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In (hyper)coherence semantics, proofs/terms are cliques in (hyper)graphs. Intuitively,

vertices represent results of computations and the edge relation witnesses the ability of

being assembled into a same piece of data or a same (strongly) stable function, at arrow

types.

In (hyper)coherence semantics, the argument of a (strongly) stable functional is always a

(strongly) stable function. As a consequence, comparatively to the relational semantics,

where there is no edge relation, some vertices are missing. Recovering these vertices is

essential for the purpose of reconstructing proofs/terms from their interpretations. It

shall also be useful for the comparison with other semantics, like game semantics.

In (BE01), Bucciarelli and Ehrhard introduced a so called non uniform coherence space

semantics where no vertex is missing. By constructing the co-free exponential we set a

new version of this last semantics, together with non uniform versions of hypercoherences

and multicoherences, a new semantics where an edge is a finite multiset. Thanks to the

co-free construction, these non uniform semantics are deterministic in the sense that the

intersection of a clique and of an anti-clique contains at most one vertex, a result of

interaction, and extensionally collapse onto the corresponding uniform semantics.
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Notations. In this paper, multiset will always means finite multiset. We use the notation

[ ] for multisets while the notation { } is, as usual, for sets. The pairwise union of

multisets is denoted by a + sign and following this notation the generalised union is

denoted by a
∑

sign. The neutral element for this operation, the empty multiset, is

denoted by []. If k ∈ N, k[a] denotes the multiset
∑k

1 [a]. If [ai | i ∈ I] is a multiset, its

support is the set {ai | i ∈ I}. If m is a multiset we denote by supp(m) its support.

The cardinality ♯[ai | i ∈ I] of a multiset [ai | i ∈ I] is the cardinality ♯I of the set I.

The disjoint sum operation on sets is defined by setting A + B = {1} ×A ∪ {0}× B. To

the usual notation g ◦ f for the categorical composition of f and g, we prefer here the

notation f # g (the reading order is driven by the arrows in diagrams).

1. Introduction

1.1. Strong stability and hypercoherences

Strong stability has been introduced by Bucciarelli and Ehrhard in (BE94) for the purpose

of giving a purely “extensional” definition of sequentiality at all types, that is, a descrip-

tion of sequential computations which does not involve the atomic description of each

step of interaction of an agent (function, term) with its environment (argument, or more

generally, context), as game semantics do. The results obtained by Ehrhard in (Ehr99)

and later proved again by Longley (Lon02), Van Oosten (vO97) and Melliès (Mel05),

with different methods, showed that indeed, strong stability corresponds to sequentiality

at all types. Ehrhard established that the strongly stable semantics is the extensional
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collapse of the sequential algorithm semantics designed in the late 70’s by Berry and

Curien (BC82). Unlike the continuous or stable interpretations of PCF, the sequential

algorithm interpretation (which is now better understood as a deterministic game seman-

tics) is very “operational” in nature: Cartwright, Curien and Felleisen showed in (CCF94)

that sequential algorithms are fully abstract (and fully complete) for the extension of PCF

by a catch and throw mechanism. In (Lon02), Longley advocates the claim that there

exists a canonical notion of “sequential” functionals of all types which coincides with the

hierarchy of strongly stable functions.

This comparison of the strongly stable semantics with more operational interpretations

has been made possible only by the discovery of hypercoherences by Ehrhard (Ehr93).

Moreover, the introduction of these objects simplified the presentation of the strongly

stable semantics and provided a strongly stable interpretation of (second order) linear

logic. A hypercoherence is very similar to a coherence space (Gir87) and consists of a set,

the web, together with a coherence relation on this web. However, in a hypercoherence, the

coherence relation is not a binary relation, but a set of finite subsets of the web containing

all singletons (these sets are said to be coherent). An “element” of a hypercoherence X

is then a clique of X , that is, a subset of the web of X which has the property that all

its finite and non-empty subsets are coherent.

Hypercoherences are a semantics of linear logic, so they provide an interpretation of

intuitionistic implication which is of the shape X ⇒ Y = (!X) ⊸ Y where “⊸” is

a linear implication and ! is a so called “exponential”. The basic operational intuition

behind this decomposition is as follows: a linear map represents a program which uses its

argument exactly once, and an element of !X is obtained essentially by taking an element

of X and making it available as many times as required.

The purely relational semantics is maybe the simplest semantics of linear logic. In this

semantics formulæ are sets and proofs are relations. The constructions of the relational

semantics underly both the coherence space semantics and the hypercoherence semantics.

Barreiro and Ehrhard traced back the introduction of the relational semantics as induced

by an unpublished remark from van de Wiele about the co-freeness of the exponentials

in coherence semantics.

The hypercoherence semantics is said to be static as opposed to games semantics

which involve a direct representation of the dynamics of computation. In game semantics,

time is explicit: such semantics interpret terms by focusing on the history of an atomic

interaction between a player (the program implemented by the term) and an opponent

(the environment). For instance an interaction inside a function type A → B is an

interleaving of an interaction querying a piece of A data and an interaction producing a

piece of B data.

There is no such reference to time in hypercoherences. For instance, the web of a linear

function space is the Cartesian product of the webs.

However the strong relation of hypercoherences with sequentiality means that the

semantics carries an implicit representation of time.

In (Mel05), Melliés investigate the game theoretic counterpart of this implicit repre-

sentation of time, by introducing sequential games in which the coherence relation can

be expressed in game terms.
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In a complementary direction, we used an unfolding of hypercoherences introduced by

Ehrhard in (Ehr00), to uncover the game structures of hypercoherences (Bou04). For

the reverse direction, the idea was to project directly usual games onto hypercoherences

by mapping history of interaction onto results of interaction. But some history of in-

teraction were not mapped anywhere in the hypercoherence semantics. Indeed, not only

the representations of interaction differ between games and hypercoherences but these

two kinds of semantics do not agree on what are the possible interaction between terms.

More precisely, one can circumvent the problem by projecting onto the relational seman-

tics rather than hypercoherences (Bou05). In the relational semantics the representation

of an interaction is the same as in hypercoherences but their is less (or no) assumption

in the relational semantics about the possibilities of interactions.

1.2. Uniformity

The relational semantics almost consists of the part of the hypercoherence semantics

dealing with webs, except that in hypercoherences the web of the exponentials depends

on the coherence relations. To be precise the web of !A in the relational semantics is

the set of multisets of elements of the web of A while, in hypercoherences the web of !A

contains only multisets which supports are clique.

The dependence of webs on coherence is what is called uniformity of the exponentials.

This terminology, mainly used by Ehrhard and Girard, comes from the fact that in such

semantics the context of an agent behaves uniformly, that is: as if this context is produced

by a single agent. The hypercoherence interpretation of a term omits points relatively to

its relational interpretation and so the hypercoherence semantics loses information about

some parts of the term. The same holds for the coherence semantics.

Lets take an example (very standard). The relational semantics of the simply typed

term

λbbool. if b then (if b then t else t) else (if b then f else f). (1)

(where t stands for true and f for false) is the relation

{([t, t], t), ([f, t], t), ([f, t], f), ([f, f], f)}

but its hypercoherence semantics is just {([t, t], t), ([f, f], f)}.

The hypercoherence semantics of the term trusts its environment and makes the as-

sumption that the boolean b has one fixed value during the time of the computation.

Of course, this is fair from an interactive viewpoint since the environment complies with

coherence conditions as programs do. But for the purpose of reconstructing terms from

their semantics, some information is missing. Our example is very simple, but it is easy

to imagine terms where the part missed by the uniform interpretation contains big sub-

routines rather than constants.

Intuitively, one can think of uniformity as a technique to remove a particular kind

of dead code, as in the example above. However, it is worth to remark that what is

lost by uniformity in coherence spaces and hypercoherences can hardly, in general and

especially at functional types, be match with well-identified pieces of syntax (sub-terms
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or sub-proofs). First these semantics are not fully complete, so (a part of) a semantical

agent not always corresponds to (a part of) a syntactical agent. Second the uniformity

restriction not only takes into account accessibility of branches of code but also, in a

more subtle manner, reachability constraints, in particular on the copying discipline of

pieces of data (see Example 2).

Non uniform static semantics will interpret terms exactly as the relational semantics

does. This will allow us to combine semantics in order to take advantage of their different

features. For instance, we can define a semantics where proofs will be cliques both in the

non uniform coherence space semantics, in the non uniform hypercoherence semantics

and in the non uniform bipartite semantics we present in this paper.

The uniformity/non uniformity issue in static semantics is to be related with games

where some uniformity conditions were originally designed for the exponential type :

interactions in !A are deterministic (in the sense of games) interleaving of interactions

of A, see (AJM94). Recent works in the game semantics area are more permissive: such

conditions (games determinism) on the semantics of types are postponed to conditions

on the semantics of terms.

1.3. The former (hyper)coherence semantics

Providing coherence space or hypercoherence semantics with non uniform exponentials is

not a trivial job. The main difficulty lies in defining the interpretation of the exponentials.

One has to design a semantics where for instance, one point of the web shall be incoherent

with himself. This must be the case for the point [t, f] since the valid term above maps it

to an incoherent piece of data {t, f}. The situation where two different points are coherent

and incoherent at the same time may also arise (see below, item 4). In coherence spaces

this will mean the semantics does not enjoy determinism —we come back with this latter.

A. Bucciarelli and T. Ehrhard have designed a general tool for producing non uni-

form semantics, see (BE01). As observed by J.-Y. Girard in (Gir96), to be closer to full

completeness for linear logic, the coherence spaces semantics can be enriched by index-

ing each clique on a monoid. To make the story short, by doing this and thanks to a

clever handling of indexes (locations), A. Bucciarelli and T. Ehrhard obtained that when

this monoid comes with a phase space structure of a certain sort (actually, a symmetric

phase space which is a truth-value semantics of an indexed linear logic) this leads to a

denotational semantics of linear logic. For details see (BE00) and (BE01). This leaves

us with, potentially, an infinity of denotational semantics of linear logic. A. Bruasse-Bac

has studied many of them in her PhD. thesis (Bru01) among which there is one rejecting

the Mix rule. A quite simple phase space produces a former version of non uniform co-

herence semantics. According to a suggestion of Ehrhard and Bucciarelli, by generalizing

the construction to all arities one obtains non uniformity for something sounding like

non uniform hypercoherence semantics. But:

1 each of these non uniform semantics badly relates with their usual (e.g. uniform)

versions;

2 neither the coherence, nor the hypercoherence non uniform semantics are determin-

istic;
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3 furthermore, we observed that the non uniform hypercoherence semantics misses one

important feature of the usual hypercoherence semantics : not all the finite cliques of

type booln → bool are sub-definable (i.e. included in the interpretation of a term);
4 the non uniform coherence semantics is also a little bit puzzling. For instance, in

!bool, for any p, q ∈ N such that p + q > 1, the points p[t] and q[t] are coherent and

incoherent at the same time (while, once p 6= q, they are strictly coherent in usual

coherence spaces). So, one can find in the former non uniform semantics a semantical

agent mixing the term (1), querying two times its argument, and the term λb.t,

which does not use its argument. (This is not the case in the former hypercoherence

semantics).

1.4. Contribution

The present work is an extended version of our previous communication at the CTCS

conference (Bou03). Some parts were also presented in our PhD.

Our starting point was the former non uniform (hyper)coherence semantics and we

mainly focused on hypercoherences. We observed that:

1 contrarily to what happens in the usual hypercoherence semantics, there is at least

one clique f of type booln → bool which is not included in the interpretation of any

term. The clique f is a variant of one originally designed by Berry to reveal the same

failure in coherence spaces†. What is important to notice is that f does not contain

points related to non uniformity, such as [t, f]. Hence the set f can be presented to

the usual (multiset based) hypercoherence semantics which successfully refutes it.
2 Many other definitions of the interpretation of exponentials are possible.

Among all the possibilities for the interpretation of exponentials we found the co-free

exponential (think of it as to be an infinite tensor product). This has led to a more

satisfactory setting both for coherence spaces and hypercoherences. We also introduced

a new coherence like semantics, multicoherences.

1 The co-free exponential is maximal in a sense we make precise in Corollary 1 and

which basically means that any clique of type booln → bool would also be a clique

with others variants of the exponentials. The bad news is that there still exists a clique

of type booln → bool which is not included in the interpretation of any (sequential)

term. But, in hypercoherences (and multicoherences), such cliques necessarily contain

points coming from non uniformity. So, this phenomenon is now constrained to the

non uniform web and disappears when restricting to the uniform web.
2 Our non uniform semantics are deterministic in the sense that the intersection of a

clique (let say of type A) and an anti-clique (a clique of dual type A⊥) contains at

most one point, like in the uniform semantics. We call results of interactions, the

points at the intersection of a clique and an anti-clique. Not all points can be results

of interactions. For instance [t, f] ∈ !bool is not, since it is strictly incoherent with

itself (and so does not belong to any clique of type !bool).

