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A BRODY THEOREM FOR ORBIFOLDS
FREDERIC CAMPANA & JORG WINKELMANN

ABSTRACT. We study the Kobayashi pseudodistance for orbifolds,
proving an orbifold version of Brody’s theorem and classifying
which one-dimensional orbifolds are hyperbolic.

1. INTRODUCTION

We study orbifolds as introduced in [4], define morphisms and discuss
hyperbolicity. For this purpose we establish a Brody theorem for orb-
ifolds (see [2] for the Brody theorem for complex spaces (compare also
[15] for a different approach)). Using this Brody theorem for orbifolds
we then determine which one-dimensional orbifolds are hyperbolic.

We also show in the last section that some of the weakly special but
not special projective threefolds constructed by Bogomolov-Tschinkel
in [1] have a non-vanishing Kobayashi pseudometric, strengthening in
these particular cases the result of [6].

There are two different classes of orbifold morphisms, baptised “clas-
sical” resp. “non-classcal”.

In the “classical sense” many problems are easier to handle because
“classical” orbifold morphisms behave very well with respect to étale
orbifold morphisms. In particular, the classification of one-dimensional
hyperbolic orbifolds can be obtained via “unfoldings”.

In contrast, for determining which one-dimensional orbifolds are hy-

perbolic in the “non-classical” sense we really need our “Brody theorem
for orbifolds”.

2. ORBIFOLDS

We always assume all complex spaces to be irreducible, reduced,
normal, Hausdorff and paracompact.

We recall some notions introduced in [4].

Let Q = {z € Q: 2 > 0}. An effective Q-Weil divisor A =" a,[Z;]
is a Weil divisor with all its coefficients a; in Q. , the Z; being pairwise
distinct irreducible reduced hypersurfaces on X. The support |A| of
A is the union of all Z/s. An orbifold (X/A) is a pair consisting

of an irreducible complex space X together with a Weil Q,-divisor
1
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A =" a;[Z;] for which
1
aie{l}u{l—E:mEN}‘v’i

In this case, a; = 1 — 1/m; (resp m; = 1/(1 — a;)) is the weight
(resp. the multiplicity) of Z; in A. It is convenient to consider co as
the multiplicity for the weight 1 =1 — é

If A is an empty divisor, we will frequently identify (X/A) with
X. If Z is a component of multiplicity 1 of A, then (X/A) may (and
frequently will be) identified with (X’/A’) where X’ = X \ Z and
A=A -17].

An orbifold (X/A) is called compact iff X is compact and A contains
no irreducible component of multiplicity 1 (=weight o).

An orbifold (X/A) is smooth (or non-singular) if Y is smooth and A
is a locally s.n.c. divisor.

3. ORBIFOLD MORPHISMS

Orbifold were introduced in [4] in the context of fibrations. For a re-
ducible fiber of a fibration there are two ways to define its multiplicity:
Classically one takes the greatest common divisor of the multiplicities
of its irreducible components. Non-classically (and this is the point
of view emphasized in [4]) one takes the infimum of these multiplici-
ties. Correspondingly, we define two notions of orbifold morphisms, a
“classical” one and a “non-classicial” one.

Definition 1. Let (X/A) be an orbifold with A = ".(1— m%)ZZ where
m; € NU{oo} and where the Z; are distinct irreducible hypersurfaces.

A holomorphic map h from the unit disk D = {z € C : |2| < 1}
to X is a (non-classical) “orbifold morphism from D to (X/A)” if
h(D) ¢ |A| and if, moreover mult,(h*Z;) > m; for alli and x € D with
h(z) € |Z;|. If m; = oo, we require h(D)NZ; = {}. The map h is called
a “classical orbifold morphism” if the condition “mult,(h*Z;) > m;” is
replaced by the condition “mult,(h*Z;) is a multiple of m;”.

Definition 2. Let (X/A) and (X'/A’) be orbifolds. Let Ay be the
union of all irreducible components of A with multiplicity 1 (equiva-
lently: weight co). An “orbifold morphism” (resp. “classical orbifold
morphism”) from (X/A) to (X'/A") is a holomorphic map f : X\A; —
X' such that

(1) f(X) Z |A].

(2) For every orbifold morphism (resp. every classical orbifold mor-

phism) in the sense of def. 1 g : D — (X/A) with g(D) ¢
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F7Y(|A]) the composed map fog: D — X' defines an orbifold
morphism from D to (X'/A").

Remark. If one would like to obtain a purely algebraic-geometric defi-
nition in the case where X, X', A and A’ are algebraic, one might use
smooth algebraic curves instead of the unit disc.

Remark. Both notions (“classical” versus “non-classical”) differ sub-
stantially. The class of “classical orbifold morphism” is a much more
restricted one. Questions concerning “classical” morphism often can be
handlel easily by using étale orbifold morphisms, which does not work
in the non-classical setup. See 77 below. Similar differences occur also
for questions related to function field and arithmetic versions, see [5].

4. EXAMPLES OF ORBIFOLD MORPHISMS

4.1. Elementary properties. Composition. If f : (X/A) — (X'/A")
and g : (X'/A") — (X"/A") are orbifold morphisms, so is g o f :
(X/A) — (X”/A") unless (go f)(A) C |A”].

Empty divisors. If A, A" are empty Weil divisors on complex spaces
X resp. X', then every holomorphic map from X to X’ defines an
orbifold morphism from (X/A) to (X'/A’).

Magjorisation/Minorisation. If f: (X/A) — (X'/A’) is an orbifold
morphism and A” is a Q-Weil divisor on X’ with A” < A’, then f is
an orbifold morphism to (X'/A”), too.

