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Cedex 2, France

2 Centre de Ressources Informatiques de Haute-Normandie, 745 Avenue de l’Université, 76800 Saint Etienne du Rouvray, France
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Abstract. Parallel Molecular Dynamics simulations are conducted for describing growth on surfaces with
different kind of roughness : a perfect ordered crystalline flat graphite surface, a disordered rough graphite
surface and flat surface with an ordered localized defect. It is shown that disordered rough surfaces results
in a first step to reduction of the sticking coefficient, increased cluster density, size reduction. Structure
of the clusters shows the disappearance of the octaedral site characteristic of compact structure. Isolated
defect induces cluster-cluster interactions that modify growth compared to perfect flat surface. Kinetic
study of growth shows power law tαz evolution for low impinging atom kinetic energy. Increasing kinetic
energy, on all kinds of surfaces, results in a slightly larger exponent z, but fitting by an exponential function
is quite good too. Lattice expansion is favoured on rough surfaces but increasing incoming atom kinetic
energy weakens this effect.

PACS. 81.15.Cd Deposition by sputtering – 81.15.Aa Theory and models of thin film growth – 68.55.Ac
Nucleation and growth: microscopic aspects

1 Introduction

Cluster growth is a very important step in the early stages
of thin film deposition [1]. Modern methods are emerg-
ing for depositing atoms in high non equilibrium situa-
tion such as pulse laser deposition [2], ion beam assisted
deposition [3], plasma sputter deposition with high ion
to neutral flux ratios [4,5,6]. The common feature of all
these methods is the ability to ensure deposition assisted
by ion flux and with varying and controlled kinetic energy
of the depositing species. Moreover, the ions impinging
the surface can be responsible for additional effects at the
surface, i.e. creation of defects, film densification. Ion or
plasma surface treatment can also be chosen for creat-
ing roughness expected to be suitable for thin film adhe-
sion [7]. Some theoretical attempts have been undergone
for modelling thin film deposition due to the availability
of high performance computers [8,9,10]. In this context,
an interesting feature that we describe here is the under-
standing of the role of ions and high kinetic energies have
on the nucleation and growth of thin film, especially us-
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ing Molecular Dynamics (MD) simulations [11,12,13,14,
15,16,17,18]. Main interest in MD is to carry precise cal-
culations, provided that potential interactions are known,
and to give deep insight into dynamical process [19]. Es-
pecially cluster growth of transition metal element such
as Pd, Pt, Rh, Ni, Cu, ... is subject to many studies of
the potential due to the interest in catalysis. So they fall
within the capability of MD simulations because of the
availability of now good interactions potentials issued from
Embedded Atom Method (EAM) [20] or Tight Binding -
Second Moment Approximation (TB-SMA) [22]. Both are
true N-body potentials and are analytical. TB-SMA po-
tentials are preferred on the basis of discussion in Ref. [21,
22,23]. This article is intended to examine how deposi-
tion conditions like kinetic energy of incoming atoms, de-
fects or roughness of the virgin surface play a role in the
cluster growth. Such a study is expected to be suitable
for describing growth in plasma sputtering or pulsed laser
deposition. Indeed, calculating sticking coefficients, radial
density functions and statistical informations issued from
snapshots of the surface will give relevant informations
about initial steps of growth via clusters. So the present
calculations are intended to show how cluster growth is
dependant on the nature of roughness how kinetic energy



2 P. Brault and G. Moebs: MD simulations of cluster growth

of incoming atoms can minimize or not roughness effects.
For this purpose we simulate the growth of palladium on
three kinds of surfaces : a perfect ordered crystalline flat
graphite surface, a disordered rough graphite surface and
flat surface with an ordered localized defect. The next sec-
tion will describe both the MD algorithm and the inter-
action potentials involved in the calculations. The results
will be presented and discussed in the third section. The
overall work will be summarized in the concluding section.

