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Miscible displacement fronts of shear thinning fluids inside

rough fractures.

A. Boschan1,2, H. Auradou,1 I. Ippolito,2 R. Chertcoff,2 and J.P. Hulin1

Abstract. The miscible displacement of a shear-thinning fluid by another of same rhe-
ological properties is studied experimentally in a transparent fracture by an optical tech-
nique imaging relative concentration distributions. The fracture walls have complemen-
tary self-affine geometries and are shifted laterally in the direction perpendicular to the
mean flow velocity U : the flow field is strongly channelized and macro dispersion con-
trols the front structure for Péclet numbers above a few units. The global front width
increases then linearly with time and reflects the velocity distribution between the dif-
ferent channels. In contrast, at the local scale, front spreading is similar to Taylor dis-
persion between plane parallel surfaces. Both dispersion mechanisms depend strongly on
the fluid rheology which shifts from Newtonian to shear-thinning when the flow rate in-
creases. In the latter domain, increasing the concentration enhances the global front width
but reduces both Taylor dispersion (due to the flattening of the velocity profile in the
gap of the fracture) and the size of medium scale front structures.

1. Introduction

The transport of dissolved species in fractured formations
is of primary importance in a large number of groundwater
systems : predicting the migration rate and the dispersion
of contaminants from a source inside or at the surface of a
fractured rock is then relevant to many fields such as waste
storage and water management (National Research Council
[1996]; Adler and Thovert [1999]; Berkowitz [2002]).

In the present work, these phenomena are studied exper-
imentally by analyzing relative concentration distributions
during the displacement of a transparent fluid by a miscible
dyed one inside a model transparent rough fracture. A key
characteristic of these fractures is the self-affine geometry of
their wall surfaces : it reproduces the multiscale geometri-
cal characteristics of many faults and “fresh” fractures. For
such surfaces, the variance ∆h2 =< (h(~r + ~∆r) − h(~r))2 >
of the local height h(x, y) of the surface with respect to a
reference plane verifies :

∆h

l
= (

∆r

l
)ζ , (1)

in which (x, y) are coordinates in the plane of the fracture,
ζ is the self-affine exponent, l the topothesy (i.e. the length
scale at which the slope ∆h/∆r is of the order of 1).

In this work, the rough fracture walls have complemen-
tary geometries : they are separated by a small distance
normal to their mean plane and shifted laterally relative
to each other. This shear displacement induces local aper-
ture variations : experimental and numerical investigations
demonstrate that, in this case, preferential flow paths dom-
inantly perpendicular to the shear appear (Gentier et al.
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[1997]; Yeo et al. [1998]; Auradou et al. [2005]). These paths
strongly influence fluid transport (Neretnieks et al [1982];
Tsang and Tsang [1987]; Brown et al [1998]; Becker and
Shapiro [2000]), particularly when the mean flow is, as here,
parallel to these channels.

The objective of the present paper is to study the in-
fluence of the structures of the aperture field on the dis-
placement front of a transparent fluid by a dyed miscible
one. For that purpose, the displacement process is studied
at different length scales in order to identify the different
front spreading mechanisms. Practically, the displacement
front is analyzed in regions of interest of variable widths W
perpendicular to the flow. If W is smaller than the local
fracture aperture, the front spreading will be dispersive and
controlled by local mechanisms; for large W values of the
order of transverse size of the fracture (100 times the aper-
ture) the front structure is controlled, on the contrary, by
preferential flow paths. Additional informations on these
mechanisms will be obtained from the influence of the flow
velocity and of the rheology of the fluids.

2. Dispersion and front spreading in rough
fractures

Previous studies by Ippolito et al. [1993]; Roux et al.
[1998]; Adler and Thovert [1999]; Detwiler et al. [2000]
described mixing in fractures by a Gaussian convection-
dispersion equation. They suggested that the dispersion co-
efficient is the sum of the contributions of geometrical and
Taylor dispersion. The latter results from the local advec-
tion velocity gradient between the walls of the fracture : its
influence is balanced by molecular diffusion across the gap.
There results a macroscopic Fickian dispersion parallel to
the flow (Taylor [1951]; Aris [1958]) characterized by the
coefficient :

D

Dm
= τ + f Pe2, (2)

where Dm is the molecular diffusion coefficient, the Péclet
number Pe = Ua0/Dm represents the relative influence of
the velocity gradients and molecular diffusion, U the average
flow velocity in the whole fracture, a the gap thickness, τ the
tortuosity of the void space reducing the rate of longitudinal
molecular diffusion (Bear [1972]; Drazer and Koplik [2002]);
for flat parallel plates and a Newtonian fluid, f = 1/210.
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Geometrical dispersion reflects the disorder of the veloc-

ity field in the fracture plane and may be significant in

rough fractures. Theoretical investigations by Roux et al.

[1998] suggest that this geometrical mechanism is impor-

tant at intermediate Pe values; at lower (resp. higher)

Péclet numbers, molecular diffusion (resp. Taylor disper-

sion) are dominant. Scaling arguments allow in addition to

estimate Péclet numbers corresponding to the limits of these

domains : they depend on the mean, the variance and the

correlation length of the aperture field. Such predictions are

supported by experimental investigations on model fractures

with a relatively weak disorder of the aperture field (Ippolito

et al. [1993, 1994]; Adler and Thovert [1999]; Detwiler et al.