† Berry’s example is often called the Gustave’s function which is named after a private joke about the
huge number of french scientists whose first name is Gérard, among which Berry.
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3 For both coherence spaces, hypercoherences and multicoherences, we derive the usual

uniform interpretation of types and terms by a straight set restriction of the web to

results of interactions (both at the level of types and at the level of proofs). More

precisely, the restriction gives the multiset based uniform interpretation (the web

of !A is made of multisets which supports are cliques). Note that it was already

known that the restriction of the relational interpretation of a proof to the web of

the coherence space interpretation of a formula is the coherence space interpretation

of the proof (Tor00). The novelty introduced here is mainly that the uniform web is

characterized by the coherence relation.
4 In each case, the non uniform and the multiset based uniform semantics are extension-

ally equivalent : they have the same extensional collapse. As already known (BE97;

Mel04) for the multiset based semantics, this extensional collapse is the set based

uniform semantics.
5 The existence of deterministic non uniform semantics implies an unexpected prop-

erty. Consider an extension of linear logic with new rules, typically the daemon of

Girard’s Ludics (Gir01), for which the semantics is still valid and such that A and

A⊥ are both provable. Then a cut between a proof of A and a proof of A⊥ induces

an interaction which involves at most one point in the relational semantics. This

unexpected result would have been hard to prove without introducing non uniform

(hyper/multi)coherence semantics. It may prove useful with other semantics based on

the relational semantics. For instance, in Ehrhard’s finiteness spaces (Ehr05), points of

interaction are equipped with multiplicities. Since there is at most one point for each

interaction, one can use its multiplicity to do some quantitative analysis of proofs’

interaction.
6 The multicoherence semantics aroses as the general case in our approach of non

uniformity. In fact, we derive the non uniform hypercoherence semantics from mul-

ticoherences. The difference with hypercoherences is that the coherence relation is

made of multisets rather than sets. As for uniform hypercoherences, at functions

types (e.g. first order simple types), each finite clique in the uniform multicoherence

semantics is sub-definable. But contrarily to hypercoherences, each clique of the mul-

ticoherence semantics is a clique in coherence spaces. At a functional type, there exist

sets which are cliques in the hypercoherence semantics but which are not cliques in

the multicoherence semantics (even in the set based uniform case). Since the set based

uniform multicoherence semantics is extensional, there is at least two extensionally

different semantics of higher order: multicoherences and hypercoherences.

In Table 1, we summarize the principal variants of coherence based semantics, with our

new ones. Note that there are two axis where one can chose between sets and multisets:

either for the coherence relation (the power of the coherence) or for the web of the

exponentials. A third one, which do not appear in that paper, is the shift from sets to

multisets for cliques, as in finiteness spaces (Ehr05).

The (non uniform) bipartite semantics of linear logic we present in Section 3 comes

originally from a simple remark about the relational semantics. This remark states that

one can set polarities (positive/negative) on points of the web in such a manner that the

orthogonal exchanges polarities and that every proof is interpreted by a set of positive
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Table 1. A summary

Semantics : relational coherence spaces hypercoherences multicoherences bipartite
Coherence : empty pairs sets multisets singletons
Category : Rel NCoh{2} NHc NCohN\{0,1} Bip

Web of the exponentials (variants)

multisets (co-free) yes new version new new new
multisets uniform no yes yes new new
sets uniform no yes yes new new

points. This gives a kind of coherence spaces semantics where the coherence relation is

of arity one. The semantics one obtains is non uniform. We discovered that this bipartite

semantics also admits a uniform version where every proof of a why not formula is

interpreted by the empty set. Besides this radical lapse of memory of points in proofs

interpretation, the uniform bipartite semantics (as the non uniform bipartite semantics)

is equivalent to the relational semantics on simple types (proofs and types interpretations

are the same and these three semantics are extensionally equivalent).

In a recent work (Pag06) Michele Pagani showed that there is a syntactical counterpart,

visible acyclicity, to non uniform coherence : our non uniform coherence space seman-

tics corresponds to a relaxation of the correctness criterion of linear logic proof-nets,

(a graphical presentation of proofs). Finding a similar correspondence for non uniform

hypercoherences or multicoherences would certainly be interesting.

1.5. Contents

The next section (Section 2) is devoted to recalling briefly some useful definitions and

properties we deal with. The only novelty is the introduction of a convenient framework,

P -coherence spaces, to deal with various static semantics.

In Section 3, we present the bipartite semantics and its uniform version, and we com-

pare them. We stress that the bipartite semantics are just here as a peculiar example

of uniform/non uniform setting, but do not give an example of the general uniform/non

uniform construction we use further.

Section 4 and Section 5 form the core of the paper, where we study the exponential

coming from indexed linear logic, and develop their co-free version. This part is an

extended version of our conference paper on non-uniform hypercoherences (Bou03). In

this part, we present our results by mostly following the chronological order of their

discovery.

We start with the presentation of K-coherence spaces, a denotational semantics coming

from indexed linear logic and aimed to be a generalization of (hyper)coherence spaces.

The semantics is parametrized by a set K which encompasses (a kind of) coherence

spaces K = {2} and (a kind of) hypercoherences K = N\{0, 1}. We then point out the

definability problem at functions types.

We further introduce the co-free exponentials (Subsection 4.4). We show that the co-
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free exponentials provide the best solution one can expect (Corollary 1). We show that

there are still some definibility problems (Corollary 2) but only due to non-uniformity.

We then establish (Subsection 4.5) that the K-coherence semantics equipped with

the new exponentials gives a deterministic semantics. In fact, the semantics satisfies a

property stronger than just determinism. This allows the introduction of a web restriction

operation, the neutral functor (Subsection 5.1) giving the uniform version of the K-co-

herence semantics (Subsection 5.2).

The uniform semantics obtained for K = N\{0, 1} is not hypercoherences but a new

one, multicoherences (Subsection 5.3). Hypercoherences and non-uniform hypercoher-

ences are obtained by an operation forgetting multiplicities in the coherence relation

(Subsection 5.4).

We close this part by a study which relates the extensional collapses of the various

semantics (Subsection 5.5).

In the concluding section, we adopt an interactive viewpoint à la Girard to discuss the

implications of the existence of deterministic non-uniform semantics (Subsection 6.1).

2. Preliminaries

2.1. Extensional collapse

Extensional partial equivalence relations, PER for short, were first introduced by Kreisel

in the fifties to deal with higher order partial recursive functions. An extensional PER is

meant to relate two algorithms when they implement the same function. Higher order is

responsible for the partiality of the equivalence relation.

Simple types are types of the simply typed lambda calculus enriched with basis types

in order to form a type system for PCF. They are given by the following grammar:

σ, τ := ι | σ → τ (simple types)

where ι stands for basis types, typically a boolean type bool or/and a natural number

type nat. A product type σ × σ′ can also be introduced but we won’t bother with this

type constructor since it can be obtained by curryfication.

Let S be a categorical semantics of linear logic, let S(A) denote the interpretation of

a type A and let us call semantical agents of type A the elements of the semantics used

to interpret proofs of A, that is morphisms from 1 to S(A). Suppose an interpretation

of basis types is given in S (usually bool is interpreted as the space 1 ⊕ 1 and nat is

interpreted as an ω-infinite plus of 1). Then we extend this intepretation of basis types to

all simple types by setting S(σ → τ) = !S(σ) ⊸ S(τ). So, the function type corresponds

to the object of morphisms in the co-Kleisli category. If f and x are semantical agents

of respective types σ → τ and σ then we apply f to x by composing in the co-Kleisli

category to form a semantical agent f(x) of type τ . For each simple type σ, an extensional

PER ∼σ is defined on semantical agents of type σ by chosing the equality on basis types

and by setting:

f ∼σ→τ g iff if x ∼σ y then f(x) ∼τ g(y).

The extensional collapse of the semantics is the set of quotients by extensional PERs of
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the interpretations of simples types equipped with the following notion of application. If

f is a class of semantical agents of type σ → τ (functions) and if x is a class of semantical

agents of type τ (arguments) the application of f to x is defined by setting f(x) = f(x).

2.2. Power coherence spaces

We introduce a general notion which will provide us with a very convenient language

for describing the various semantics we deal with. A power is simply a functor from the

category of sets and inclusions to itself. Typical powers relevant to our purpose are:

— The empty power defined by E 7→ ∅. This power will simply be denoted ∅. It can be

used to present the relational semantics in terms of power coherence spaces;

— The identity power, id, which will be used for dealing with the bipartite relational

semantics of Section 3;

— The non-empty finite sets power P∗
fin which maps each set to the set of its finite

non-empty subsets. The power P∗
fin will be used for dealing with hypercoherences;

— Given a subset K of N \ {0, 1}, the power MK which maps a set E to the set of all

finite multisets over E whose cardinality belongs to K. The power M{2} will be used

for dealing with coherence spaces. The choice of this power follows the suggestion

made at the end of (BE01) for the purpose of building non uniform coherence or

hypercoherence like semantics.

Definition 1. Let P be a power. A P -coherence space X is a triple (|X |, ⌣⌢X , ⌢⌣X)

where |X | is an at most countables set, the web of X , and where ⌣⌢X and ⌢⌣X are

subsets of P (|X |) such that ⌣⌢X ∪ ⌢⌣X = P (|X |). The set ⌣⌢X is called the coherence

and the set ⌢⌣X is called the incoherence. The intersection of ⌣⌢X and ⌢⌣X is called the

neutrality. Notation: NX . The strict coherence ⌢X of X is the complementary set of ⌢⌣X

with respect to P (|X |) and the strict incoherence ⌣X is the complementary of ⌣⌢X .

Clearly, one can define a P -coherence space X by specifying two well chosen sets among

⌣⌢X , ⌢⌣X , NX , ⌢X and ⌣X subject to obvious constraints (for instance, one must have

NX ⊆ ⌣⌢X , ⌣X ∩ ⌢X = ∅. . . ).

Definition 2. The orthogonal, X⊥, of a P -coherence space X = (|X |, ⌣⌢X , ⌢⌣X) is

the P -coherence space (|X |, ⌢⌣X , ⌣⌢X). (Orthogonality exchanges coherence and incoher-

ence).

Definition 3. Let X be a P -coherence space. A clique of X is a subset x of |X | such

that P (x) ⊆ ⌣⌢X . We denote by Cl(X) the set of all cliques of X . An anti-clique of X

is a clique of X⊥. If for each clique x and each anti-clique y the intersection of x and y

contains at most one element then the P -coherence space X is deterministic.

Definition 4. A P -coherence space X is reflexive if neutrality corresponds to equality

in the sense that:

NX = ∪a∈|X|P ({a}). (2)
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A P -coherence space X is weakly reflexive if

NX ⊆ ∪a∈|X|P ({a}). (3)

One can define a reflexive P -coherence space by specifying only ⌣⌢X (or ⌢⌣X , or ⌢X ,

or ⌣X).

Proposition 1. If the power is strictly monotone and preserves disjointness of sets, then

weak reflexivity implies determinism.

Proof. Lets take a P -coherence space X , and a clique and an anti-clique with at least

two points, a and b at their intersection. Then {a, b} is both a clique and an anti-clique.

Thus P ({a, b}) ⊆ ⌣⌢X ∩ ⌢⌣X . By strict monotonicity and preservation of disjointness

P ({a, b}) 6⊂ ∪c∈|X|P ({c}) which contradicts weak reflexivity.

But weak reflexivity is in general stronger than just determinism. For instance, in a

P∗
fin-space X one can find a set {a, b, c} ∈ P∗

fin(|X |) which is both coherent and incoherent

(so the space is not weakly reflexive) and still have determinism (take for instance ⌢X =

{{a, b}, {a, c}, {b, c}} and ⌣X = ∅).

Weak reflexivity and determinism are equivalent in M{2}-spaces.

2.3. Relational semantics

We recall briefly the interpretation of linear logic in the category Rel of sets and relations.

Let us recall that the composition is given by:

f # g = {(a, c) | ∃b, (a, b) ∈ f and (b, c) ∈ g}

and that identities are given by:

idX = {(a, a) | a ∈ |X |}.

Formulae. A formula A is interpreted by a set |A| defined inductively as follows: |0| =

|⊤| = ∅, |1| = |⊥| = {∗}, |A⊥| = |A|, |A ⊕ B| = |A&B| = |A| + |B|, |A ⊗ B| =

|A P B| = |A| × |B| and |!A| = |?A| = Mfin(|A|) where Mfin(E) is the set of finite

multisets on E.

Sequents. We use the right-sided presentation of the linear logic sequent calculus. Up to

associativity and commutativity of the Cartesian product, the “comma” of sequents

is safely interpreted as a par i.e. by setting | ⊢ A1, . . . , An| = |A1 P . . . P An| which

is equal to |A1| × . . . × |An|.