2 Molecular Dynamics

Molecular Dynamics (MD) is a simulation technique in
which classical equations of motion are solved for a set of
atoms or molecules. This leads to the well-known classical
Newton set of equations describing the motion of atoms.
This can be written in the form :

mi

∂2

∂t2
ri =

∑

λ

F i(λ) (1)

where mi is the mass of the ith incoming atom interacting
through the the forces F i(λ). λ stands for surface atoms
and adsorbed atoms . In principle we should have the same
set of equations for the surface atoms: they interact among
themselves and also with adsorbed atoms. In the follow-
ing, the surface atoms remain at their initially fixed pos-
including particle interactions with surface atomsitions.
This is justified here for two reasons : first, graphite lat-
tice is a very rigid lattice, second, impinging atom energies
are well below graphite carbon displacement energy. The
disordered surface is obtained by randomly displacing the
atoms from their known equilibrium sites. When substrate
atoms do not move, it is necessary to find a way for dis-
sipating energy through the solid for allowing bonding to
the surface. As a first attempt, we make use of quenched
molecular dynamics [24]: if at a time step F .v < 0,(F is
the total force exerted on the considered atom), then the
velocity v of the atoms is reset to a velocity randomly
chosen in a velocity Maxwell distribution at surface tem-
perature which is fixed here to Ts = 300 K (in Ref. [24],
velocities are reset to 0). This is justified because the en-
ergy transfer considered here will not affect the graphite
lattice due to its high stiffness. In that case, diffusion re-
mains allowed and is random.

Simulating deposition needs to release atoms one after
each other with a time delay ∆t suitable for comparison
with experiments, i.e. either the depositing atom flux re-
produces exactly the one encountered in experiments or
this time delay ∆t is sufficient for allowing thermal relax-
ation of the already deposited atoms and/or thermal re-
laxation of surface atoms (when they are allowed to move).
In our case we choose the latter asumption, which allows
us to reduce computer time, even if it leads to large flux:
this could be reasonable in sputter or pulsed laser depo-
sition. ∆t is thus fixed to 2 ps. Increasing this time delay
does not change our results, which renders our assumption
convenient.
Implementing suitable interatomic potentials is certainly

the most important issue in molecular dynamics calcula-
tions. For describing transition metals like palladium, we
use tight binding potential in the second moment approx-
imation (TB-SMA)[22]. Such a potential is non pairwise
in the sense that if atom i interact with atom j, the atoms
surrounding atom j are explicitly taken into account.The
TB-SMA force equation acting on atom i due to atom j
surrounded by atoms k, can be written as :

F i(Pd − Pd) =
∑

j 6=i,rij<rTB
c

{
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with

Eb
i =

∑

j 6=i

exp

{

−2q
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(3)

and

Eb
j =

∑

k 6=j

exp

{

−2q

(

rjk

r0

− 1

)}

(4)

where r0 is the first neighbour distance. For palladium r0

= 0.275 nm. The interaction is cut off at rTB
c = 2.5r0

(which includes neighbours up to the 5th). rij is the in-
teratomic distance between i and j atoms. A, p, q, ξ are the
TB-SMA parameters [22]. Even if this potential looks like
a two-body form, it is needed for each j atom to search
for all neighbours within the cutoff radius rTB

c and to cal-
culate the sum Eb

j , so non pairwise nature of the interac-
tions become clear. This makes the calculations computer
time consuming, especially when rTB

c becomes quite large.
While rTB

c can be restricted to r0 in bulk materials (be-
cause bulk atoms only oscillate at their equilibrium po-
sition), when deposition simulations are conducted, it is
necessary to use larger cutoff radii, especially for account-
ing interactions with diffusing atoms. The value we choose
is the smallest which does not change the results. It al-
lows taking into account 92 neighbours (for palladium),
each neighbour interacting with its own 92 neighbours
(when comparing to bulk materials). For ultrathin films,
the number of neighbours can only be reduced at initial
steps. Thus it becomes clear that high performance (paral-
lel) computers are required for treating long time deposi-
tion using such kind of interactions, which allows to treat
a few thousands of incoming interacting particles with a
few ten of thousand substrate atoms.