Similarly: If f: (X/A) — (X'/A’) is an orbifold morphism and A"
is a Q-Weil divisor on X with A” > A then f is an orbifold morphism
from (X/A"), too.

If f: X — Y is a holomorphic map of complex spaces and D is an
irreducible reduced hypersurface on Y such that

rix = (via - 2yo)

n

is an orbifold morphism for all n € N, then f(X) N |D| = 0.

4.2. Curves. Let C and C’ be smooth complex curves, p € C, p' € (',
n,n’ € N. Then a non-constant holomorphic map f : C — ('
is an orbifold morphism from (C/(1 — 1){p}) to (C'/(1 — L){p'})
mult, f*[{p'}] > %' and mult, f*[{p'}] > n' for z € C'\ {p}.

In particular, if C = C" and p = p/, then the identity map defines an
orbifold morphism iff n > n'.

4.3. Automorphisms. Let (X/A) be an orbifold. An holomorphic
automorphism f of X is an orbifold morphism iff f*A = A.
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4.4. Blown up surface. Let S be a complex surface and 7 : S —
S the sigma-process centered at a point ¢ € S. Let D; be a finite
family of irreducible reduced hypersurfaces (i.e. curves) on S with total
transforms 7*D; and strict transforms bl Then ©*D; = lA)Z + d; B
where F = 7 !(c) and where d; denotes the multiplicity of D; at c. Let
A= (1- ni)Dl for some n; € N and let A be a Q-Weil divisor on S.

Let m = max; 2. Then 7 : S — S defines an orbifold morphism from

1

(S/A) to (S/A) iff each D; occurs with multiplicity at least (1 — n%) in

A and in addition E occurs with multiplicity at least 1 — % in A.

4.5. Quotients by group actions. Let GG be a discrete group acting
effectively on a complex curve Y. Such an action is called “proper”
resp. “properly discontinuously” if the map p: G XY — Y x Y given
by u(g,y) = (g - y,y) is a proper map. In particular, if G is finite,
then every action of G is proper. The quotient X = Y/G has a the
structure of a ringed topological space in a canonical way. If GG is acting
properly, Y/G is a complex space. If in addition dim(Y) = 1, then Y/G
is smooth.

For y € Y let G, denote the isotropy group at y, ie. G, = {g :
gy = y}. Assume that dim(Y) = 1. In this case Y/G is smooth
and furthermore we can define a Q-divisor A on X = Y/G by A =
Devye(l = 1/#Gy){lyl}-

Then (X/A) is an orbifold such that the natural projection from Y
onto (X/A) is a smooth orbifold morphism.

5. RAMIFICATION DIVISORS
5.1. Existence.

Theorem 1. Let f : X — Y be a surjective holomorphic map with
constant fiber dimension between irreducible normal complex spaces.

Then there exists a unique Weil divisor Ry on X with the following
properties:

(1) If Dy and D are reduced irreducible hypersurfaces on X resp. Y
and Do occurs with multplicity m > 2 in f*Dy, then Dy occurs
with multiplicity (m — 1) in Ry.

(2) f(Ry) contains no open subset of Y.

Notation. This divisor Ry is called “ramification divisor”.

Remark. If the map is not surjective or the fibers are not equidimen-
stonal, then in general there 1s no such divisor with these properties.
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Proof. We simply define R as the sum of all D, with respective mul-
tiplicities as required by the first property. There are two problems in
doing so:
e Given an irreducible reduced hypersurface Dy C X, we need
that there is at most one irreducible reduced hypersurface Dy C
Y such that |Do| C |f*Dy].
e The sum must be locally finite.

The first property is a consequence of the assumption that f is sur-
jective with equidimensional fibers. For the second we observe that,
for any such Dy with multiplicity > 2, the support |Dy| must not in-
tersect the set Q of all non-singular points x € X for which f(z) is
non-singular and Df : T, X — Ty)Y is surjective. The complement
of €1 is an analytic subset of X, hence it locally contains only finitely
many hypersurfaces. For this reason the sum of all such Dy is locally
finite. 0

Proposition 1. If f is a surjective finite morphism between smooth
complex manifolds X and Y, then Ry is linearly equivalent to Kx ®
(f*Ky)"
This follows by pulling-back n-forms (n = dim(X) = dim(Y)).
There is no such statement in the case where the fibers are positive-
dimensional: Let C' be a compact smooth curve and let p;, ps be the

projections from the product X = C' x P, to its factors. Then R, =0,
but Kx ® (pTKc)_l ~ p;Kpl.

5.2. Composition rule.

Proposition 2. Let f: X =Y and g:Y — Z be surjective holomor-
phic maps with equidimensional fibers between normal complex spaces.
Then

Ryop = Ry + ["Ry — Syq
where Sy, denotes the sum of those irreducible components of Ry which
are mapped dominantly on'Y by go f.

5.3. Orbifold morphisms and ramification divisor.

Proposition 3. Let (X/A) and (Y/A') be smooth orbifolds. Let f :
X — Y be a surjective holomorphic map with constant fibre dimension
between irreducible complex spaces.

Then f defines an orbifold morphism from (X/A) to (Y/A') if and
only if (Rf + A — f*A’) > 0.

Proof. We may check this for each irreducible component separately.
Thus let H be an irreducible component of A with multiplicity (1—1/n)
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and let H' be an irreducible component of A" with multiplicity (1—1/m)
such that |H| C |f*H’|. Assume that H occurs with multiplicity d in
f*H'.

