external acoustic pressure, and (b), (c)
represent attack and decay transients.

the input impedance, and geometric parameters of which
correspond to Figure 7. The other parameters have the same
values as in the case of the cylindrical resonator, and the
steady-state value of γ is γ = 0.4.

Figure 14 shows the pressure pext(t). Increasing the effect
of the air jet confinement with Ψ, and hence the aerodynam-
ical losses, results in a gradual decrease in the signal ampli-
tude. The change in the shape of the waveform with respect
to Ψ can be seen on the blowups corresponding to the attack
and decay transients.

Figure 15 shows the spectrogram of the external pressure
generated by the model.

Since the impedance includes all the harmonics (and not
only the odd ones as in the case of the cylindrical bore),
the output pressure also includes all the harmonics. This
makes for a considerable perceptual change in the timbre
in comparison with the cylindrical geometry. Since the in-
put impedance of the bore is not perfectly harmonic, it is
not possible to determine whether the “moving formants”
are caused by a change in the value of Ψ or by a “phasing
effect” resulting from the slight inharmonic nature of the
impedance.

Increasing the value of Ψ affects the amplitude of the har-
monics and slightly changes the pitch. In addition, as in the
case of the cylindrical bore with a nonbeating reed, a large
value of Ψ brings the self-oscillation process to an end.
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Figure 15: Spectrogram of the external pressure for an oboe-like
bore where γ = 0.4.
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Figure 16: ue(n) versus pe(n): (a) t = 0.25 second, (b) t = 0.5
second.
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Figure 17: ue(n) versus pe(n): (a) t = 0.75 second, (b) t = 1 second.

Figures 16 and 17 show the flow ue(n) versus the pressure
pe(n) at around t = 0.25 seconds, t = 0.5 seconds, t = 0.75
seconds, and t = 1 seconds. The shape and evolution with Ψ

of the nonlinear characteristics are similar to what occurs in
the case of a cylindrical bore with a beating reed.
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5. CONCLUSION

The synthesis model described in this paper includes the for-
mation of a confined air jet in the embouchure of double-
reed instruments. A dimensionless physical model, the form
of which is suitable for transposition to a digital synthesis
model, is proposed. The resonator is modeled using a time
domain equivalent of the input impedance and does not re-
quire the use of wave variables. This facilitates the model-
ing of the digital coupling between the bore, the reed and
the nonlinear characteristics, since all the components of the
model use the same physical variables. It is thus possible to
obtain an explicit resolution of the nonlinear coupled sys-
tem thanks to the specific discretization scheme of the reed
model. This is applicable to other self-oscillating wind in-
struments using the same flow model, but it still requires to
be compared with other methods.

This synthesis model was used in order to study the in-
fluence of the confined jet on the sound generated, by carry-
ing out a real-time implementation. Based on the results of
informal listening tests with an oboe player, the sound and
dynamics of the transients obtained are fairly realistic. The
simulations show that the shape of the resonator is the main
factor determining the timbre of the instrument in steady-
state parts, and that the confined jet plays a role at the con-
trol level of the model, since it increases the oscillation step
and therefore plays an important role mainly in the transient
parts.
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