For interactions with fixed C atoms, we used a Lennard-
Jones (LJ) 12 - 6 potential:

F i(Pd−C) = 24 εPd−C

∑

j

{

2

[

σPd−C

rij

]12

−

[

σPd−C

rij

]6
}

rij

r2
ij

(5)
This Pd-C Lennard-Jones interaction potential is obtained
by using the Lorentz-Berthelot mixing rule [16,25,26]: εPd−C =

(εPdεC)
1

2 and σPd−C = σPd+εC

2
. The LJ Pd-Pd interaction
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parameters are: εPd = 0.426 eV and σPd = 0.252 nm [27].
The parameters for C-C interactions can be found in ref-
erence [28] and the values are: εC = 2.414 10−3 eV and
σC= 0.340 nm. This gives: εPd−C= 0.02627 eV and σPd−C

= 0.299 nm
The equations of motion are solved using the Verlet veloc-
ity algorithm [29,30]. A link-cell list is used to speed-up
the computations in conjunction with Verlet lists for which
radius rv = 2.7r0. Due to the non-pairwise interactions,
the CPU time is not reduced to O(N), where N is the
number of particles. The time step required for numeri-
cal integration of equations of motion is dt = 1 fs. It was
verified it is enough up to impinging energy of 2 eV. For
parallel implementation, we used the atom-decomposition
scheme also known as replicated data method [31]. This
method is used because the filling of space is expected
not to be complete so spatial-decomposition scheme can
not be an efficient scheme [31]. The parallel instruction
library OpenMP has been found to be more efficient than
message passing libraries as MPI because the calculations
are performed on a shared memory supercomputer (SGI
Origin 2000, 64 nodes, at CRIHAN, France). Briefly, N/p
particles are treated by each p nodes during all the course
of the simulation. At the same time, all information about
each particle is known from each p nodes. Here p is varied
from 4 to 14 depending on the load, so parallel efficiency
is maintained above 90 %.

The simulated substrates are built from 3 atomic lay-
ers of 10.3 nm x 10.2 nm leading to rigid substrates of
12369 C atoms. This is sufficient for taking into account
all interactions between incoming Pd atoms and substrate
carbon atoms. In the following, one monolayer (ML) cor-
responds to 1521 atoms as for a Pd fcc (111) structure.
Three kinds of surfaces have been built: an atomically
smooth (surface C0); a highly roughened surface where
atoms of the top layer are randomly displaced in-plane by
50% of the C-C distance, aC−C = 0.142 nm , and 50%
of the interlayer distance, hC = 0.335 nm, perpendicular
displacement (surface C1); and a flat surface with a lo-
calized defect of size ≈ 2nm (surface C2). This defect is
composed of 60 carbon atoms 0.2 nm vertically elevated
above their natural site. This latter structure is typical
from ion or plasma irradiated surface [32,33]. These three
surfaces are displayed in Fig. 1.

Each palladium atom are randomly launched every ∆t
= 2 ps above the surface. There are no interactions be-
tween Pd in the gas phase. All the Pd atoms interact si-
multaneously with other palladium atoms within the cut-
off radius rTB

c and with carbon rigid substrate atoms with
a cutoff radius rc = 2.5σPd-C. The calculations have been
performed at 0.31 ML (500 Pd atoms), 0.62 ML (1000
Pd atoms) and 0.93 ML (1500 Pd atoms), 1.08 ML (1750
atoms), 1.24 ML (2000 atoms), 1.40 ML (2250 atoms),
1.55 ML (2500 atoms), 1.71 ML (2750 atoms) and 1.86
ML (3000 atoms). Each set of calculation last for 6 ns (=
3000 atoms x 2 ps), for calculating interactions between
3000 incoming atoms among themselves and with 12369
substrate atoms. All sets of calculations use the same ran-
dom number sequence. This means that differences be-

tween calculations for different surfaces or different ener-
gies will only originate from specific interactions.

The Pd initial mean kinetic energies are 0.026, 0.1 and
1. eV. In the former case, it simulates a metal vapor at
Tg = 300 K. This occurs when sputtered Pd atoms travel
across a buffer gas at sufficient pressure. When Tg = 0.1
eV, it is consistent with resistive or e-beam evaporation,
which produces a vapor at the vaporisation temperature,
which just lies in the range 0.1 eV. The latter case sim-
ulates a vapor at temperature Tg = 1.0 eV. This occurs
for sputtering experiments at low pressure where a small
amount of buffered gas only randomizes sputtered atom
velocities, without not too much energy loss (≈ 50%).
Peak energy of the sputtered atom energy distribution
is half vaporisation energy in vacuum ( sputtered atom
Thompson energy distribution). Then in all cases, initial
velocities are chosen in Maxwell-Boltzmann distribution
at the given temperature Tg = 0.026, 0.1 and 1.0 eV,
with random corresponding incident angles.