Proofs. The interpretation of a proof of a sequent ⊢ Γ is a subset of | ⊢ Γ| defined

inductively on the proof, by cases on the last rule, as shown below.

It is well-known that this interpretation is a denotational semantics of linear logic

(that is: two proofs of a given sequent have the same interpretation as soon as they are

equivalent up to cut-elimination).
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Identity group

(ax.)
⊢A, A⊥ : {(a, a) | a ∈ |A|}

⊢ Γ, A : f ⊢ ∆, A⊥ : g
(cut)

⊢Γ, ∆ : {(γ, δ) | ∃a, (γ, a) ∈ f ∧ (δ, a) ∈ g}

Additives
(top)

⊢Γ,⊤ : ∅

⊢ Γ, A : f ⊢ Γ, B : g
(with)

⊢Γ, A&B : f ⊎ g

⊢ Γ, Ai : f i = 1, 2

(plus)⊢Γ, A1 ⊕ A2 : f

Multiplicatives

⊢ Γ : f
(bot)

⊢Γ,⊥ : f × {∗⊥}
(one)

⊢1 : {∗1}

⊢ Γ, A, B : f
(par)

⊢Γ, A P B : f

⊢ Γ, A : f ⊢ ∆, B : g
(tens.)

⊢Γ, ∆, A ⊗ B : {(γ, δ, (a, b)) | (γ, a) ∈ f, (δ, b) ∈ g}

Exponentials

⊢ ?A1, . . . , ?An, A : f
(prom.)

⊢?A1, . . . , ?An, !A : f †

⊢ Γ, ?A, ?A : f
(cont.)

⊢Γ, ?A : {(γ, µ1 + µ2) | (γ, µ1, µ2) ∈ f}

⊢ Γ : f
(weak.)

⊢Γ, ?A : {(γ, []) | γ ∈ f}

⊢ Γ, A : f
(der.)

⊢Γ, ?A : {(γ, [a]) | (γ, a) ∈ f}

Where f † is equal to :

{(
∑

j∈J

µj
1, . . . ,

∑

j∈J

µj
n, [aj | j ∈ J ]) | J finite and ∀j ∈ J, (µj

1, . . . , µ
j
n, aj) ∈ f}.

The relational semantics is actually a categorical semantics of linear logic, though we

shall not recall its categorical structure in details. The new Seely categorical semantics

axiomatic (Bie95) is appropriate for dealing with the relational semantics and we will

use this axiomatic for further semantics. Exponentials are given by a comonad structure

(!, der, dig). We just recall this structure. The endofunctor ! of Rel is defined by !E =

Mfin(E) and

!f = {([ai | i ∈ I], [bi | i ∈ I]) | I finite and ∀i ∈ I, (ai, bi) ∈ f}.

The natural transformations der : !→̇ id and dig : !→̇!! are defined by setting:

derE = {([a], a) | a ∈ E}

digE = {(sumi∈Iµi, [µi | i ∈ I]) | [µi | i ∈ I] ∈ !!E}.
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(ax.)
⊢⊥, 1 : {(∗, ∗)} ⊢⊥, 1 : {(∗, ∗)}

(with)
⊢⊥ & ⊥, 1 : {(t, ∗), (f, ∗)}

(plus 1 )
⊢⊥ & ⊥, 1 ⊕ 1 : {(t, t), (f, t)}

(bot)
⊢⊥ & ⊥, 1 ⊕ 1,⊥ : {(t, t, ∗), (f, t, ∗)}

⊢⊥, 1 : {(∗, ∗)} ⊢⊥, 1 : {(∗, ∗)}

⊢⊥ & ⊥, 1 : {(t, ∗), (f, ∗)}
(plus 2 )

⊢⊥ & ⊥, 1 ⊕ 1 : {(t, f), (f, f)}

⊢⊥ & ⊥, 1 ⊕ 1,⊥ : {(t, f, ∗), (f, f, ∗)}
(with)

⊢⊥ & ⊥, 1 ⊕ 1,⊥ & ⊥ : {(t, t, t), (f, t, t), (t, f, f), (f, f, f)}
(der.)

⊢?(⊥ & ⊥), 1 ⊕ 1,⊥ & ⊥ : {([t], t, t), ([f], t, t), ([t], f, f), ([f], f, f)}
(der.)

⊢?(⊥ & ⊥), 1 ⊕ 1, ?(⊥ & ⊥) : {([t], t, [t]), ([f], t, [t]), ([t], f, [f]), ([f], f, [f])}
(cont.)

⊢?(⊥ & ⊥), 1 ⊕ 1 : {([t, t], t), ([t, f], t), ([t, f], f), ([f, f], f)}

Figure 1. Linear logic proof of Example 1 (corresponding to PCF term (1) of page 4)

2.4. Coherence spaces

We briefly recall the coherence spaces semantics of linear logic (Gir87).

A coherence space is a reflexive M{2}-coherence space.

We define directly the connectives of linear logic on coherence spaces (rather than

defining by induction the interpretation of formulae). The web of multiplicatives and

additives is the same as in the relational semantics. Coherence is defined as follows. One

has ⌣⌢X⊕Y = ⌣⌢X ⊎ ⌣⌢Y and [(a, b), (a′, b′)] ∈ ⌣⌢X⊗Y iff [a, a′] ∈ ⌣⌢X and [b, b′] ∈ ⌣⌢Y .

Morphisms from X to Y in the corresponding (linear) category are just cliques of

X ⊸ Y = X⊥ P Y .

The interpretation of proofs in coherence spaces only differs from the relational seman-

tics on exponential rules. Let us recall that the interpretation of a proof is just a subset

of the web of the interpretation of the conclusion sequent. Soundness of the semantics

ensures that this set is a clique in the corresponding space.

There are two variants for the web of the exponentials : set based and multiset based.

In the multiset based semantics, the web of !X is the set of multisets which supports are

cliques in X :

|!X | = {µ ∈ Mfin(|X |) | supp(µ) ∈ Cl(X)} (4)

Two elements µ and ν of the web of !X are coherent iff the support of µ+ ν is a clique

of X .

The interpretation of exponential rules is the same as in the relational semantics but

restricted to the web of the exponentials. Two rules have their interpretation modified

by this restriction. In the contraction rule, the support of µ1 +µ2 has to be an anti-clique

of (the space interpreting) A. In the promotion rule : (i) the support of
∑

j∈J µj
i has to

be an anti-clique of Ai, for each i; (ii) and the support of [aj | j ∈ J ] has to be a clique

of A. In fact, one can easily verify that (i) implies (ii) so the only condition to check is

(i). This will also be the case in hypercoherences.

In the set based semantics, the web of !X is the set of finite cliques of X . The in-

terpretation of exponentials follows the last pattern but with sets and unions instead of

mulitsets and sums.
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π0

(

(one)
⊢ 1 (prom.)
⊢!1

π1

8

>

<

>

:

(one)
⊢ 1 (prom.)
⊢!1 (der.)
⊢?!1

π2

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(one)
⊢ 1 (prom.)
⊢!1 (der.)
⊢?!1 (bot)

⊢?!1,⊥

(one)
⊢ 1 (prom.)
⊢!1 (der.)
⊢?!1 (bot)

⊢?!1,⊥
(tens.)

⊢?!1, ?!1,⊥⊗⊥
(cont.)

⊢?!1,⊥⊗⊥

Figure 2. Proofs of Example 2

Example 1. In the introduction we gave the relational interpretation and the uniform

coherence space interpretation of a PCF term (term (1), page 4). The proof in Figure 1

is a linear logic version of this term annotated by the relational interpretation of its

sub-proofs. In this example, we have denoted (1, ∗) by t and (2, ∗) by f. The two points

which are forgotten by the coherence space semantics are printed with a line through

text and the points from which they come from are underlined.

Example 2. Another example of the action of uniformity concerns restrictions on the

number of times an argument will be copied. This is sligthly more subtle than just

removing pieces of dead code.

Consider the proofs of Figure 2. The intuitive meaning of π0 is that we make 1 available

ad libidum. If we add a dereliction as last rule, the resulting proof, π1, intuitively is

a program taking as argument another program which itself requires as argument an

arbitrary number of copies of 1. For instance, the two points ([[∗, ∗]]) and ([[∗]]) in the

interpretation of π1 will corresponds to provide the argument of π1 with respectively

two copies or one copy of 1. In fact π1 provides ounce its argument with any arbitrary

number of copies of 1.

Now consider two copies of π1 which we assemble into a unique proof by a combination

of bottom and tensor introductions (we could also have used the mix rule if available).

We contract the two copies of ?!1. The resulting proof π2 is shown in Figure 2.

In coherence spaces, the uniformity restriction forces the two copies of π1 to receive

each a program asking for 1 the same number of times. For instance, in coherence spaces:

([[∗, ∗], [∗, ∗]], (∗, ∗)) is in the interpretation of π2 but ([[∗], [∗, ∗]], (∗, ∗)) is not; while, in

the relational semantics, both of these points are in the interpretation.

2.5. Hypercoherences

An hypercoherence is a reflexive P∗
fin-coherence space. The interpretation of linear logic

in hypercoherences (Ehr93) follows exactly the same pattern as for coherence spaces. We

just stress a few points.

In a tensor one has x = {(a1, b1), . . . , (an, bn)} ∈ ⌣⌢X×Y iff π1x = {a1, . . . , an} ∈ ⌣⌢X

and π2x = {b1, . . . , bn} ∈ ⌣⌢Y . In a with, the dual of a plus, ⌢⌣A&B = ⌢⌣A ⊎ ⌢⌣B, hence

for every x ∈ P∗
fin(|A| + |B|), if x intersects both |A| and |B| then x ∈ ⌣⌢A&B (and

conversely).

The two variants for the exponentials, set based and multiset based, are also present.
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The coherence in !X is defined using a notion of section. If U = {xi | i ∈ I} is a finite

set of finite sets or of multisets we say that s is a section of U and write s ⊳ U when

for each i ∈ I there exists ai ∈ s such that ai ∈ xi and s ⊆ ∪i∈Ixi. A non empty finite

subset U of |!X | is coherent in !X iff each section of U is coherent in X .

Of course, since the notion of coherence differs between coherence spaces and hyperco-

herence, the notion of cliques and so, because of uniformity, the interpretation of proofs

also differ.

Note that the coherence in hypercoherence may have holes : in general, one can have

x ∈ ⌣⌢X and y ⊂ x without having y ∈ ⌣⌢X .

Property 1. In hypercoherence and coherence space semantics, the intersection of a

clique and of an anti-clique contains at most one point (determinism). But, moreover, in

these two semantics, if (a, c) ∈ f # g for f : A → B and g : B → C then there is only one

b such that (a, b) ∈ f and (b, c) ∈ g.

Let us recall that one cannot equip the relational semantics with a set based exponential

(|!X | = Pfin(|X |)) similar to the one of coherence spaces and hypercoherences. This will

not give a sound interpretation. Consider for instance the diagram setting the naturality

of dereliction

!X

!f

derX

X

f

!Y
derY

Y

In the particular case where f = {(a, b), (a′, b)}, one will have ({a, a′}, {b}) ∈ !f so

({a, a′}, b) ∈ !f # derY but ({a, a′}, b) /∈ derX # f . Hence the diagram won’t commute.

Saying it in a category free manner, with such a set based exponentials, the elimination

of a cut between a promotion and a dereliction won’t, in general, leave the interpretation

invariant.

3. Bipartite uniform and non uniform relational semantics

In this section, we introduce a simple semantics of linear logic, based on the relational

semantics and id-coherence spaces, and which admits both a non uniform version and a

uniform version. We use these two semantics to demonstrate that uniform semantics can

lose a lot of information about terms (proofs) they interpret.

Definition 5. A bipartite space is just a id-coherence space (|X |, ⌣⌢X , ⌢⌣X) where NX is

empty. So ⌣⌢X , ⌢⌣X is a bipartition of |X | and every bipartition of |X | defines a bipartite

space.

We further call positive web, denoted |X |+, the coherence of X and negative web,

denoted |X |−, the incoherence of X . The elements of |X |+ (resp. |X |−) are the positive

(resp. negative) points of X .
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Following the general definition (Def. 3) in our particular case, a clique is just a set of

positive points of the web.

The category Bip has bipartite spaces as objets and for morphisms between bipartite

spaces X and Y , the relations which are cliques in the bipartite space X ⊸ Y defined

below. Identities and composition are those of Rel. We now describe the non uniform

bipartite semantics of linear logic.