In order for to be an orbifold morphism, we need that ¢* f*H’ has
multiplicity at least m whenever g : D — X is a holomorphic map for
which ¢*H has multiplicity > n. This is the case if nd > m.

On the other hand the multiplicity of H in Ry + A — f*A’ equals
(d—1)+(1—=1/n)—(d(1 —1/m)). Now

(d—1)4+(1—=1/n)—(d(1—=1/m)) =—1/n+d/m
and (—1/n + d/m) > 0 holds if and only if nd > m. O
Lemma 1. Assume that there exists a non-constant orbifold morphism
f:(C/A) — (C'"/A") for some smooth compact Riemann surfaces C
and C'. Let Ko and Kgr denote the respective canonical line bundles

on C resp. C'.
Then

deg(Kc + A) > d.deg(Keor + A'),

if d is the geometric degree of f (ie: the number of points of one of its
generic fibres).

Proof. Because f is an orbifold morphism, we have Ry +A — f*A’ > 0.
On the other hand, Ry ~ K¢ — f*Kcr. Therefore

deg (KC — f*KC’ + A - f*A,) > 0.
Hence

deg (Ko + A) > (deg f)deg (Ko + A') > deg (Ko + A') .

6. ORBIFOLD BASE

Lemma 2. Let X and Y be complex spaces, A an orbifold divisor on
X and A" and A" be orbifold divisors on'Y.

Assume that f : X — Y is a holomorphic map which defines an
orbifold morphism from (X/A) to both (Y/A") and (Y/A").

Then f likewise defines an orbifold morphism to (Y/ max{A’, A"}).

Definition 3. Let f : X — Y be a holomorphic map of complex spaces.
Then (Y/A) is an “orbifold base” for f if A is a maximal Q-Weil
divisor for which f defines an orbifold morphism from (X/0) to (Y/A).

In view of lemma 2 the following is immediate:
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Lemma 3. Let f: X — Y be a holomorphic map of complex spaces.

FEither there exists an orbifold base or there is an infinite sequence of
distinct irreducible reduced hypersurfaces H; on'Y such that f : X —
(Y/3H;) is an orbifold morphism.

Proposition 4. Let X be an irreducible reduced complex space and let
f be a surjective holomorphic map from X to an other reduced complex
space Y .

Then there ezists an orbifold base (Y/A).

Proof. Let H be an irreducible reduced hypersurface in Y for which
there exists a number n > 2 such that f is an orbifold morphism
to (Y/(1 — 2))H. Then for every p € X, ¢ = f(p) € H and every
holomorphic map ¢g : D — X with

9(0)=p
we have multy((f o g)*D >n > 2.
Let
Q= {x € X,¢ : Tf, is surjective }
Then Q can not intersect f~'(H,e,). Therefore |[H| C Y\ f(2). But
Y\ f(Q) is an analytic subset of Y. It follows that the family of all

hypersurfaces H; for which there exists a number n; such that f : X —
(Y/(1 = L)H;) is a locally finite family. Hence

1
A =max(l — —)H;
m;
exists and (Y/A) is the orbifold base for f: X — Y. O

Remark. Surjectivity of f is crucial, as shown by the following exam-
ple of a curve Q and a holomorphic map i : () — Py for which there
are infinitely many curves Ly in Py such that f : Q — (P2/3Ls) is an
orbifold morphism.

Let S be a finite subset of a smooth quadric @ in Py. For each s € S
let Ls denote the line through s which is tangent to Q) at s. Since
deg(Q) = 2, the two curves Qand Ly intersect only at s and there with
multiplicity two. Then the embedding i : Q — Py defines an orbifold
morphism from Q = (Q/0) to (Py/A) with

A= Z %[LS]
seS

Note that S is an arbitrary finite subset, we do not need any bound on
its cardinality.
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7. CANONICAL DIVISORS

Definition 4. For a smooth orbifold (X/A) we define the canonical
divisor K(x/ay as Kx + A.

(X/A) is said to be of “general type” if K(x)a) = Kx + A is a big
divisor on X.

7.1. Etale morphisms.

Definition 5. Let (X/A) and (X'A’) be smooth orbifolds. An orbifold
morphism 7 : (X/A) — (X'A’) is called étale if w induces a finite mor-
phism from X to X' and R, = A — 7* A" where R, is the ramification
divisor of m: X — X'.

If (X/A) and (X'/A') are compact, this is equivalent to the condition
Ko an = Koya)-

If in addition X and X’ are one-dimensional, a finite morphism f :

X — X' defines an étale orbifold morphism if and only if it is an
orbifold morphism, and:

deg(KX + A) = deg(K(X/A) =d. deg(KX/ + A/) =d. deg(K(X//A/).

A holomorphic map f : D — D gives an étale orbifold morphism

from (D/ (1 — 1) [{0}]) to (D/ (1= L) [{0}]) iff f'(2) # O for z # 0
and nmulty(f) = m.
Examples of étale orbifolds morphisms are given in §?7 below.

8. UNFOLDING ORBICURVES

Theorem 2. Let (C/A) be a smooth orbifold with dim(C) = 1.
Then there exists a finite étale (in th sense of def. 5) orbifold mor-
phism from a curve C' to (C/A), unless (C'/A) is isomorphic to

(B1/(1~ )[{oo)]
(B1/(1~ —)[{oo}] + (1~ - [{0)]
with m # n.

As explained in [13] (p.??), this follows from group-theoretical work
of Fox ([8]), Bundgaard and Nielsen ([3]).