For each surfaces C0, C1, C2 surfaces, three sets of de-
position simulations are run corresponding to Tg = 0.026,
0.1 and 1.0 eV. Each run lasts 6 ns real time displaying
3000h CPU time shared by 4 to 14 processors on SGI
Origin 2000 supercomputer (ILLIAC8 at CRIHAN). Al-
together, calculations last 27000 hours corresponding to
about 3 years on an equivalent single processor computer.

3 Results and discussion

The sticking coefficient is the ratio of the incoming atom
number to the adsorbed atom number. It informs about
adsorption processes [34]. Fig. 2. displays the evolution of
the sticking coefficient for all conditions. The sticking is

Fig. 2. Evolution of the sticking coefficient on surfaces C0, C1
and C2. Note it is independant from impinging kinetic energy

always unity except for surface C1, where it first decreases
and then further increases. This behaviour is independant
from the explored range of kinetic energy. Due to atomi-
cally sized roughness of surface C1, at low coverage, some
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atoms (≈ 5-10%) may not find a stable adsorption site
and so desorbs. Then, sticking coefficient first decreases.
When clusters are already formed and are stable enough,
they offer a large capture area where sticking is unity.
Thus it allows now to increase the sticking coefficient to-
wards unity. That is the meaning of the initial decrease of
sticking as plotted in Fig. 2.

On Fig 3-5 are plotted significant snapshots for the
three surfaces at the three energies studied. In all cases,

   

   

   

   
 

Fig. 3. Snapshots of Pd clusters deposited on surfaces C0
(left column), C1 (middle column) and C2 (right column). Size
of imulated surfaces is 10.3 nm x 10.2 nm. The mean kinetic
energy is Ec = 0.026 eV. From top to bottom the number of
deposited atoms is respectively 1000, 1500, 2000 and 3000.

growth exhibit clusters which are more or less meandering.
The cluster mean height is around 6 atom diameters (i.e.
around 1.3 nm for Pd atoms) for 3000 deposited atoms (see
Fig. 6). Looking at the shape of the clusters, we observe
on Fig. 7 that clusters are more flat on rough surface C1
than on flat C0 and C2. In fact these two situations are
reversed: clusters have rough top and flat bottom on the
surfaces C0 and C2 compared to clusters that have flat
top and rough bottom on the rough surface C1. This holds
only for not too high clusters, i.e. when memory of growth
starting conditions is kept. Moreover C1 clusters appear
less ordered when looking at the edges (see Fig. 6). On a
flat surface, first atomic layers in the clusters are parallel

   

   

   

   
 

Fig. 4. same as Fig. 3 but for Ec = 0.1 eV

to the surface plane. On the contrary, clusters can not
have the first layer parallel to a rough surface.

When looking at the same surface C0, C1 or C2 and
examining cluster shapes at a fixed coverage, clusters be-
come more compact (meandering has now a lower extent)
as impinging atom kinetic energy increases. For example,
surface C0 (left column of Fig. 3-5) for Ec = 0.026 eV has
a more developed meandering structure than for Ec=1.0
eV. Moreover, for a 3000 incoming atom number the shape
is quite different for the three energies while the cluster
number remains the same (10 clusters when taking into
account the cell periodicity). At fixed energy, and com-
paring among the three surfaces, differences appear essen-
tially at high coverage. For low energy (Fig. 3), compacity
is favoured on the rough surface. At highest energy no
clear behaviour can be drawn.