On formulæ the logical connectives are interpreted as follows:

— linear negation is given, as in the general P -coherence space case, by the exchange of

coherence and incoherence, so X⊥ = (|X |, |X |−, |X |+);

— both additives constants 0 and ⊤ are equal to (∅, ∅, ∅) ;

— the bipartite space 1 is equal to ({∗}, {∗}, ∅) and, so the bipartite space ⊥ is equal to

({∗}, ∅, {∗});

— the with is given by X & Y = (|X | + |Y |, |X |+ + |Y |+, |X |− + |Y |−) and the plus is

given by X ⊕ Y = (X⊥ & Y ⊥)⊥ which is the same bipartite space as X & Y ;

— the tensor of X and Y , X ⊗ Y , is the bipartite space |X | × |Y | whose positive web

|X ×Y |+ is equal to |X |+ × |Y |+. It follows that X P Y = (X⊥ ⊗Y ⊥)⊥ is such that

(a, b) is positive in X P Y iff a or b is positive and that X ⊸ Y = X⊥ P Y is such

that |X ⊸ Y | = |X | × |Y | and (a, b) ∈ |X ⊸ Y |+ iff a ∈ |X |+ implies b ∈ |Y |+.

— The of course of X , !X is the bipartite space of web Mfin|X | and of positive web

|!X |+ = Mfin|X |+. Thus a multiset µ, element of |!X |, is negative iff µ contains at

least one negative point of X . It follows that ?X = (!X⊥)⊥ is such that an element

µ of |?X | is positive iff it contains at least one positive point of X .

Remark 1. In contrast to the relational semantics, the bipartite semantics distinguishes

A and A⊥. In particular the multiplicative constants are distinct (this is not the case in

coherence and hypercoherence semantics).

As usual a context A1, . . . , An is interpreted by the same space as the formula A1 P
. . . P An . Interpretations of proofs are defined as in the relational semantics. One easily

verifies that a proof is interpreted by a set of positive points (a clique). The categorical

structure of the bipartite semantics is derived from the one of the relational semantics.

Morphisms involved in natural transformations of the semantics and morphisms obtained

by functorial constructions, seen as sets, are defined the same as in the relational seman-

tics and it is straightforward to verify that they actually contain only positive points, so

they are cliques.

3.1. Uniform bipartite semantics

We introduce a uniform variant of the bipartite semantics as follows. The uniform in-

terpretation of exponentials is given by a comonad (!
u
, deru, digu) described below. The

other categorical constructions are the same as in the non uniform bipartite semantics.

Setting Pos(X) = (|X |+, |X |+, ∅) for each bipartite space X and Pos(f) = f ∩ (|X |+ ×

|Y |+) for each f ∈ Bip(X, Y ) trivially makes Pos a functor.

Since f is a clique in X ⊸ Y , if (a, b) ∈ f and a ∈ |X |+ then b ∈ |X |+. Hence
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Pos(f) is equal as a set with Pos(idX) # f , where Pos(idX) shall be seen by set inclusion

as a morphism from Pos(X) to X . This can be used to verify that Pos commutes with

the composition: if f ∈ Bip(X, Y ) and g ∈ Bip(Y, Z) then we have the following set

equalities

Pos(f) # Pos(g) = Pos(f) # idPos(idY ) # g

= Pos(f) # g

= Pos(idX) # f # g

= Pos(f # g).

The functor !
u

is defined by setting !
u

= Pos ! (where ! is the functor “of course” of the

non uniform bipartite semantics). Remark that Pos ! = ! Pos. The natural transformations

deru : !
u
→̇ id and digu : !

u
→̇ !

u
!
u

are defined by setting deru,X = {[a] | a ∈ |X |+} (which is

equal as a set to derPos(X) and Pos derX) and digu = Pos(dig) (one has Pos !! = !
u

!
u
). We

have to verify that deru is actually a natural transformation (for digu this follows from

the definition). Let f ∈ Bip(X, Y ). Then

deru,X # f = deru,x # {(a, b) | a ∈ |X |+} = deru,X # Pos(idX) # f

which is equal as a set with

Pos(derX # f) = Pos(!f # derY ) = !
u
f # deru,Y .

And this concludes. The followings commutative diagrams are the image by Pos of the

corresponding commutative diagrams for (!, der, dig) in Bip.

!
u
E

!
u

idE

digE !
u

!
u
E

!
u

deru,E

!
u
E

!
u
E

!
u

idE

digu,E !
u

!
u
E

deru, !
u

E

!
u
E

!
u
E

digu,E

digu,E !
u

!
u
E

!
u

digu,E

!
u

!
u
E

digu, !
u

E

!
u

!
u

!
u
E

Hence (!
u
, deru, digu) is truly a comonad.

To achieve the verification that this setting form a new Seely categorical semantics of

linear logic one has to verify that the adjunction induced by the comonad (!
u
, deru, digu)

is monoidal. We won’t check this in detail but it can be easily derived from the fact

that in Rel the comonad (!, der, dig) induces a monoidal adjunction. Just remark that

the isomorphisms !
u
(X & Y ) ∼= !

u
(X) ⊗ !

u
(Y ) and !

u
⊤ ∼= 1 hold and are natural (since

Pos(X ′) ⊗ Pos(Y ′) ∼= Pos(X ′ ⊗ Y ′), Pos(f) ⊗ Pos(g) is the same set as Pos(f ⊗ g) and

Pos(1) = 1).

The interpretation of exponential rules in the uniform bipartite semantics is obtained

by a set restriction to the uniform web(s), as follows.

The interpretations of the two rules contraction and weakening, are, in fact, unchanged:

⊢ Γ, ?A, ?A : f
(cont.)

⊢Γ, ?A : {(γ, µ1 + µ2) | (γ, µ1, µ2) ∈ f}

⊢ Γ : f
(weak.)

⊢Γ, ?A : {(γ, []) | (γ) ∈ f}
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because in the sets produced by these two rules there are already only negative points in

?A. In the contraction rule, µ1 and µ2 contains only negative points of the interpretation

of A, so does µ1 + µ2. And for the weakening rule we have that [] is negative in ?A.

Thus, in contrast to the coherence space situation (for instance), the construction

associated with the contraction is the same as in the relational semantics.

The interpretation of the dereliction rule is:

⊢ Γ, A : f
(der.)

⊢Γ, ?A : {(γ, [a]) | (γ, a) ∈ f, a ∈ |A|−}

(where |A|− stands for |X |− with X interpreting A). Remark that this construction

forgets some points relative to the non uniform interpretation (contrarily to what happens

in coherence spaces).

The interpretation of the promotion rule is:

⊢ ?A1, . . . , ?An, A : f
(prom.)

⊢?A1, . . . , ?An, !A : f †u

where f †u is equal to the restriction to the uniform web of the f † of the relational

semantics. But again (contrarily to what happens in coherence spaces) there is no need

to restrict and so:

f †u = f † = {(
∑

j∈J

µj
1, . . . ,

∑

j∈J

µj
n, [aj | j ∈ J ]) | [(µj

1, . . . , µ
j
n, aj) | j ∈ J ] ∈ Mfin(f)}.

This is because of two reasons. First, the sum of multisets of negative points is a multiset

of negative points, so
∑

j∈J µj
i is in |?Ai|−, for each i. Second, since f is a clique, each

element (µ1, . . . , µn, a) of f is positive. Since each µi is negative in ?Ai it follows that a

is positive in !A and so [aj | j ∈ J ] ∈ |!A|+.

Remark 2. In the uniform bipartite semantics, each proof π of a sequent ⊢ ?A is

interpreted by the empty set.

To state this remark simply observe that the space interpeting ?A contains only neg-

ative points and that a clique is a set of positive points.

Example 3. The interpretation of the proof

(ax.)
⊢⊥, 1

(der.)
⊢?1,⊥

is the empty set. But the interpretation of the proof of Figure 1 is the same as in the

relational semantics.

Curiously enough the uniform bipartite semantics maps a lot of proofs to the empty

set. (But many other proofs are mapped on non trivial subsets of their relational inter-

pretations).
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3.2. Extensional collapses

The basis types bool and nat are interpreted by the respective bipartite spaces:

bool = ({t, f}, {t, f}, ∅) and

nat = (N, N, ∅).

Simple types are interpreted by the same bipartite spaces in the uniform bipartite

semantics and in the non uniform bipartite semantics. Moreover, the bipartite spaces

interpreting simple types are purely positive (every point of the web is positive) so every

subset of the web is a clique. Hence the uniform bipartite semantics, the non uniform

bipartite semantics and the relational semantics have the same extensional collapse. We

don’t know any direct expression of this collapse.

4. Non uniform K-coherence semantics

4.1. K-coherence spaces

From now on, we shall assume that a subset K of N \ {0, 1} is given, and we call the

corresponding MK-coherence space a K-coherence space.

4.2. Interpreting MALL... nothing new

The interpretation of the multiplicative additive fragment of linear logic (MALL) follows

a standard pattern.

Both additive constants are the empty K-coherence space:

0 = ⊤ = (∅, ∅, ∅).

Both multiplicative constants are the reflexive one point K-coherence space

1 = ⊥ = ({∗},MK({∗}),MK({∗})).

Let X1 and X2 be two K-coherence spaces.

— The K-coherence space X1 ⊕ X2 is defined by setting

|X1 ⊕ X2| = |X1| + |X2|,

NX1⊕X2
= NX1

⊎ NX2
and

⌢X1⊕X2
= ⌢X1

⊎ ⌢X2
.

Of course X1&X2 = (X1
⊥ ⊕ X2

⊥)⊥.

— The space X1 ⊗X2 is defined as follows. We set |X1⊗X2| = |X1|× |X2|. For i = 1, 2,

let πi be the canonical projections:

πi : MK(|X1 ⊗ X2|) → MK(|Xi|)

[(a1
j , a

2
j) | j ∈ J ] 7→ [ai

j | j ∈ J ].
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Then for each s ∈ MK(|X1 ⊗ X2|) we set

s ∈ NX1⊗X2
iff π1(s) ∈ NX1

and π2(s) ∈ NX2

s ∈ ⌣X1⊗X2
iff π1(s) ∈ ⌣X1

n or π2(s) ∈ ⌣X2

which suffices to determine NX1⊗X2
, ⌣X1⊗X2

and ⌢X1⊗X2
. We also set X1 P X2 =

(X1
⊥ ⊗ X2

⊥)⊥.

The linear map construction ⊸ between K-coherence spaces is defined by setting

X ⊸ Y = X⊥ P Y . A linear morphism from X to Y , two K-coherence spaces, is a

clique of X ⊸ Y . Remark that

s ∈ ⌣⌢X⊸Y iff

{

π1(s) ∈ ⌣⌢X =⇒ π2(s) ∈ ⌣⌢Y

π1(s) ∈ ⌢X =⇒ π2(s) ∈ ⌢Y

(5)

or equivalently,

s ∈ ⌣⌢X⊸Y iff

{

π2(s) ∈ ⌣Y =⇒ π1(s) ∈ ⌣X

(π1(s) ∈ ⌣⌢X and π2(s) ∈ NY ) =⇒ π1(s) ∈ NX .
(6)

or equivalently,

s ∈ ⌣⌢X⊸Y iff

{

⌣⌢Xπ1(s) =⇒ ⌣⌢Y π2(s)

⌢⌣Y π2(s) =⇒ ⌢⌣Xπ1(s)
(7)

We denote by NCOHK the category whose objects are the K-coherence spaces, whose

morphisms are the linear morphisms and where compositions and identities are defined

as in Rel (one easily verifies that the composition of a clique of X ⊸ Y and a clique

of Y ⊸ Z is a clique). For every K ′ ⊆ K, the corresponding categories come naturally

with forgetful functors UK,K′ : NCOHK → NCOHK′ which act as the identity on

morphisms.

The boolean type, denoted by bool and represented by the formula 1 ⊕ 1 will be

interpreted, in NCOHN\{0,1}, by the uniform N \ {0, 1}-coherence space whose web is

{t, f} and whose coherence is MN\{0,1}({t}) ∪MN\{0,1}({f}).

Proposition 2 (semantics of MALL). For each K ⊆ N\{0, 1}, the category NCOHK

is a semantics of MALL. And for each K ′ ⊆ K (in particular for K ′ = ∅) the functor

UK,K′ is logical w.r.t. the NCOHK and NCOHK′ MALL semantics (logicial means

that, commutes to the interpretations of sequents and proofs).

The fact that NCOHK is a semantics of MALL means that NCOHK is a symmetric

monoidal closed category (with ⊗ as tensor product and ⊸ as function space constructor)

which is ∗-autonomous (⊥ being the dualizing object), and furthermore, has all finite

products and coproducts (see (AC98) for precise definitions). The proof, sketched below,

is a straightforward verification.