8.1. Examples. Consider the case (2,2,2,2) (meaning that the sup-
port of A consists of 4 distinct points with weights 1/2 and multiplicity
2 each). For every four distinct points p; on Py there exists an elliptic
curve F with a 2 : 1-ramified covering 7 : £ — Py which is ramified
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precisely over the p;. This covering is étale in the orbifold sense, and
provides an unfolding of the given orbifold on P!.

Observe that Aut(IP;) acts triply transitively on Py, so that if the
support of A consists of three points, these can be assumed to be
0,1, c0.

For the multiplicities (2,4,4) we use the elliptic curve C' defined by
y? = 23 — z with ramified covering C' — P, given by the meromorphic
function z?. Then above 0 (resp. 1, cc), there are 1 (resp. 2; 1) points
with ramification multiplicities 4 (resp. 2; 4), and no other ramification.
This ramified cover is thus an unfolding of this (2,4,4) orbifold on P'.

For the multiplicities (2, 3,6) we use the elliptic curve C' defined by
y? = 23 + 1 with ramified covering C' — P; given by the meromorphic
function y? = 2® + 1. Then above 0 (resp. 1, 0o), there are 3 (resp. 2;
1) points with ramification multiplicities 2 (resp. 3; 6), and no other
ramification. This ramified cover is thus an unfolding of this (2,3, 6)
orbifold on P!,

For the multiplicities (3, 3,3) we use the elliptic curve C' defined by
y? = 23 + 1 with ramified covering C' — P, given by the meromorphic
function y. Then above —1 (resp. 1, 00), there is one single point with
ramification multiplicity 3, and no other ramification. This ramified
cover is thus an unfolding of this (3, 3, 3) orbifold on P*.

9. FUNDAMENTAL GROUP

Definition 6. Let (X, A) be an orbifold.
The orbifold fundamental group is the quotient of w1 (X \ |A|) by the
normal subgroup N generated by all loops who can be realized as the

image of t — %GZMt under some classical orbifold morphism from the

unit disk (D, 0) to (X, A).

Lemma 4. Assume that X is smooth. Then N s generated by small
loops around each connected component of the smooth part of |A|.

Proof. Let H : [0,1] x D — X be a homotopy between f: D — X and
a constant map with value p € X \ |A|. Since X is smooth we may
assume by transversality arguments that H stays away from Sing(D).
This implies the statement. O

Corollary 1. Let X be a complex space, locally irreducible at x € X,
Z a closed subvariety. Then there exists an open neighbourhood W of
x in X such that m (W '\ Z) is generated by those elements which arises
as the image of a loop in D* under a holomorphic map f : D — W
with f~1(W) = {0}.
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Proof. Desingularize (X,Z) and then use the preceding observation
that the fundamental group can be generated by small cycles around
the smooth parts of the 7=1(7). O

Proposition 5. A classical orbifold morphism induces a group homo-
morphism between the orbifold fundamental groups.

Remark. This statement is very false for the (non-classical) orbifold
morphisms. For example, z — 2% induces a non-classical orbifold mor-
phism from (D/(1—1)[{0}]) to (D/(1—L)[{0}]) whenever dn > m but
there is no natural group homomorphism from m(D/(1 — 2)[{0}]) =
Z/nZ to m(D/(1 — =)[{0}]) = Z/mZ unless n divides m.

Proof. Each element v € 7 (X \ |A|) can be represented by a loop
inside X \ (|Rs + A|). Let 7; (I = 1,2) be such loops homotopic to
7. Observe that f(v;) C X \ |A’|. The ~; homotopic to each other in
X\ |A|l. For z € X \ |A| we have f(x) € |A’| unless © € Ry. Hence
the homotopy classes of f o~; differ only by an element of N'.

It follows that there is a group homomorphism between the orbifold
fundamental groups. O

Proposition 6. Let f : (X/A) — (X'/A’) be an étale orbifold mor-
phism and let g : (D,0) — (X, A) be a classical orbifold morphism.

Then there exists a classical orbifold morphism g : D — (X'/A’)
such that g = f o g.

Proof. Via considering fiber products it suffices to consider the case
where dim(X) = 1 in which case the claim follows from local calcula-
tions. U

Remark. Again this is very false for non-classical orbifold morphisms:
h : z v z" defines an étale orbifold morphism from D to (D/(1 —
L)[{0}]), but for a given orbifold morphism g : D — (D/(1 — £)[{0}])
there exists a lift g only if g is in fact a classical orbifold morphism.

Proposition 7. Let X/A) be an orbifold for which X is a smooth
curve. Let T" be a subgroup of the orbifold fundamental group m (X/A).

Then there exists an orbifold (X'/A") and an étale orbifold map f :
(X'/A") — (X/A) such that (m(f))(m (X'/A")) =T.

Proof. Take associate unramified covering of X \ |A| and compactify.
O

Remark. Thus classical orbifold morphisms from the unit disc to an
orbifold curve (C/A) can be lifted to unfoldings of (C'/A), while their
non classical versions cannot. For this reason the study of these clas-
sical maps reduces to the non orbifold case on any unfolding, while the
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study of the no classical version poses (seemingly) new problems. On
the level of arithmetics, exactly the same situation appears: see [7] for
the classical orbifold version of Mordell’s conjecture on curves, and [5]
for its non-classical version (which is presently only a conjecture).

10. UNIFORMIZATION

Proposition 8. A smooth one-dimensional orbifold (X/A) has trivial
fundamental group (as defined in ?2) if and only if it is isomorphic to
one of the following: C, D, Py (P1/(1 —L){oc}) or (Py/(1— 1){oo} +
(1 — 1){0}) with ged(n,m) = 1.