Attention should also be paid to deposition on surface
C2. Surface C2 differs from C0 only by the 60 elevated
(0.2 nm) surface carbon atoms in its center. Simulations
are done with the same random number sequence in each
set of calculations. This allows direct comparison between
results. Indeed, differences only originate from interactions
due to the kind of surface. It is interesting to observe dif-
ferences between surface C0 and C2 which come from the
isolated defect. All the clusters on the whole surface are
affected by the defect. Only pre-existing cluster on the
defect (center of Fig. 3) is growing and enlarging on the
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Fig. 5. same as Fig. 3 but for Ec = 1.0 eV

Fig. 6. Edges of cluster on surfaces C0 (top) and C1 (bottom)

defect. Other clusters remain at the edge of the defect. For
the 1000 incoming atoms on Fig. 3, a cluster is disrupted
by the edge of the defect. On C0, a larger cluster exists
below the center of the simulation cell. On C2, one part
on the cluster remains on the defect, the other one be-
ing located along the edge of the defect. For 3000 atoms
deposited, small clusters are finally coalescing, bridging
the defect. But the same long cluster does not exists on
C0. This means that cluster-cluster interactions are also
driven by the isolated defect. Highest kinetic energy does
not overcome this effect. This can be due by a too high

kinetic barrier at the cluster edges i.e. diffusing atoms do
not gain enough kinetic energy to climb on or over the
defect. This is consistent with the experimental observa-
tion of step decoration on graphite. Fig. 5 also displays
the same kind of differences in growth shapes between C0
and C1.

Fig. 7. Left picture is the surface of a cluster on flat graphite
C0. The cluster outer surface is rough. On right picture, cluster
on rough graphite C1, exhibits flatter surface

Informations that can be extracted from snapshots are
cluster densities Nc, cluster mean sizes d̄. The evolution
against deposition time or equivalently impinging atom
number N give information about growth modes [1,35,36,
37].

Low coverage luster densities Nc are larger on the
rough surface at the lowest kinetic energy. Increasing ki-
netic energy minimizes the effect of roughness on initial
cluster density as can be seen in Table 1. When increas-

Table 1. Low coverage cluster densities Nc on surface C0, C1
and C2 for 500 deposited atoms

Ec Nc on C0 Nc on C1 Nc on C2
(eV) (1012cm−2) (1012cm−2) (1012cm−2)

0.026 64 73 65
0.10 65 69 69
1.00 61 69 65

ing deposition time the cluster densities are reduced and
become independant of the roughness.

The evolution of the cluster mean size is often ad-
dressed in term of power laws. The most common growth
power law is given by d̄ ∝ Nz for isolated clusters and
d̄ ∝ Nαz after cluster coalescence [37,38,39], N being the
incoming atom number.z and αz are known as growth ex-
ponents and are deduced from statistical physics of growth
phenomena. They were introduced for displaying common
features of various phenomena in term of universal scaling
laws. For addressing this question, we gather the mean ar-
eas s̄ of the clusters at each energy and for each surface
against all incoming atom numbers in Table 2. Note this
area is the projected area perpendicular to the surface,
thus it does not take into account the cluster height. This
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is preferred because this is the same size that is deduced
from electron microscopy pictures [5].

The evolution of the equivalent size d̄ is recovered by
d̄ ∝

√
s̄ with s̄ ∝ N2αz . We obtained values in the range

α z = 0.75 - 0.87 in agreement with Beysens et al [39] and
Viovy et al [37] (In this case, α = 3 [37]). This is consistent
with static coalescence, i.e. clusters grow without moving
until contact. It was also suggested that cluster growth
could follow exponential law [40]. This is expected to occur
when cluster diffusion takes place. Thus we also evaluate
an exponential fit : s̄ ∝ eµN in Table 2 with µ = 1.-
1.3. This means that some diffusion competes with static
coalescence.

On surfaces C0 and C2, increasing energy results in
larger cluster area at high coverage (> 1.5 ML) : increasing
kinetic energy enhances the atom diffusion and diffusing
atoms stick preferentially on the edges of large existing
clusters even if they are far away. This effect also occurs
because Pd cohesive energy is very high [1].

On rough surface, at high coverage, the largest areas
are obtained for intermediate energy 0.1 eV. At the same
time, lower cluster areas/sizes are obtained due to rough-
ness which prevents sticking on too far cluster edges.