Proof. The only thing to verify is that all the morphisms of Rel which make Rel a

∗-autonomous category, are cliques, that is linear morphism of the category NCOHK .
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Provided Y1 and Y2 are of disjoint web, Y1&Y2 equipped with the two projections

pi = {(a, a) | a ∈ |Yi|} : (Y1&Y2) → Yi

for i = 1, 2 is the Cartesian product of Y1 and Y2 and if f1 ∈ NCOHK(X, Y1) and f2 ∈

NCOHK(X, Y2) then the pairing of f1 and f2 is just (f1∪f2) ∈ NCOHK(X, Y1&Y2). In

fact one easily verifies that p1, p2 and f1 ∪ f2 are cliques. For each f ∈ NCOHK(X, Y ),

and f ′ ∈ NCOHK(X ′, Y ′),

f ⊗ f ′ = {((a, a′), (b, b′)) | (a, b) ∈ f, (a′, b′) ∈ f ′}

is obviously a clique of (X ⊗ X ′) ⊸ (Y ⊗ Y ′), thus the construction ⊗ on K-coherence

spaces is functorial. For each X, Y, Z ∈ NCOHK , the isomorphisms unitX : X ⊗ 1 ∼= X ,

assX,Y,Z : (X ⊗ Y ) ⊗ Z ∼= X ⊗ (Y ⊗ Z) and comX : X ⊗ X → X ⊗ X of Rel given by

unitX = {((a, ∗), a) | a ∈ X},

assX,Y,Z = {(((a, b), c), (a, (b, c))) | a ∈ X, b ∈ Y, c ∈ Z} and

comX = {((a, b), (b, a)) | a, b ∈ X},

are easily verified to be also isomorphisms in NCOHK . So together with the functor ⊗

it gives a symmetric monoidal structure on NCOHK which turns to be closed for the

built-in object of morphisms X ⊸ Y . Finally the dualising object ⊥ is clearly such that

X ⊸ ⊥ ∼= X⊥ thus X⊥⊥ is obviously isomorphic to X .

Remark 3 (foliation). The coherence relation is foliated with respects to the interpre-

tation of MALL i.e. for each formula A of MALL the coherence relations on multisets of

cardinality n in the interpretation of A is totally determined by the coherence relations

on multisets of cardinality n in the interpretation of the sub-formulae of A. In fact, this

is exactly by constructing independently each coherence relation of level k for k ∈ K

in the Bucciarelli-Ehrhard machinery that the K-coherence spaces semantics has been

obtained, so this remark also holds for the linear logic semantics with the exponential

provided by this machinery. Anticipating a bit, it will also hold for the new exponential

construction we present (and the forgetful functors UK,K′ will still be logical in LL).

4.3. Exponentials

Using the constructions presented by Bucciarelli and Ehrhard in (BE01), one can define

exponentials for K-coherence spaces.

This gives a semantics which accepts a variant of the well known Berry’s example of a

stable and non sequential function from bool×bool×bool to bool. Of course both the

standard (set based) hypercoherence semantics and the multiset based hypercoherence

semantics we use here reject such first order non-sequential functions.

The corresponding “of course” operation is denoted by !
i

and defined as follows. We

set |!
i
X | = Mfin(|X |). A multiset [xi | 1 ≤ i ≤ k] ∈ MK(|!

i
X |) (so that k ∈ K) is strictly

incoherent in !
i
X iff there exists a multiset [aj | 1 ≤ j ≤ k] ∈ MK(|X |) which is strictly
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incoherent in X and satisfies

[aj | 1 ≤ j ≤ k] ≤
k

∑

i=1

xi.

If such a multiset [aj | 1 ≤ j ≤ k] does not exist, [xi | 1 ≤ i ≤ k] is coherent and

then, it is strictly coherent exactly when
∑k

i=1 xi is star-shaped that is when there exists

a ∈ |
∑k

i=1 xi| such that

∀(aj)1≤j≤k ∈ |X |k, ([aj | 1 ≤ j ≤ k] ≤
∑

i∈I

xi and ak = a) =⇒ [aj | 1 ≤ j ≤ k] ∈ ⌢X .

For instance !
i
bool is given by:

[xi | i ∈ I] ∈ ⌣!
i
bool iff

∑

i∈I

xi = p[t] + q[f] with p, q > 0 and p + q ≥ ♯I

[xi | i ∈ I] ∈ ⌢!
i
bool iff

∑

i∈I

xi = p[t] + q[f] with 1 ≤ p + q < ♯I

hence [xi | i ∈ I] ∈ N!
i
bool iff

∑

i∈I

xi = [], k[t] or k[f] with k ≥ ♯I

Consider the following subset of |(!
i
bool⊗ !

i
bool⊗ !

i
bool) ⊸ bool|:

f = { (([], [t, t], [f, f]), t),

(([f, f], [], [t, t]), t),

(([t, t], [f, f], []), t) }.

It is a variant of the well known Berry’s example of a stable and non sequential function

from bool×bool×bool to bool. This function is not a morphism in the multiset based

hypercoherence semantics but the N\{0, 1}-coherence semantics with the !
i

exponential

accepts it ‡. Indeed, for each multiset s ∈ MK(f), on has π2(s) ∈ MK({t}) thus

π2(s) ∈ Nbool. With respect to Equation 5, the only way for s to be strictly incoherent

in (!
i
bool⊗ !

i
bool⊗ !

i
bool) ⊸ bool is to have π1(s) ∈ ⌢ in !

i
bool⊗ !

i
bool⊗ !

i
bool. But

if m1, m2 and m3 are the respective numbers of occurrences of points of f in s then

— if only one of the mi is non-zero then each of the projection of π1(s) on the three

arguments is neutral so π1(s) is neutral;

— if exactly two of the mi are non-zero (say m1 and m2) then the empty multiset does

not occurs in one of the three projections of π1(s) (here the third) thus the sum of the

multisets occurring in this projection contains enough t and f (here 2m1f and 2m2t)

comparatively to its cardinality (here m1 + m2) as to make it strictly incoherent in

bool. Hence π1(s) is surely strictly incoherent;

‡ Remark that the same function with [t] instead of [t, t] and [f] instead of [f, f], is rejected by this
semantics.
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— finally, if none of the mi is zero then π1(s) is coherent iff each of its three projections

on !
i
bool is coherent. That is iff

m1 + m2 + m3 > 2m2 + 2m3 (coherence on the first argument)

m1 + m2 + m3 > 2m1 + 2m3 (coherence on the second argument)

m1 + m2 + m3 > 2m1 + 2m2 (coherence on the third argument)

but we will then have that 3(m1 +m2 +m3) > 4(m1 +m2 +m3) which is impossible.

Thus f is definitely a clique of (!
i
bool⊗ !

i
bool⊗ !

i
bool) ⊸ bool.

The really surprising fact is that one can easily try to correct this by choosing another

definition for the coherence relations of the exponential construction and obtain in that

way a new semantics of linear logic. Among these variants for the exponentials there is

a most general one in a sense which will be made precise in Theorem 1 and Corollary 1.

Indeed the definition is guided by the need of Theorem 1.

First of all we adapt the notion of section of hypercoherences to the K-coherence spaces

setting.

Definition 6. If µ = [xi | i ∈ I] is a multiset of finite sets or of multisets and if s is

another multiset we say that s is a section of µ and we write s 2 µ when there exists a

family (ai)i∈I such that ∀i ∈ I, ai ∈ xi and s = [ai | i ∈ I] (in particular s and µ have

the same cardinality).

The notion of section between sets we used until now for hypercoherences can be

rephrased by saying that a set s is a section of a set x iff there exists two multisets µ and

ν such that ν 2 µ, supp(µ) = x and supp(ν) = s. We use the same name (section) but a

different notation for the two notions: ⊳ between sets, 2 between multisets.

Definition 7. For each K-coherence space X we define the K-coherence space !X as

follows. Its web is |!X | = Mfin(|X |) and for each element [xi | i ∈ I] of MK(|!X |) we set:

[xi | i ∈ I] ∈ ⌣!X iff ∃(ai)i∈I , [ai | i ∈ I] ∈ ⌣X and ∀i ∈ I, ai ∈ xi (8)

and

[xi | i ∈ I] ∈ N!X iff















[xi | i ∈ I] /∈ ⌣!X and

∃(aj
i )

j∈J
i∈I ,

{

∀i ∈ I, [aj
i | j ∈ J ] = xi and

∀j ∈ J, [aj
i | i ∈ I] ∈ NX

(9)

We also define ?X by setting ?X = (!X⊥)⊥.

When K = ∅, the exponential construction on objects is the standard exponential of

Rel.
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Example 4. The coherence in !bool is as follows. For µ ∈ MK(|bool|)

µ ∈ ⌣⌢!bool iff















supp(µ) ⊂ Mfin({t}) or

supp(µ) ⊂ Mfin({f}) or

[] ∈ µ

µ ∈ N!bool iff supp(µ) = {k[t]} or {k[f]}, k ∈ N.

Thanks to this exponential, our variant of the Berry’s example is successfully rejected

: if 3 ∈ K, then f (as previously defined) is not a clique. Take [a, b, c] ∈ MK(f) where a,

b and c are the three points of f , then each of the three projections of [a, b, c] on !bool

is strictly coherent so is the projection on !bool ⊗ !bool ⊗ !bool but the projection on

bool is neutral thus [a, b, c] ∈ ⌣X .

Example 5. Consider the K-coherence space G with web |G| = {a, b, c} and such that

if u ∈ Mfin(|G|) then: u ∈ NG iff supp(u) is a singleton, u ∈ ⌢G iff ♯ supp(u) = 2 and

u ∈ ⌣G iff supp(u) = {a, b, c}. The space G is in fact the sub-space of bool3 → bool of

web (the variant of) the Berry’s example f above.

Suppose 2 ∈ K. All the sections of [[a], [b, c]] are coherent in G moreover [a] and

[b, c] have not the same cardinality. So [[a], [b, c]] ∈ ⌢!G. Now suppose 3 ∈ K. Then

[[a], [b, c], [b, c]] admits the strictly incoherent section [a, b, c] but [[a], [a], [b, c]] not and so

[[a], [b, c], [b, c]] ∈ ⌣!G but [[a], [a], [b, c]] ∈ ⌢!G. So the coherence relations of !G depends

on multiplicities.

For each k ∈ K such that k ≥ 3, each m ∈ M{k}(|G|) such that supp(m) =

{[a, b], [a, c]} is strictly incoherent in !G but if 2 ∈ K, [[a, b], [a, c]] ∈ ⌢!G (all the sections

of [[a, b], [a, c]] are coherent in G and b is not neutral with any element of [a, c]).

Finally [[a, b, c], [a, b, c], [a, b, c]] is an example of a non neutral (strictly incoherent,

here) multiset in !G of support a singleton.

Proposition 3 (semantics of LL). Any category NCOHK with the exponentials of

Definition 7 is a semantics of linear logic (see (AC98) and (Bie95)) and for each K ′ ⊆ K

(in particular for K ′ = ∅) the functor UK,K′ is logical w.r.t. the NCOHK and NCOHK′

LL semantics.

Proof. We equip NCOHK with the comonad structure (!, der, dig) of Rel. We exploit

the fact that the required commutative diagrams already hold in Rel and therefore also in

NCOHK . Hence to check that (!, der, dig) is really a comonad we only need to prove that

if f is a clique of X ⊸ Y then !f is a clique of !X ⊸ !Y , that derX is a clique of !X ⊸ X

and that digX is a clique of !X ⊸ !!X . The same for the monoidality of the adjunction:

we only need to ckeck that the Rel isomorphisms !⊤ ∼= 1 and !(X&Y ) ∼= !X ⊗ !Y are

cliques (in both directions).

Let [(xj , yj) | j ∈ J ] ∈ MK(!f). If [bj | j ∈ J ] 2 [yj | j ∈ J ] then by construction of !f

there exists [aj | j ∈ J ] such that [(aj , bj) | j ∈ J ] ∈ MK(f) and [aj | j ∈ J ]2[xj | j ∈ J ].

Remark that since f is a clique, we have [(aj , bj) | j ∈ J ] ∈ ⌣⌢X⊸Y . In particular, if

[bj | j ∈ J ] ∈ ⌣Y then [aj | j ∈ J ] ∈ ⌣X . Hence if [yj | j ∈ J ] admits a strict incoherent
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section then (xj)j∈J admits one too. So

[yj | j ∈ J ] ∈ ⌣!Y =⇒ [xj | j ∈ J ] ∈ ⌣!X .

Now suppose [xj | j ∈ J ] ∈ ⌣⌢!X and [yj | j ∈ J ] ∈ N!Y . We must prove that [xj | j ∈

J ] ∈ N!X . There exists (bi
j)(i,j)∈I×J such that

∀j ∈ J, yj = [bi
j | i ∈ I] and ∀i ∈ I, [bi

j | j ∈ J ] ∈ NY .

By construction of !f there exists (ai
j)(i,j)∈I×J such that

∀(i, j) ∈ I × J, (ai
j, b

i
j) ∈ f and ∀j ∈ J, xj = [ai

j | i ∈ I].