For every smooth one-dimensional orbifold (X/A) there exists a smooth
one-dimensional orbifold (X /A) with trivial fundamental group and an

étale orbifold morphism m : (X/A) — (X/A).

11. HYPERBOLICITY AND KOBAYASHI PSEUDODISTANCE

We recall (and extend) from [4] the notion of orbifold Kobayashi
pseudodistance by restricting to orbifold morphisms from the unit disc
to (X/A).

More precisely:

Definition 7. Let (X/A) be an orbifold with A = ", a;H;. Let Ay
be the union of all H; with a; = 1 (ie: weight one, or equivalently
multiplicity infinite).

The orbifold Kobayashi pseudodistance of the orbifold (X/A) is the
largest pseudodistance on (X \ |A1]) such that every orbifold morphism
from the unit disc D to (X/A) is distance-decreasing with respect to
the Poincaré distance on the unit disc.

One defines similarly the classical orbifold Kobayashi pseudodistance
on (X/A) by replacing the above set of orbifold morphisms from the
disc to (X/A) by their classical versions.

Remark. Let dx (resp. dix/a); resp. dZ‘X/A)) be the usual (resp. orb-
ifold; resp. classical orbifold) Kobayashi pseudodistance). Then we
have:

dy < dx/a) < dix/ay < dxyal-
It is clear that dx and d(x,a) are usually very different as well as dsz/A)
and dx\\a. But we do not know a single example in which dx,ay and

dix/ny) differ.

The definition implies immediately that the (classical) orbifold Ko-
bayashi pseudodistance is distance-decreasing under (classical) orbifold
morphisms between orbifolds.
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As in the case of the usual Kobayashi pseudodistance for manifolds
there is an equivalent definition using chains of disc:

Forxz,y € X \|Aq] the (classical) Kobayashi pseudodistance d(x/a)y is
the infimum over ) . dp(p;, q;) where dp is the distance function on the
unit disc D induced by the Poincaré metric and the infimum is taken
over all finite families f1,... fy of (classical) orbifold morphisms from

D to (X/A) with fi(p1) =z, falqs) =y and fi(qr) = frs1(prr1)-
From this definition it is easily deduced that:

d(X/A) : X\’Aly X X\|A1‘ — R

is continuous and that the set
E:E = {y S X \ A d(X/A)(':C?y) = O}

is connected for every x € X \ |Aq].

Definition 8. An orbifold (X/A) is (classically) orbifold hyperbolic if
the (classical) orbifold Kobayashi pseudodistance is a distance on X\ Aq
where Ay is the union of the components of A with multiplicity one.

Corollary 2. Let f : (X/A) — (X'/A’) be an étale orbifold morphism.
Then (X/A) is classical orbifold hyperbolic if and only if (X'/A') has
this property.

12. CLASSICAL ORBIFOLD KOBAYASHI PSEUDODISTANCE IN
DIMENSION ONE

Proposition 9. Let (X/A) be a one-dimensional smooth orbifold.
If there exists an étale orbifold morphism ©: D — (X/A), then
dix/a)(P:q) = inf dp(z,y)
)

zen—1(p);yen—1(

If there is no étale orbifold morphismm : D — (X/A), then diy n) =
0.

Corollary 3. Let (X/A) be a compact smooth one-dimensional orb-
ifold.
Then (X/A) is classically hyperbolic iff deg(K (x/ay) > 0.

12.1. Examples. We consider X = D, A = (1 —2) [{0}]. Then z —
2" yields an unfolding D — (X/A) and consequently the classical
Kobayashi pseudodistance on (X/A) is the distance function induced
by the “push-forward” of the Poincaré metric on D which is easily
calculated as

4dzdz
N
w2l (1= 127
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Note that for n — oo this converges to

4dzdz
212 (log |22])?

which is the push-forward of the Poincaré metric under the universal
covering map from D to the punctured disc D* = {z € C: 0 < |z| < 1}.

13. AN ORBIFOLD BRODY THEOREM

Brody’s theorem ([2]) is an important tool in the study of hyperbol-
icity questions for complex spaces. Here we will develop a version of
this theorem for orbifolds.

As a first step we show:

Proposition 10. Let f, : (X/A) — (X'/A’) be a sequence of orbifold
morphisms. Assume that (f,), regarded as a sequence of holomorphic
maps from X to X' converge locally uniformly to a holomorphic map
f:X—-X.

Then either f(X) C |A'| or f is an orbifold morphism from (X/A)
to (X'/A").

This statement, and its proof, hold both in the classical and non
classical versions.

Proof. Assume f(X) ¢ |A’|.

Fix an orbifold morphism g : D — (X/A). By definition, f, o g
are orbifold morphisms and we have to show that f o g is an orbifold
morphism as well.

Let D; be an irreducible component of A with multiplicity mT_l Let
p € D with ¢ = f(g(p)) € |D;|. We have to show that (f o ¢)*D; has
multiplicity at least m. In an open neighbourhood U of ¢ in X the
divisor D; has a defining function p. Let W be a relatively compact
open neighbourhood of p in (fog)~}(U). The set of all maps F : X —
X' with F(g(W)) C U is open for the the topology of locally uniform
convergence. Thus we have f,(g(W)) C U for all sufficiently large n.
Now po f, 0g is a sequence of holomorphic functions on W converging
to po fog. Since we assumed that f(X) is not contained in |A'|, po fog
does not vanish identically. Hence there is a number € > 0 such that
Se(p) = {2z € C: |z — p| = €} is contained in W and p o f o g has no
zero in Be(p) = {z € C: |z — p| < €} except at p.