Power law behaviour (Table 2) confirms such analy-
sis. Larger exponents (i.e. fastest growth kinetics) are ob-
tained for higher energies on C0 and 2αz= 1.75. On C2
there is no dependence against kinetic energy, which again
shows the special character of the C2 surface. For C1 it
is obtained for the intermediate energy too and 2αz= 1.7.
The meaning of this behaviour is not yet clear. One could
expect that increasing energy above a threshold defined by
the roughness scale first results in a behaviour similar to
flat surface. But increasing again kinetic energy, result in
hampered motion due to multiple interactions with atoms
of the inhomogeneous surface. This would prevent further
diffusion contrary to a flat surface. And cluster area/size
decreases consequently. When considering exponential fit,
inspection of snapshots from Fig. 3-5 shows that cluster
deformation operates as cluster diffusion. Additional in-
formation is required for more precise statements about
this question.

In Fig. 8 are plotted radial (or pair) distribution func-

tions g(r) = V
N2 ∗

∑

i

∑

j 6=i

δ(r − rij) [30] for surface C0

and C1 at Ec = 0.026 and 1.00 eV This provides struc-
tural information about clusters, especially neighbour dis-
tances, ordering, ...(this is quite close to the information
given by experimental EXAFS (Extended X-Ray Absorp-
tion Fine Structure)). Direct inspection of Fig. 8 shows
that g(r) are composed of several peaks. These peaks give
neighbour interatomic distances. Those corresponding to
C0 are well defined and becomes narrower and numer-
ous when increasing the number of deposited atoms. This
means that long range order is taking place. This was al-
ready suggested by the fcc (111) good stacking displayed
on the upper panel of Fig. 6.figure For C1, at all energies,
peaks are broadened compared to C0, even for larger clus-
ters. This means that ordering is not yet well established.
This is in agreement with the observation of Fig. 6 where

Fig. 8. Radial distribution functions for surfaces C0 and C1
at two energies.

clusters appear without any ordered stacking, contrary to
C0. Moreover, the second and fifth neighbour peaks have
disappeared, even for the highest deposited atom num-
ber. This means that the octaedral site characteristic of
compact structure has disappeared. Recall that 2nd neigh-
bours of an atom in a fcc (111) plane are located in up-
per (3 neighbours) and lower (3 neighbours) (111) planes.
The in-plane disorder persists up to six atomic distances
(which is the height of the clusters for 3000 deposited
atoms ). In Table 3 is reported the evolution of 1st rn

and 2nd rnn neighbour distances for C0 surface and 1st rn

neighbour distance for C1. Recall that for fcc structures,
rn = a0√

2
and rnn = a0, a0 being the lattice parameter (a0

= 0.389 nm for Pd). For bulk palladium rn = 0.275 nm
and rnn = a0 = 0.389 nm. Table 3 shows for both C0 and
C1 surface departure from these values. At low coverage
Pd atom find sites above the center of hexagonal ring of
graphite. Such hexagons are separated by a distance of
0.246 nm (lattice parameter of graphite), thus at very low
coverage when clusters are made of pair of atoms, rn is
closer to 0.246 nm rather than 0.275 nm. When increas-
ing atom number, clusters grow and increase their closest
atom distance. They crossed the ideal bulk value and a
lattice expansion start as usual for nanometer sized clus-
ters. For palladium deposition on MgO and for cluster size
less than 2.5 nm lattice expansion as high as 0.8 % was
found experimentally using grazing incidence small angle
X-ray scattering [41]. For the C0 surface, at low coverage
rn and rnn contraction is followed by further expansion.
rn is in the range 2.0%, while rnn = a0 expansion is only
0.5 %. The rn value is fairly high, but cluster lowest size
(cluster cross sectional size) is in the range 1.3 nm. For
such low size, lattice behaviour could be very distorded.
For C1, due to roughness induced mismatch, the rn ex-
pansion is increased up to 4.9 %. But increasing energy
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reduces rn expansion to 3.8 %. This means that incom-
ing atom kinetic energy assists growth in improving film
density [11] by redistributing atoms in metastable sites
created by atomic roughness of the substrate.