Since [xj | j ∈ J ] ∈ ⌣⌢!X for each i ∈ I, [ai
j | j ∈ J ] ∈ ⌣⌢X . But, for each i ∈ I,

[(ai
j , b

i
j) | j ∈ J ] ∈ MK(f) ⊆ ⌣⌢X⊸Y and [bi

j | j ∈ J ] ∈ NY so [ai
j | j ∈ J ] ∈ NX , for each

i ∈ I. Finally [xj | j ∈ J ] ∈ N!X which concludes the proof that !f is a clique.

The fact that derX is a clique is straightforward. We now prove that digX is a clique

of !X ⊸ !!X . Let [(
∑

i∈Ij
xj

i , [x
j
i | i ∈ Ij ]) | j ∈ J ] ∈ MK(digX).

Suppose [[xj
i | i ∈ Ij ] | j ∈ J ] ∈ ⌣!!X . Then this multiset admits a section [yj | j ∈ J ]

strictly incoherent in !X . Hence this section [yj | j ∈ J ] admits a section [aj | j ∈ J ]

strictly incoherent in X . Clearly this last section is also a section of [
∑

i∈I xj
i | j ∈ J ] so

this multiset is strictly incoherent in !X .

Now suppose [
∑

i∈Ij
xj

i | j ∈ J ] ∈ ⌣⌢!X and [[xj
i | i ∈ Ij ] | j ∈ J ] ∈ N!!X . Then there

exists a family (yj
i )

j∈J
i∈I such that: for all j ∈ J , [yj

i | i ∈ I] equals [xj
i | i ∈ Ij ] (so I = Ij

and
∑

i∈I yj
i =

∑

i∈Ij
xj

i ); and for all i ∈ I, [yj
i | j ∈ J ] ∈ N!X . Hence for each i ∈ I,

there exists a family (aj
i,l)

j∈J
l∈Li

such that for all j ∈ J , yj
i = [aj

i,l | l ∈ Li] and such that

for all l ∈ Li, [aj
i,l | j ∈ J ] ∈ NX . Without any lost of generalities the Li can be chosen

pairwise disjoint. Setting L = ∪i∈ILi, we then have
∑

l∈L aj
l =

∑

i∈Ij
xj

i and for all l ∈ L,

[aj
l | j ∈ J ] ∈ NX . Hence [

∑

i∈Ij
xj

i | j ∈ J ] ∈ N!X .

The set {([], ∗)} is a clique of !⊤ ⊸ 1 and the set {(∗, [])} is a clique of 1 ⊸ !⊤ so

!⊤ ∼= 1. We now prove that !(X&Y ) ∼= !X ⊗ !Y , for each X and Y . The graph f of the

bijection map
{

Mfin(|X |) ×Mfin(|Y |) → Mfin(|X&Y |)

(x, y) 7→ x + y

is a relational isomorphism. It remains to prove that f is a clique of !(X&Y ) ⊸ (!X ⊗

!Y ) and that its transpose is a clique of (!X ⊗ !Y ) ⊸ !(X&Y ). Consider a multiset

[((xi, yi), xi + yi) | i ∈ I] ∈ MK(f). Since an element of ⌣X&Y is either an element of

⌣X or an element of ⌣Y , a section s of [xi + yi | i ∈ I] is strictly incoherent in X&Y iff

s is a strictly incoherent section of [xi | i ∈ I] or of [yi | i ∈ I]. It follows that

[xi + yi | i ∈ I] ∈ ⌣!(X&Y ) ⇐⇒ [(xi, yi) | i ∈ I] ∈ ⌣!X⊗!Y .

An element of NX&Y is either an element of NX or an element NY . Hence, if [xi + yi |

i ∈ I] is neutral in !(X&Y ), there exists a family (cj
i )

j∈J
i∈I such that for each j ∈ J ,

[cj
i | i ∈ I] ∈ NX&Y and such that J = JX + JY with, for each i ∈ I, [cj

i | j ∈

JX ] = xi and [cj
i | j ∈ JY ] = yi and this family splits into two families, the first one

corresponding to the neutrality of [xi | i ∈ I] in !X and the other one to the neutrality
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of [yi | i ∈ I] in !Y . Consequently the neutrality of [xi + yi | i ∈ I] in !(X&Y ) implies the

neutrality of [(xi, yi) | i ∈ I] in !X ⊗ !Y . The converse is straightforward. So the required

isomorphisms !⊤ ∼= 1 and !(X & Y ) ∼= !X ⊗ !Y holds. At last we obtain for free that

this two isomorphisms are naturals and that the adjonction involved by the comonad is

monoidal (see (Bie95)) just by using the fact that this is already the case in Rel.

4.4. The of course is the co-free commutative ⊗-comonoid

A commutative comonoid on a symmetric monoidal category C, with respect to a monoidal

structure (⊗, sym, ass, unit), is a 3-tuple M = (M, uM , µM ), where M ∈ C, uM ∈ C(M, 1)

and µM ∈ C(M, M ⊗ M), such that the following diagrams commute:

M ⊗ M

µM⊗idM

idM ⊗µM

M ⊗ (M ⊗ M)

assM,M,M

(M ⊗ M) ⊗ M

associativity

M

unitM

µM

M ⊗ M

idM ⊗uM

M ⊗ 1

neutrality

M

µM

µM

M ⊗ M

symM⊗M

M ⊗ M

commutativity

A comonoid morphism f from (M, uM , µM ) to (N, uN , µN ) is a morphism f ∈ C(M, N)

such that the following diagrams commute:

M

uM

f
N

uN

1

M

µM

f
N

µN

M ⊗ M
f⊗f

N ⊗ N

In each categorical semantics C of linear logic the “of course” naturally provides a

commutative comonoid (!X, weak, cont) for each object X : weakX is !⊤X where ⊤X

is the unique morphism of C(X,⊤) and contX is (!〈idX , idX〉) # eX where 〈idX , idX〉

denotes the pairing of the identity with itself and where eX is the isomorphism !(X &

X) ∼= !X ⊗ !X . Moreover for each f ∈ C(X, Y ), !f is a ⊗-comonoid morphism between

(!X, weakX , contX) and (!Y, weakY , contY ).

In NCOHK , weakX = {([], ∗)} and contX = {(x1 + x2, (x1, x2)) | x1, x2 ∈ |!X |}.

A commutative comonoid (F, uF , µF ) is said to be co-free over an object X of C

when there exists a morphism d ∈ C(F, X) such that for each commutative comonoid

(A, uA, µA), and for each f ∈ C(A, X) there exists a unique comonoid morphism f∗ from

(A, uA, µA) to (F, uF , µF ) such that f∗ # d = f .

(A, uA, µA)

f

f∗

(F, uF , µF )

d

X

By extension the “of course” ! is said to be the co-free commutative ⊗-comonoid or, for

short, to be co-free, when for each commutative comonoid (A, uA, µA), for each X ∈ C

and for each f ∈ C(A, X) there exists a unique comonoid morphism f∗ : (A, uA, µA) →
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(!X, weakX , contX) such that

f∗ # derX = f.

Remark 4. If ! is co-free then f∗ = id∗ # !f where id is the identity morphism in C(A, A).

Lemma 1. In Rel the exponential is co-free. Moreover if (A, uA, µA) is a commutative

⊗-comonoid in Rel then (a, x) ∈ (idA)∗ iff if (ai)1≤i≤n is such that [a1, . . . , an] = x then

∃(bi)0≤i≤n such that b0 = a, (bi, (ai+1, bi+1)) ∈ µA for each i < n, and (bn, ∗) ∈ uA.

Theorem 1 (co-free). The “of course” ! is the co-free commutative ⊗-comonoid of

NCOHK and the forgetful functor UK,∅ : NCOHK → Rel maps this structure to the

standard one.

Proof. We prove that for each commutative comonoid (A, uA, µA) of NCOHK for

each X ∈ NCOHK and for each f ∈ NCOHK(A, X), there exists a unique comonoid

morphism f∗ : (A, uA, µA) → (!X, der, cont) such that f∗ # der = f .

But if there is such an f∗ in NCOHK then UK,∅(f∗) is a comonoid morphism from

(UK,∅(A), UK,∅(uA), UK,∅(µA)) to (UK,∅(!X), UK,∅(derX), UK,∅(cont)) and

UK,∅(f∗) # UK,∅(derX) = UK,∅(f).

As (UK,∅(!X), UK,∅(derX), UK,∅(cont)) is the co-free ⊗-comonoid in Rel this means that,

in Rel,

UK,∅(f∗) = UK,∅(f)∗.

Moreover

UK,∅(f)∗ = UK,∅(id)∗ # !UK,∅(f)

and

!UK,∅(f) = UK,∅(!f).

So the only thing to prove is that UK,∅(id)∗ is a clique of Cl(A ⊸ !A).

Let [(ai, [ai
1, . . . , a

i
ni

]) | i ∈ I] be an element of MK(id∗). Then, using Lemma 1, for

each i ∈ I, let (bi
j)0≤j≤ni

be a family such that bi
0 = ai, (bi

j , (a
i
j+1, b

i
j+1)) ∈ µA for each

j < ni, and (bi
ni

, ∗) ∈ uA.

Suppose [[ai
1, . . . , a

i
ni

] | i ∈ I] ∈ ⌣!A then this multiset admits a strict incoherent

section. Up to a choice of an adequate indexation of the multiset [ai
1, . . . , a

i
ni

], we can

suppose without any loss of generality that this section is [ai
1 | i ∈ I]. Remark that due

to the existence of a section, none of the ni is zero. We then have [(ai, (ai
1, b

i
1)) | i ∈

I] ∈ MK(µA) with [ai
1 | i ∈ I] ∈ ⌣A. Hence [(ai

1, b
i
1) | i ∈ I] ∈ ⌣A⊗A. And, since

[(ai, (ai
1, b

i
1)) | i ∈ I] must be coherent for µA to be a clique of A ⊸ (A ⊗ A), we then

have [ai | i ∈ I] ∈ ⌣A.

Now suppose [ai | i ∈ I] ∈ ⌣⌢A and [[ai
1, . . . , a

i
ni

] | i ∈ I] ∈ NA. According to the

definition of neutrality in the “of course”, all the ni are equal, say ni = n(∀i ∈ I), and,

up to an appropriate re-indexing, [ai
j | i ∈ I] ∈ NA, for each 1 ≤ j ≤ n. Since [(bi

n, ∗) |

i ∈ I] ∈ MK(uA) ⊆ ⌣⌢A⊸1 and [∗ | i ∈ I] ∈ N1, this means that [bi
n | i ∈ I] ∈ ⌢⌣A.
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Now suppose [bi
k+1 | i ∈ I] ∈ ⌢⌣A for a certain k < n, then using [ai

k+1 | i ∈ I] ∈ NA

and [(bi
k, (ai

k+1, b
i
k+1)) | i ∈ I] ∈ MK(µA) it follows that [bi

k | i ∈ I] ∈ ⌢⌣A. Thus, for all

j ≤ n, [bi
j | i ∈ I] ∈ ⌢⌣A and in particular [bi

0 | i ∈ I] = [ai | i ∈ I] is then proved to be

both coherent and incoherent, that is to be neutral. So id∗ is a clique.

Consider a sub-category C of NCOHK which is a categorical semantics of intuitionistic

multiplicative exponential linear logic§. Let E be the operation modeling the “of course”

on objects in C. We shall say that this semantics is multiset based if for each X ∈ C:

— the web of E(X) is made of multisets of points of the web of X (i.e. |E(X)| ⊆

Mfin(|X |));

— the commutative comonoid structure provided with E(X) by the semantics is defined

by weak′X = {([], ∗)} (of type E(X) → 1) and

cont′X = {(x1 + x2, (x1, x2)) | x1 + x2 ∈ |E(X)| and x1, x2 ∈ Mfin(|X |)}

(of type E(X) → E(X) ⊗ E(X));

— the associated dereliction morphism is

der′X = {([a], a) | a ∈ |X |} (of type E(X) → X).

Corollary 1 (maximality of the co-free “of course”). If a sub-monoidal category

C of NCOHK is a multiset based LL semantics, of “of course” E then, for each object

X ∈ C,

⌣⌢E(X) ⊆ ⌣⌢!X (10)

and

⌢E(X) ⊆ ⌢!X . (11)

“Sub-monoidal category” means that C is a sub-category of NCOHK equipped with the

same symmetric monoidal structure as NCOHK .

Proof. Since C is a semantics of linear logic, E(X) comes with a ⊗-comonoid structure

(E(X), weak′X , cont′X) where weak′X is the weakening morphism and cont′X is the con-

traction morphism. Let der′X be the dereliction morphism for X of C. Using Theorem 1,

there exists a morphism der′X,∗ of E(X) ⊸ !X . Using Lemma 1 and due to the fact

that C is multiset based we obtain that der′X,∗ is equal to {(x, x) | x ∈ |E(X)|} (the

inclusion morphism of E(X) in !X). Finally, using Equation (5), it yields Equation (10)

and Equation (11).