The theorem of Rouché now implies that for all sufficiently large n
the multiplicity p of po f o g at p equals the sum of all multiplicities
of all zeroes in B(r) of po f,0g.
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Hence there is at least one zero of po f,, 0 g in B(r) for n sufficiently
large (since f(p) € |D;|). Furthermore each such zero has multiplicity
at least m, because f, og: D — (X'/A’) are orbifold morphisms.

Therefore p is at least m. Since this argument may be applied to
all components D; of |A| and all points p € D with f o g(p) € |D;| for
every orbifold morphism ¢g : D — (X/A), we may conclude that f is
an orbifold morphism. O

Remark. As said, this works as well for both “classical” and “non
classical” orbifold morphisms: In the last case we use the ordinary
ordering on N while in the first case we use the partial ordering of N
by divisibility.

Proposition 11. Let (X/A) be an orbifold and let Ay be the union
of components of A with weight one (or equivalently, multiplicity o).
Assume that there are two distinct points p,q € X \ |Ay| with orbifold
Kobyashi pseudodistance zero. Let h be a hermitian metric on X and
let dy, be the induced distance function.

Then there ezists a sequence of points p, € X \ |A1| and orbifold
morphisms f, : D — (X/A) such that f,(0) = p,, limp, = p and
lim || f/(0)|| = 400, the latter calculated with respect to the Poincaré
metric on D and the hermitian metric h on X.

Proof. If not, there exists a neighbourhood W of p and a constant C' > 0
such that || f'(0)|| < C for all orbifold morphisms f : D — (X/A) with
f(0) € W. Let us assume that this is the case. Since D is homogeneous
and the composition f o ¢ is an orbifold morphism for every orbifold
morphism f and every automorphism ¢ of D, this condition implies
that ||f'(2)|]| < C for every orbifold morphism f : D — (X/A) and
every z € D with f(z) € W. By shrinking W, we may assume g & W.
Now for every e > 0 there is a chain of orbifold discs as in §9 above
with Y dp(pi,q;) < €. By taking geodesics in D linking p; with ¢;
and concatenating their images we obtain a piecewise smooth path
v :10,1] = X with v(0) = p and (1) = q. Let o = inf{t : v(t) & W}.
Then

€ 2 d(p,y(a)) = Cdn(p,0OW)
which leads to a contradiction since dj,(p, 0W') > 0. O

We recall the “reparametrization lemma” of Brody which may be
rephrased as follows:

Proposition 12. Let X be a compact complex manifold and f, : D —
X a sequence of holomorphic maps with limsup || f/ (0)|] = 4o0.
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Then there exists an increasing sequence of positive real numbers r,,
and a sequence of holomorphic maps o, : D(r,;0) — D such that
limr, = +o0 and such that a subsequence of f, o o, converges locally
uniformly to a holomorphic map f: C — X with

sup 1 ()| = 17 O)]| > 0

Theorem 3. Let (X/A) be a compact orbifold. Assume that the (clas-
sical) orbifold Kobayashi pseudodistance on X \ |A1| is not a distance.
Then there exists a non-constant holomorphic map f : C — X which
is either a (classical) orbifold morphism or fulfills the property f(C) C
Al
Furthermore

sup [|f'(2)| = [|£(0)]] > 0.

Proof. By prop. 11 there is a sequence of orbifold morphisms f,, : D —
(X/A) such that lim ||f(0)|| = +o00. Due to “Brody reparametriza-
tion” (prop. 12) there are sequences r, € R* and «a, : D(r,;0) — D
such that limr, = +oo and such that a subsequence of f, o a,, con-
verges to a holomorphic map f : C — X with f’(0) # 0. Now com-
positions of orbifold morphisms are orbifold morphisms, hence f, o a,
are orbifold morphisms. Thus prop. 10 implies that for all » > 0 ei-
ther f|p, : D, — (X/A) is an orbifold morphisms or f(D,) C |A].
As a consequence, either f : C — (X/A) is an orbifold morphism or

F(C) CIA]. m

Corollary 4. Let (X/A) be a one-dimensional compact orbifold.
Then either (X/A) is orbifold hyperbolic or there exists a non-constant
orbifold morphism f : C — (X/A) with bounded derivative.

Proof. Since X is one-dimensional, |A| is discrete. As a consequence

f(C) can not be contained in |A| for a holomorphic map f: C — X

with f(0) # 0. 0
14. NEVANLINNA THEORY

We use the usual notations of Nevanlinna theory (see e.g. [14]). In
particular, if D is a divisor on a complex space X and f: C — X is a
holomorphic map, then

Ny(n0) = | " deg(f*Dp,)di /¢
and

N}, D) = [ deg((£"D)alo )it/
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If furthermore w is a (1,1)-form on X (e.g. a Kéhler form or ¢;(D)),

then
Ty(r,w) = /1 (/D f*w) dt 1.