4 Conclusions

Molecular Dynamics simulations were conducted to study
cluster growth on atomically ordered, disordered and de-
fect ordered surfaces up to 2 monolayers (3000 atoms). We
use rigid lattice approximation and quenched MD which is
reasonable for deposition onto graphite surfaces. Cluster
growth follows power law: d̄ ∝ tαz, with αz = 0.75 - 0.87.
Influence of the type of disorder was investigated for dif-
ferent atom kinetic energies. The following trends are thus
observed. It was shown that roughness can reduce stick-
ing coefficients. Atomically flat cluster are obtained on
rough surface at room temperature while clusters grown
on atomically flat surface are rough. Roughness is also re-
sponsible for increasing low coverage cluster density and
lattice expansion. Increasing kinetic energy of incoming
atom tends to minimize these roughness effects. But local-
ized defect play a role that is not smoothed by increasing
kinetic energy: cluster growth is always disturbed by such
a defect.
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Fig. 1. Simulated graphite surfaces (10.3 nm x 10.2 nm): C0, atomically flat; C1, with randomly disordered first outer plane;
C2, flat with a localized defect. The defect is dark gray

Table 2. Cluster area s̄ (nm2) evolution against incoming atom number N for the three surfaces C0, C1,C2 and the mean
kinetic energies 0.026, 0.1, 1.0 eV. Two kinds of fit are displayed : s̄ ∝ N2αz and s̄ ∝ eµN . Values between brackets give a less
good fit than power law does.

surface C0 C1 C2
s̄ (nm2) s̄ (nm2) s̄ (nm2)

N 0.026 0.10 1.00 0.026 0.10 1.00 0.026 0.10 1.00

500 0.31 0.31 0.34 0.26 0.28 0.28 0.31 0.30 0.31
1000 0.68 0.68 0.70 0.57 0.59 0.66 0.68 0.75 0.99
1500 1.64 1.46 1.40 1.77 0.95 1.27 1.62 1.56 1.90
1750 2.15 1.61 2.07 1.77 1.80 1.67 2.23 2.09 2.19
2000 2.91 2.13 2.93 2.19 2.13 1.81 3.03 2.49 2.54
2250 3.39 2.83 3.59 2.51 2.46 2.05 3.28 3.24 3.54
2500 3.28 3.42 4.92 3.03 3.49 2.56 4.20 3.40 3.89
2750 3.84 4.38 6.17 3.17 4.39 3.53 4.30 4.51 4.32
3000 5.09 5.75 5.71 3.96 5.92 5.41 6.35 4.41 4.82

2αz 1.6 1.6 1.75 1.5 1.7 1.5 1.6 1.6 1.5
µ (1.) 1.1 1.3 (1.) 1.2 1.1 (1.) (1.) (1.)

Table 3. First rn and second rnn neighbour distance for all deposited atom numbers N and for surface C0 and C1.

surface C0 C0 C1
Ec (eV) Ec (eV) Ec (eV)

N 0.026 0.10 1.00 0.026 0.10 1.00 0.026 0.10 1.00

rn (nm) rnn (nm) rn (nm)

500 0.2688 0.2710 0.2710 0.3650 0.3661 - 0.2710 0.2715 0.2721
1000 0.2754 0.2743 0.2754 0.3759 0.3759 0.3792 0.2765 0.2798 0.2787
1500 0.2787 0.2787 0.2776 0.3825 0.3857 0.3836 0.2819 0.2819 0.2841
1750 0.2798 0.2776 0.2787 0.3857 0.3868 0.3857 0.2819 0.2841 0.2852
2000 0.2809 0.2808 0.2798 0.3868 0.3879 0.3901 0.2852 0.2852 0.2852
2250 0.2798 0.2808 0.2819 0.3879 0.3890 0.3920 0.2874 0.2852 0.2852
2500 0.2808 0.2808 0.2808 0.3912 0.3901 0.3901 0.2885 0.2874 0.2874
2750 0.2808 0.2808 0.2808 0.3901 0.3912 0.3901 0.2885 0.2874 0.2852
3000 0.2808 0.2808 0.2808 0.3923 0.3912 0.3901 0.2885 0.2874 0.2852