We shall say that a multiset based semantics of LL in a sub-category C of NCOHK

is non uniform when the web of the “of course” E is the whole set of finite multisets

(i.e. |E(X)| = Mfin(|X |), ∀X ∈ C).

Corollary 2 (sequentiality failure).

§ We do not require C satisfies more, but a typical C for our purpose will be a new Seely category where
the multiplicative additive and orthogonal constructions are the ones of NCOHK and so one should
have a semantics for the full linear logic fragment, where the exponentials are given by a comonad.
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Each non uniform multiset based semantics of LL in a sub-monoidal category C of

NCOHK fails to reject the morphism {([t], t), ([f], t), ([t, f], t)} of type bool → bool.

Proof. One easily verifies that MN\{0,1}({[t], [f], [t, f]}) ∩ ⌢!bool = ∅ thus the mor-

phism above is indeed accepted by the NCOHN\{0,1} semantics. So this set is a fortiori

a morphism in each NCOHK semantics and, by maximality of the “of course”, in any

multiset based non uniform semantics in a sub-monoidal category of NCOHK .

This is a strong negative results since this set cannot be included in the interpretation

of a term of pcf. Our sentiment is that it will be the same for any reasonably sequential

calculus interpretable in our semantics of linear logic. Remark that the very similar

morphism {([t, t], t), ([f, f], t), ([t, f], t)} is the interpretation of λb. if b then (if b then

t else t) else (if b then t else t).

4.5. Determinism

From now on, we consider that K is a non-empty subset of N\{0, 1}. In that case the

power MK is strictly monotone and preserves disjointness.

Definition 8. Let NCohK be the full sub-category of NCOHK whose objects are the

weakly reflexive K-coherence spaces.

Let us recall that being weakly reflexive for a K−coherence space X means that:

NX ⊆ ∪a∈|X|MK({a}). (12)

Clearly NCohK is closed under the orthogonal, additive and multiplicative construc-

tions. This is also the case for the exponential construction as easily verified. Indeed

assume X is weakly reflexive and consider a neutral multiset [xi | i ∈ I] in !X . Then

there exists a family (aj
i )

1≤j≤p
i∈I such that, for each i ∈ I, xi = [aj

i | 1 ≤ j ≤ p] and, for

each 1 ≤ j ≤ p, [aj
i | i ∈ I] ∈ NX . So using weak reflexivity of X we obtain that there

exists a family (aj)1≤j≤p such that aj
i = aj(∀i, j) and consequently all the xi are equal.

Hence this sub-category is a denotational semantics of propositional linear logic. Each

forgetful functor UK,K′ between NCOHK and NCOHK′ (for K ′ ⊆ K) defines a forgetful

functor between NCohK and NCohK′ having similar properties and for which we use

the same notation UK,K′ .

Proposition 4 (determinism). If X ∈ NCohK and if x is a clique of X and y is an

anti-clique of X (that is a clique of X⊥) then ♯(x ∩ y) ≤ 1.

This is a direct consequence of Proposition 1.

Remark 5. It is worth remarking that in non-uniform K-coherence semantics we do

not have the second part of Property 1: if (a, c) ∈ f # g for f : X → Y and g : Y → Z

then there exists a b such that (a, b) ∈ f and (b, c) ∈ g but b is not necessarily unique.

But uniqueness of b holds again if MK({(a, c)}) ⊆ NX→Z and moreover in that case b is

such that MK({b}) ⊆ NY .
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We are not more interested in non weakly reflexive K-coherence spaces, and the cate-

gory NCOHK . In the sequel, the most general category will be NCohK .

5. Relating uniform and non uniform semantics

We now intend to define uniform K-coherence semantics and to relate them with non

uniform K-coherence semantics.

5.1. The neutral web

Proposition 4 can be made more precise since only certain points can be at the intersection

of a clique and an anti-clique. These points constitute the neutral web.

Definition 9. Let X ∈ NCohK . We call neutral web of X and we denote by |X |N,K (or

simply by |X |N) the set {a ∈ |X | | MK({a}) ⊆ NX}.

Example 6. For the K-coherence space G of Example 5 page 24 we have: [a, b] ∈ |!G|N,K ,

if K ⊆ {2}, [a, b, c] ∈ |!G|N,K and elsewhere [a, b, c] /∈ |!G|N,K .

A key result about the neutral web is its behaviour when an “of course” construction

is performed:

Lemma 2 (key lemma). For X ∈ NCohK one has

|!X |N,K = {x ∈ Mfin(|X |N,K) | supp(x) ∈ Cl(X)}

Proof. Let x ∈ |!X |N,K. Then for all k ∈ K, there exists a family (aj
i )

j∈J
1≤i≤k such that

[aj
i | j ∈ J ] = x and [aj

i | 1 ≤ i ≤ k] ∈ NX . Due to Equation (12), for each j ∈ J ,

aj
1 = . . . = aj

k. Hence for all k ∈ K, for all a ∈ x, k.[a] ∈ NX . So supp(x) ⊆ |X |N,K . Each

y ∈ MK(supp(x)) is a section of the multiset (♯y).[x] ∈ N!X ⊆ ⌣⌢!X , hence supp(x) is

a clique. Thus the left to right inclusion is proved. Conversely, let x ∈ Mfin(|X |N,K). If

supp(x) is a clique then k.[x] ∈ ⌣⌢!X for any k ∈ K. Moreover each of the element a of

x satisfies k.[a] ∈ NX thus k.[x] ∈ ⌣⌢!X for any k ∈ K. And this proves the right to left

inclusion.

Example 7. In (!G)⊥, the set x = {[a, b], [a, c]} ⊆ |(!G)⊥|N,K is not a clique if 2 ∈ K but

is a clique if 2 /∈ K. Hence [[a, b], [a, c]] /∈ |!(!G)⊥|N,{2} and [[a, b], [a, c]] ∈ |!(!G)⊥|N,{3}.

The property stated in this lemma teach us that a restriction to the reflexive subspaces

of K-coherence spaces has good chances to provide us with a new version of the semantics

comparable to the multiset based coherence space semantics, Equation (4), when K =

{2}. This will be successfully shown, among others things, in the next section. A more

direct consequence, Proposition 5, is that such a restriction can be performed at any

inductive step of the interpretation. Provided it is performed at the last step, the resulting

reflexive object (in the case of the interpretation of a formula) or morphism (in the case

of the interpretation of a proof) will be the same.
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Definition 10. If X ∈ NCohK , the neutral restriction of X is the sub-space of X

of web |X |N, that is (|X |N, NX ∩ M, ⌢X ∩ M, ⌣X ∩ M) where M = MK(|X |N), and

the neutral restriction of a clique x of X is x ∩ |X |N. The functor NK : NCohK →

NCohK , sometimes simply denoted by N , associates to objects and morphisms their

neutral restrictions.

One easily verifies that NK is indeed a functor.

Remark 6. The K-coherence space |X |N is reflexive. Moreover it is the maximal reflexive

subspace of X .

Proposition 5. The functor NK commutes with all the multiplicative additive con-

structions. Moreover NK ! = NK !NK .

Proof. The first statement is an obvious consequence of the corresponding definitions.

On objects, NK ! = NK !NK is a consequence of Lemma 2. Indeed, in the right part of

the equality stated in this lemma, Cl(X) can be replaced with Cl(NKX) since supp(x) ⊆

|X |N,K . This gives |!X |N,K = |!NKX |N,K which is what we wanted. The equality NK ! =

NK !NK on morphism is a straightforward consequence of the equality on objects.

5.2. Uniform K-coherence semantics

In this section, we define a uniform K-coherence semantics in the full sub-category of

NCohK which objects are reflexive K-coherence spaces. So uniform will be a synonym

of reflexive for objects of NCohK .

We denote by CohK the full sub-category of NCohK whose objects are the uniform

K-coherence spaces.

A uniform {2}-coherence space is just an ordinary coherence space.

The functor NK maps NCohK to CohK and on CohK , NK acts like the identity

functor.

Additive and multiplicative constructions of NCohK preserve uniform K-coherence

spaces. This is not the case for the “of course” functor. Fortunately, Lemma 2 gives a

clear hint on what should be the right exponentials for CohK .

Definition 11. We define the functor !
u

interpreting the “of course” in CohK by setting

!
u

= NK !. We denote by ?
u

the corresponding “why not” functor.

The web of !
u
X , called the uniform web, is then

| !
u
X | = {x ∈ Mfin(|X |) | supp(X) ∈ Cl(X)}

and the coherence of !
u
X is then given by

M ∈ ⌣⌢ !
u

X iff {m | m 2 M} ⊆ ⌣⌢X .

This definition of the exponentials appears as a multiplicities aware version of the

hypercoherences exponentials that have been introduced in (Ehr93).

As stated by the following theorem, these definitions give rise to a new class of uniform
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semantics together with a straightforward way to extract these interpretations from the

non uniform ones.

Theorem 2. For each K ⊆ N\{0, 1}, CohK equipped with the uniform exponentials

and the standard multiplicative additive structures of NCohK is a categorical semantics

of linear logic. Moreover:

1 the functor NK : NCohK → CohK is logical which means in particular that the

neutral restriction of the K-coherence space [A]K is the uniform K-coherent inter-

pretation [A]uK of a formula A and that the neutral restriction [π]K ∩ | ⊢ Γ|N,K of the

K-coherence interpretation of a proof π of a sequent ⊢ Γ is the uniform K-coherence

interpretation [π]uK of π;

2 when K = {2} this semantics is exactly the usual multiset based coherence semantics.

Proof. The multiplicative-additive part of the verification of the fact that CohK is a

semantics of linear logic is easy and relies essentially on the fact that N commutes to all

the additive and multiplicative constructions.

The exponential part is not very complicated either. By setting deru,X = N(derX)

and digu,X = N(digX) for each X ∈ CohK , we obtain two natural transformations

deru : N !→̇N id and digu : N !→̇N !! in CohK .

But N is the identity functor on CohK , N ! = !
u

and using Proposition 5 (N ! = N !N in

NCohK) we obtain N !! = !
u

!
u
, and also N !!! = !

u
!
u

!
u
. So deru and digu are in fact natural

transformations deru : !
u
→̇ id and digu : !

u
→̇ !

u
!
u
.

These two natural transformations endow !
u

with a comonad structure. In fact we

deduce the commutation of the required diagrams from the commutation of the corre-

sponding diagrams already holding for the comonad (!, der, dig) by use of the functor N .

The only non-obvious step is then to prove that for each X ∈ CohK ,

N dig!X = digu, !
u

X and N der!X = deru, !
u

X .

This can be done as follows. For all f ∈ NCohK(N !X, !X) one has

!f # dig!X = digN !X # f

hence

N(!f # dig!X) = N(dig!N !X # f)

and so

N !f # N dig!X = N(digN !X) # Nf. (13)

The set idN !X is clearly a clique of N !X ⊸ !X and so it can be seen as a (inclusion)

morphism i from N !X to !X . We then have the set equalities

N !i = id !
u

!
u

X and Ni = id !
u

X

so finally by taking f = i in Equation (13) we obtain the set equality

N dig!X = N digN !X that is N dig!X = digu, !
u

X .
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Starting from the equation

N(der!X # i) = N(!i # der!X)

one proves

N der!X = deru, !
u

X

in the same way.

Using Proposition 5 we obtain the isomorphisms !
u
A ⊗ !

u
B ∼= !

u
(A&B) and !

u
⊤ ∼= 1.

CohK has been proved to be a categorical semantics of linear logic and there is nothing

more to say for stating that N is logical.

The comonoid structure of the exponential !
u

is then the image of the comonoid struc-

ture of the exponential ! of NCohK through the functor N . The fact that (!
u
, deru)

is co-free relies essentially on the set equality deru,X = derX (∀X ∈ CohK) which is

just a consequence of the fact that all singletons are cliques in CohK . In fact, given a

commutative comonoid (A, uA, µA) of CohK and f ∈ CohK(A, X) one has

N(f∗) # deru,X = N(f∗ # derX)

for each f ∈ CohK(A, X) where f∗ is the unique comonoid morphism A → !X such that

f∗ # derX = f . But N(f∗) : A → !
u
X is also a comonoid morphism. Remark that the

inclusion morphism i : !
u
X → !X is a comonoid morphism hence N(f∗) # i : A → !X is a

comonoid morphism. We also have the set equalities

N(f∗) # i = N(f∗)

and, due to derX = deru,X ,

N(f∗) # i # derX = N(f∗) # deru,X = f.

By uniqueness of f∗, N(f∗) # i equals f∗, so we finally obtain the set equality f∗ = N(f∗),

and the co-freeness of !
u

follows.

Finally, [x, y] ∈ ⌣⌢ !
u

X iff ∀a ∈ x, ∀b ∈ y, [a, b] ∈ ⌣⌢X that is, in Coh{2}, iff supp(x + y)

is a clique. So in Coh{2} which is the category of coherence spaces, !
u

is the well-known

multiset based exponential of coherence spaces.