Proposition 13. Let X be a compact complex manifold, H an irre-
ducible reduced hypersurface, n € NU {400}, a« = (1 —1/n), A = aH
and f: C— (X/A) an orbifold morphism.
Then
Tf(r7 Cl(H)) - N}(?‘, H) > C“Tf<7n7 Cl(H))'

Proof. By the First Main Theorem, we have
Tf<7nvcl(H)) = Nf(raH) >0

Now N } (r, H) is the “truncated counting function” which ignores mul-
tiplicities and f*H has multiplicity at least n at every point of f~!|H|.
Hence

Ny(r,H) > nN(r, H)

Together these two inequalities imply

Ty(r,e(H)) — Nj(r, H) > <1 - %) Tr(r,c1(H)) = aTy(r,c1(H)).
U

Definition 9. We say that the “S.M.T. with truncation level 1”7 holds
for a holomorphic map f from C to a compact complexr manifold X and
a reduced effective divisor D on X if

Tr(r,ei(D+ K)) — N}(r, D) < €Ty(r,w)lle

for some positive (1,1)-form w on X. (The notation ||. means that the
inequality holds for any € > 0, for r outside a subset of finite measure
depending on €).

By a classical result of Nevanlinna ([14]), the “S.M.T. with trun-
cation level one” holds for every non-constant holomorphic map to a
one-dimensional compact complex manifold X and every reduced ef-
fective divisor D.

Proposition 14. Let (X/A) be a compact orbifold, and let f : C —
(X/A) be an orbifold morphism such that the “S.M.T. with truncation
level one” holds for the underlying holomorphic map f : C — X and
the divisor H on X which is obtained by replacing all mutiplicities by
one. Then

Ty(r, (A + Kx)) < €Ty, )]l

for every positive (1,1)-form w on X.
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Proof. Let A = > o;H; with o = 1 — n% Then H = ) H;. Due to
the S.M.T. we have:

Ty(r, er(Kx)) + Z (Ty(r,c1(Hy)) — Ny (r, H;)) < eTy(r,w)|e

By prop. 13:
Ty(r,c1(H;)) — N}(r, H;) > o;T¢(r,c1(H;))
Therefore:
Ty(r, (A + Kx)) = Ty(r,ei(Kx) + Y aiTy(r,ei(Hy))

< Ty(r,ea(Kx) + Y (Ty(r.a(Hi) = Nj(r, Hy)

< Ty(r,e1(Kx)) + Ty(r, e1a(H)) — Ny(r, e2(H))
< €Ty(r, w)lle
U

Corollary 5. Let X be a compact smooth complex curve (i.e. a com-
pact Riemann surface) of genus g such that there exists a non-constant
orbifold morphism f: C — (X/A).

Then deg(A + Kx) <0, i.e. deg(A) <2—2g.

Proof. For curves, the “S.M.T. with truncation level one” has already
been established by Nevnalinna. It follows that deg(A + Kx) < 0
whenever there exists a non-constant orbifold morphism. But deg(A +
Kx) <0 is equivalent to deg(A) < —deg Kx = 2 — 2g. O

Corollary 6. Let (X/A) be a one-dimensional smooth compact orbifold
Then there ezists a non-constant orbifold morphism f:C — (X/A)
if and only if one of the following conditions is true:
(1) X is an elliptic curve and A is empty.
(2) X ~ Py and |A| contains at most two points.
(3) X ~ Py and there are numbers: p < g < r € NU {oo} \ {1}
such that (X/A) is isomorphic to

1 1 1
(/= H0r+ 0= D+ (- Do)

and 1/p+1/q+ 1/r > 1. (There are exactly 5 possibilities for
(p,q,7): (2,3,4);(2,3,5);(2,3,6);(2,4,4); (3,3, 3)).

(4) There is a point A € C\ {0, 1} such that (X/A) is isomorphic
to

(P = 0O+ 0= U+ (1= oo} + (1= )
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Proof. A case-by-case check verifies that these are exactly the orbifold
curves for which deg(A + Kx) < 0. Thus by the preceding corollary
a non-constant orbifold morphism can exist only if the orbifold curve
appears on the above list. On the other hand, using the uniformization
theorem and the orbifold resolution as described above (see §), there

exists a non-constant orbifold morphism for all these orbifold curves.
O

15. HYPERBOLICITY OF ORBICURVES

We characterize completely under which condition an orbifold of di-
mension one is orbifold hyperbolic.

Theorem 4. Let (X/A) be an orbifold of dimension one.

Then (X/A) is orbifold hyperbolic if and only if it is classically orb-
ifold hyperbolic.

If X can be compactified to a smooth compact curve X by adding
finitely many points and in addition the support |A| is finite, then the
orbifold hyperbolicity of (X/A) is equivalent to deg(K g + A) + #(X \
X) > 0.

Otherwise (if there is no such compactification or the support |A| is

infinite) the orbifold (X/A) is orbifold hyperbolic.

Proof. We recall that a Riemann surface X is hyperbolic unless it is an
elliptic curve, Py, C or C*. In particular, if X can not be compactified
by adding finitely points, it must be hyperbolic and as a consequence
(X/A) is orbifold hyperbolic and classically orbifold hyperbolic.

Now assume that |A] is finite and X can be compactified by adding
finitely many points. By adding these points to A we may assume that
X is already compact. If (X/A) is not hyperbolic, there is a orbifold
morphism from C to (X/A). Using Nevanlinna theory, this implies
deg(Kx + A) < 0. On the other hand, if deg(Kx + A) < 0, there
are two possibilities: Either X is an elliptic curve and A is empty or
X ~ P;. Evidently elliptic curves are not hyperbolic. Thus it remains
to discuss the case X = P;. If |A| contains at most two points, C*
embedds into (X/A) which therefore can not be hyperbolic. Finally, if
|A| contains at least three points, due to 7?7 there is an étale orbifold
morphism from a compact curve C' to (X/A). Now deg(Kx + A) <0
implies deg(K ) < 0 and thereby implies that is either P; or an elliptic
curve. In both cases the projection map from C to (X/A) shows that
the latter is not hyperbolic.

We still have to discuss the case where X can be compactified by
adding finitely many points, but |A| is infinite. Because |A| is infinite
and the multiplicity at each point is at least %, we can find a finite
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Q-Weil divisor A’ by taking finitely many components of A with the
same multiplicities in such a way that deg(A’) is as large as desired.
Therefore there is a finite restricted Q-Weil divisor A’ on X such that

(1) the identity map of X gives a strict orbifold morphism from
(X/A) to (X/A')
(2) deg(Kg+A") >0

It follows that (X/A) is hyperbolic and classically hyperbolic. O

Remark. The situation s actually much less understood as may ap-
pear.

If (X/A) is an hyperbolic orbicurve, we do not know whether or not
the classical and non classical Kobayashi pseudodistances coincide, not
even in the most simple case where (X/A) = (D/ (1 — 1) [{0}] with
n e N\ {1}.

In higher dimensions, is it still true that classical hyperbolicity coin-
cides with (mon classical) hyperbolicity ?

Is there any concrete example where one can calculate the (non-
classical) orbifold Kobayashi pseudodistances (if these are not degen-
erate)?

What about the arithmetic counterpart? For the “classical” variant
there is the work of Darmon ([7]), but nothing seems to be known about
the “non-classical” variant.

16. WEAKLY SPECIAL PROJECTIVE THREEFOLDS WITH
NON-VANISHING PSEUDOMETRIC

A compact Kéhler manifold X is said to be weakly special if there is
no surjective meromorphic map f’: X’ — Y in which X' is a finite étale
cover of X, and Y is a variety of general type (ie: k(YY) = dim(Y) > 0.

It is conjectured in [9] that weakly special manifolds are potentially
dense (if defined over a number field).

Answering a question raised in [4], in [1] complex projective three-
folds X (defined over number fields if one so wishes) are constructed
which are weakly special (and simply connected), but admit an elliptic
fibration ¢ : X — S, with S an elliptic surface g : S — B = P! having
k(S) = 1, such that the base orbifold (S/A(y)) of the fibration ¢ is of
general type (ie: k(S, Kg+ A(yp)) = 2).

In the terminology of [4], and because £(S) =1 > 0, a result of [4]
shows that ¢ is a fibration of general type, and so is the core of X,
since its smooth fibres are elliptic curves, and so are special. Thus X
is nonspecial.
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The conjectures made in [4] then claim that X is not potentially
dense (thus conflicting with the conjecture of [9]), and that its Koba-
yashi pseudometric dx = ¢*(J), for 0 a suitable pseudometric on S,
which is a metric on some dense Zariki open subset of S.

The arithmetic side of these conjectures remains open. But it was
shown in [6] that for some X of Bogomolov-Tschinkel, any entire curve
h : C — X has its image contained in a rational or elliptic curve of X,
itself either contained in a fibre of ¢, or in a fixed divisor £ of X such
that ¢(F) is a finite union of rational and elliptic curves of S.

We shall now show:

Theorem 5. There exist Bogomolov-Tschinkel threefolds such that dx =
©*(0), where ¢ is metric on S.

For these manifolds X, the above theorem thus solves the hyperbolic
version of the conjectures of [4].

Proof: The existence of § as above is clear, since dx vanishes on the
generic, and so all (by continuity of dy with respect to the complex
topology of X) fibres of ¢. We have to show that ¢ is a metric on a
given S, for suitable choice of X. Recall from the constructions made
in [1] and [6], that A(¢) = (1 — 1/m).D, where m > 1 is an arbitrary
integer, and that D is the strict transform of Dy under 3 : S — S,
the blow-up of the smooth surface Sy in the finitely many intersection
points of two generic (smooth) members Dy, Dj, of an ample free linear
system |Lo| on Sy. More precisely, in [6], Sy is choosen to be a double
cover u : Sog — P := P! x P! ramified along a certain divisor 7' C P.
And |Lo| = u*(|M|), where |M] is a very ample linear system on P,
with bidegree (a,b) which can be chosen to be arbitrarily big.

It was also shown in [6] that if G' C X is a (complex) curve, and
G = ¢(G") C S, then G is m — tangent to D, which means that G
and D have a contact of order at least m at each of their intersection
points. Thus 0 > d(s/1-1/m).p), and we just need to show, by the
above orbifold version of the theorem of Brody, and by the theorem
in [6] asserting that for suitable X, the entire curves on S which are
m-tangent to D are algebraically degenerate, that for suitable m and
Dy (but S being given as above), then S does not contain any rational
or elliptic curve GG which is m-tangent to D.

First, consider the case in which G is contained in some fibre F' of
g : S — B, the elliptic fibration of S. If m > L.F', then G cannot be
m-tangent to D. We shall thus assume that m > L.F' = 2a.

We now consider the second possible case, when ¢(G) = B = P!
(we say G is g-horizontal). Because there are only countably many
such rational or elliptic curves on S (since k(S) = 1), it is sufficient to
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show that for each such fixed GG, the general member Dy of Ly is not
m-tangent to G. But this is clear, since |Lo| = u*(|M|), and M is very
ample on P. (Notice we have shown a much stronger property: the
g-horizontal rational or elliptic curves on S are not tangent to Dy, if
Dy is general in the linear system |Lg|, so that in fact, no g-horizontal
rational curve G on S can be m-tangent to D except maybe at 2 of
their intersection points, for such a general choice of D, if (a,b) are
sufficiently big, so that 5(G).Lg) > 4, for any curve G on Sp. This
property implies that d(s/1-1/m).p) is a metric on S).
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