Spelling out the categorical definition of the semantics, the interpretation of linear

logic in CohK is now defined as its interpretation in Rel for the multiplicative-additive

and identity groups and with an exponential group similarly defined but using uniform

exponentials and the restriction they induce on the interpretation of proofs.

The promotion and the contraction rules cases are subject to the standard restrictions:

in the case of the contraction take only the (γ, µ1 + µ2) such that supp(µ1 + µ2) is a

clique of [A]K
⊥ and for the promotion, in f †, take only the points such that, for each

i ≤ k, supp(
∑

j∈J µj
i ) ∈ Cl([Ai]K

⊥). As for usual coherence spaces and hypercoherences,

this condition is sufficient to ensure that [a1, . . . , ak] ∈ Cl([A]K) (under the assumption

that f is truly a clique).
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5.3. Multicoherences

We call the categorical semantics based on CohN\{0,1} the multicoherence semantics¶,

we call multicoherences its objects, and we also call non uniform multicoherences the ob-

jects of NCohN\{0,1}. The only difference between hypercoherences and multicoherences

is that multicoherences take into account the multiplicity of points for the coherence

relation.

Proposition 6 (sequentiality). In the multicoherence semantics, every finite clique of

function type !(bool & . . . & bool) ⊸ bool is sub-definable in pcf.

Proof. The proof follows the same scheme as for the usual hypercoherence semantics.

Remark 7. All cliques in the multicoherence semantics are cliques in the coherence

semantics (this is a consequence of the foliation property).

5.4. Non uniform hypercoherences

Hypercoherences can be seen as particular multicoherences: the multicoherences X such

that

∀u ∈ ⌣⌢X , supp−1(supp(u)) ⊆ ⌣⌢X .

If X is a non uniform multicoherence having this property for both the coherence

relation and the incoherence relation we say that X is a non uniform hypercoherence. So

a non uniform hypercoherence is indeed simply a weakly reflexive P∗
fin-space. But it is

more convenient here to present non uniform hypercoherences as particular non uniform

multicoherences.

If X is a non uniform multicoherence, S(X) is the non uniform hypercoherence defined

by

⌣⌢S(X) = {u ∈ MN\{0,1}(|X |) | supp−1(supp(u)) ⊆ ⌣⌢X}

NS(X) = {u ∈ MN\{0,1}(|X |) | supp−1(supp(u)) ⊆ NX}

Remark that the operation S !
u

which maps X to S(!
u
X) is the hypercoherence multiset

based exponential construction on objects.

Theorem 3.

1 The sub-category NHc of NCohN\{0,1} of objects the non uniform hypercoherences,

equipped with the exponential S! on objects and acting like ! on morphisms is a

semantics of linear logic.

2 The functor N from NHc to Hc, the category of hypercoherences, is logical (for the

multiset based hypercoherence semantics).

3 The exponentials S! and S !
u

are respectively co-free in NHc and Hc.

¶ General graph theory misses a term for such graphs and, contrarily to the hyper- situation where
hypercoherences and hypergraphs are the same, multigraphs already exist but are not multicoherences.
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Proof. The proof of these statements follows from the proofs of Proposition 3, Theo-

rem 1 and Theorem 2. Just remark that some results can be re-used since for each non

uniform multicoherence X , one has S(!X) = S(!S(X)) and N(S(X)) = S(N(X)).

Remark that Corollary 1 applies to S! and S !
u
.

Example 8. The K-coherence space G of the Example 5 page 24 is uniform. And when

K = N\{0, 1}, G is an hypercoherence. The multisets [a, b] and [a, c] are elements of

|!G|N. The set x = {[a, b], [a, c]} ⊆ |!G|N is a anti-clique of S(!
u
G). But this set is not an

anti-clique (nor a clique) of !
u
G. Hence each finite multiset of support x is an element of

|?S(!
u
G)|N but not an element of |? !

u
G|N = |?!G|N.

For sake of direct usability, we spell out the definition of the non uniform exponential

of hypercoherences on objects directly in the P∗
fin-space setting. The definition of this

exponential, denoted !
nuh

is as follows.

If X is a weakly reflexive P∗
fin-space then !

nuh
X is the P∗

fin-space of web | !
nuh

X | =

Mfin(|X |) and such that for each x ⊆∗
fin | !

nuh
X |

⌣ !
nuh

X iff ∃s ∈ ⌣X , s ⊳ x (14)

x ∈ N !
nuh

X iff ∃µ, x = {µ} and ∀a ∈ µ, {a} ∈ NX (15)

Of course, !
nuh

X is weakly reflexive.

5.5. Extensional collapses

Consider the situation where a same symmetric monoidal closed category has two differ-

ent exponentials defining two different semantics of linear logic.

P.-A. Melliès has shown that if there is a coercion between the two exponentials which

preserves some structure then the two semantics will have the same extensional collapse

((Mel04)). He uses this result to prove that the extensional collapse of the multiset-based

hypercoherence semantics is the set-based hypercoherence semantics and he also reproved

the same thing for the coherence spaces semantics (this was already proved by Barreiro

and Ehrhard in (BE97)).

This result easily applies to our situation. We then obtain that the multiset based coher-

ence semantics and the non uniform coherence space semantics have the same extensional

collapse which is the set based coherence space semantics; the same for hypercoherences;

and the same for multicoherences which we equip with the set based exponential !
s
defined

by:

| !
s
X | = {x ∈ Pfin(|X |) | x ∈ Cl(X)}

M ∈ ⌣⌢!
s

X iff {m | m 2 M} ⊆ ⌣⌢X .

Of course this last exponential also provides a semantics of linear logic.
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We can characterize more precisly the relation between extensional collapses of uniform

and non uniform semantics.

Let M and M′ be respectively the non uniform and the uniform semantics either

of coherence spaces, hypercoherence or multicoherence semantics. Let ≈ and ∼ be the

extensional PERs respectively on M and M′. In what follows N is the neutral restriction

functor.

Lemma 3. Let σ and τ be simple types. If f is a clique of M(σ → τ) and x is a clique

of M(σ) then the clique N(f(x)) of M′(τ) is equal to N(f)(N(x)) and also to N(f)(x).

Proof. The equality N(f)(N(x)) = N(f)(x) is trivial. We only prove N(f(x)) =

N(f)(N(x)). Since Nf ⊂ f and Nx ⊂ x, N(f)(N(x)) ⊂ f(x) and since N is mono-

tone N(f)(N(x)) = N(N(f)(N(x))) ⊂ N(f(x)). Conversely let b ∈ N(f(x)) then there

exists a µ ∈ Mfin(x) such that (µ, b) ∈ f and k[b] is neutral for all k ∈ K (K = {2} or

K = N\{0, 1}). Since k[b] is neutral and f is a clique k[µ] is incoherent in !M(σ) but

since x is a clique k[µ] is also coherent in !M(σ). Thus µ ∈ N !M(σ) and so (µ, b) ∈ Nf ,

and µ ∈ Mfin(Nx). This concludes by stating b ∈ N(f)(N(x)).

Lemma 4. If σ is a simple type and if f and g are cliques of M(σ) then

f ≈σ g iff Nf ∼σ Ng.

Proof. This is trivially true on basis type (on basis type N acts as the identity functor).

Suppose this is true for types σ and τ . We prove the property for the type σ → τ .

Let f ≈σ→τ g and let x ∼σ y. Since Nx = x and Ny = y, by induction hypothesis,

x ≈σ y. Hence f(x) ≈τ g(y) and so, by induction hypothesis, (Nf)(x) ∼τ (Ng)(y). So

f ≈σ→τ g implies Nf ∼σ→τ Ng. Conversely let f and g be two cliques of M(σ → τ)

such that Nf ∼σ→τ Ng. Let x ≈σ y. Then, by induction hypothesis, Nx ∼σ Ny.

Hence Nf(Nx) ∼τ Ng(Ny) and N(f(x)) ∼τ N(g(y)). And, by induction hypothesis,

f(x) ≈τ g(y). This concludes proving the lemma by stating that Nf ∼σ→τ Ng implies

f ≈σ→τ g.

Theorem 4. The neutral functor N defines a one to one correspondence between the

extensional collapse of M and the extensional collapse of M′.

This is a direct consequence of the last lemmas.

Finally using the fact that the set based hypercoherence and multicoherence semantics

are both extensional we show that hypercoherences and multicoherences are extensionally

different by exhibiting, in Example 9, a relation at a functional type which is a clique

in one of two semantics but not in the other (this example was originally designed to

exhibit a set which is a clique in the set-based hypercoherence semantics but not in the

coherence spaces semantics).

Example 9. For the hypercoherence G of our last examples above, one has that {a, b}

and {c} are elements of | !
s
G| = |S(!

s
G)|. Moreover ({a, b}, t) and ({c}, f) are elements of

| !
s
G ⊸ bool| = |S(!

s
G) ⊸ bool|. The relation F = {({a, b}, t), ({c}, f)} is a clique of the
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hypercoherence S(!
s
G) ⊸ bool. But F is not a clique of the multicoherence !

s
G ⊸ bool,

since [{a, b}, {c}] is coherent but [t, f] is strictly incoherent.

6. Conclusion and further works

6.1. Static interactivity

The present work gives some strong evidence that static uniformity is a matter of re-

striction to possible results of computation, through interactions and especially through

interactions in a closed case: between a proof of A and a proof of A⊥. We further argue

on this point by adopting basic ideas of the interactive point of view on computation

developped in Girard’s ludics (Gir01).

The main idea is to consider the linear logic system extended with new rules (such

that the system still enjoys cut-elimination). Then a formula A and its linear negation

A⊥ can be both provable. Hence we can provoke interactions through cut elimination

between proofs of A and proofs of A⊥. If we further require that the extended logical

system admits one of the deterministic non uniform semantics we presented then the

consequence of determinism is that such an interaction involves at most one point.

Let suppose that we add two para-rules to linear logic:

(give up)
⊢

(divergence)
⊢Γ

a give up (this para-rule roughly corresponds to the daemon of Girard’s Ludics (Gir01))

rule and a divergence rule whose respective interpretations in the relational semantics

are a singleton (the unique point in the unit context ⊥) and the empty set. It is easy to

extend the cuts elimination procedure for this two rules and to check that for instance

the relational semantics extends into a semantics of the strongly normalizing calculus we

then obtain. In this setting a formula A and its dual A⊥ are always both provable.

When we apply a cut rule between a proof π′ of A and a proof π′′ of A⊥, the proof π

we obtain normalizes into a proof of the empty sequent. And there is only two cut free

proofs of the empty sequent: one is an instance of the give up rule and one is an instance

of the divergence rule, with an empty context. One easily verifies that the resulting cut

free proof is a give up (resp. a divergence) iff the relational interpretation of π′ and π′′

have a non empty intersection (resp. empty). If the interpretation is not empty we shall

say that π′ and π′′ interact. From the point of view of the bipartite relational semantics

the give up rule is not valid (since it introduces a sequent interpreted by a negative point)

and there can be no interaction between a proof of A and a proof of A⊥. We think that

this is the fundamental reason which makes possible a uniform semantics where so much

proofs have empty interpretations: uniformity is a restriction to possible interactions and

if no interaction is possible uniformity empties things.

Remark that give up and divergence are valid rules in the others coherence like seman-

tics we present in this paper. In particular, the property of determinism of non uniform

semantics tell us that when π′ and π′′ interact there is only one result of this interaction

(there is only one point in the intersection). This seems difficult to prove directly in the

relational semantics without introducing non uniform coherence relations. Moreover the
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result of interaction is always in the neutral webs of the various semantics (coherence

spaces, hypercoherences, multicoherences), hence, in the extended linear logic we use

here, a part of the web is never visited by closed interactions. This will be the case in

any extension of linear logic which admits one of these semantics.

In fact, one can imagine new para-rules such that there can be interactions on any

points of the relational semantics. It has to be checked if useful, but as Curien suggested

us, adding a sum rule like :

⊢ Γ ⊢ Γ (sum)
⊢ Γ

interpreted by a union in the relational semantics, will certainly gives a semantics of this

kind. But determinism will be lost.

6.2. Extending non uniform static semantics

Using the co-free exponential for non uniform static semantics have led to a comfortable

situation where non uniform semantics are deterministic and strongly related with the

uniform semantics. A (still) open question is: can the general construction Bucciarelli and

Ehrhard introduced (BE01) be modified so as to directly obtain the co-free exponentials

in a general way? Another related issue concerns full completeness for static semantics.

Ehrhard proves a completeness theorem in an indexed linear logic framework (Ehr03).

A better understanding of the co-freeness issue in indexed linear logic may help in con-

necting his result with usual static semantics (hypercoherences and coherence spaces).

In an unpublished work, G. Winskel has introduced a generalization of hypercoher-

ences. It may be interesting to adapt this generalization to a non uniform framework

including the semantics we present here.
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