[2000]).

In natural fractures, however, experimental (Neretnieks

et al [1982]; Brown et al [1998]; Becker and Shapiro [2000])

and numerical (Drazer et al. [2004]) studies indicate that

mass transport is strongly influenced by large scale prefer-

ential flow channels parallel to the mean velocity. Anoma-

lous dispersion is then expected as in the analogous case of

porous media with strata of different permeabilities (Math-

eron and de Marsily [1980]). As pointed out by (Roux

et al. [1998]), similar effects are expected in fracture if the

flow velocities vary more slowly along a streamline than per-

pendicular to it. Then, large distorsions of the displace-

ment front (Drazer et al. [2004]) may appear and grow lin-

early with time. Moreover, in highly distorted parts of the

front, transverse concentration gradients appear and induce

a transverse tracer flux that further enhances dispersion.

Another important parameter influencing miscible dis-

placements is the rheology of the flowing fluids (relevant,

for instance, to enhanced oil recovery using polymer solu-

tions (Bird, Armstrong and Hassager [1987]). Non linear

rheological properties modify indeed the flow velocity field

and, more specifically, the flow velocity contrasts (Shah and

Yortsos [1995]; Fadili et al. [2002]). In the case of shear-

thinning fluids in simple geometries like tubes or parallel

plates, the flow profile is no longer parabolic but flattens in

the center part of the flow channels where the shear rate is

lowest : this decreases the dispersion coefficient (compared

to the Newtonian case) but the square law variation of the

dispersion coefficient with the Peclet number is still satisfied.

For instance, when the viscosity µ varies with the shear rate

γ̇ following a power law : µ ∝ γ̇n−1, Eq. 2 remains valid

but f is a function of n (Vartuli et al. [1995]).

In heterogeneous media, on the contrary, numerical inves-

tigations suggest that the flow of shear thinning fluids gets

concentrated in a smaller number of preferential flow paths

than for Newtonian ones (Shah and Yortsos [1995]; Fadili

et al. [2002]): the macrodispersion reflecting large scale dis-

torsions of the displacement front is then increased (even

though the local dispersion due to the flow profile in indi-

vidual channels is still reduced). Finally, in this work and

in contrast with oil recovery, the polymer concentration in

the injected and displaced fluids is the same : we investi-

gate only its influence on the transport of a passive solute.

The influence of the shear thinning properties is studied by

running experiments with different polymer concentrations.

3. Experimental set-up and procedure

3.1. Model fractures and fluid injection set-up

Figure 1. Schematic view of the experimental setup.

Model fractures used in the present work are made of
two complementary transparent rough self-affine surfaces
clamped together. A self-affine surface is first generated nu-
merically using the mid-point algorithm (Feder [1988]) with
a self-affine exponent ζ equal to the value 0.8 measured for
many materials, including granite (Bouchaud [2003]). Then,
the surfaces are carved by a computer controlled milling
machine into a parallelepipedic plexiglas block. The final
steps of the machining require an hemispherical tool with
a 600 µm diameter. The effective size of the surface is 171
by 85 mm and the difference in height between the lowest
and highest points of the surface is 19.2 mm while the mean
square deviation of the height is 3 mm. The two surfaces
are exactly complementary but for a 0.33 mm relative shift
parallel to their length; they are bounded on their larger
sides by 10 mm wide borders rising slightly above the sur-
faces. The geometries of these borders is chosen so that they
match perfectly and act as spacers leaving an average mean
distance a0 = 0.75 mm between the surfaces when the blocks
are clamped together. In all cases, the gap between the sur-
faces is large enough so that the two walls do not touch :
both the mean aperture a0 and the relative displacement are
the same in all experiments.

The fracture assembly is positioned vertically (Fig. 1)
with the two vertical sides (corresponding to the borders)
sealed while the two others are open. The upper side of
the model is connected to a syringe pump sucking the fluids
upwards out of the fracture. The lower horizontal side is
dipped into a reservoir which may be moved up and down.
The fracture is first saturated by sucking fluid out of the
lower reservoir into the model. Then, the original fluid is
replaced by the other after lowering the reservoir before
raising it again and starting the displacement experiment
by pumping fluid at the top of the model. This procedure
avoids unwanted intrusions while replacing a fluid by the
other and allows to purge completely the lower reservoir; a
perfectly straight front between the injected and displaced
fluids is obtained in this way at the onset of the experiment.

3.2. Fluid preparation and characteristics

In all experiments, the injected and displaced fluids are
identical water-scleroglucan solutions but for a small amount
of Water Blue dye (Handbook of dyes [2002]) added to one of
the solutions at a concentration c0 = 0.3g/l. NaCl is added
to the other solution to keep both densities equal. The dye
has been chosen such that it has no physico-chemical in-
teraction with the model walls and can be considered as a
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passive tracer. The molecular diffusion coefficient of the dye
Dm ≃ 6.5×10−10 m2.s−1 is determined independently from
Taylor dispersion measurements in a capillary tube.

The rheological properties of the scleroglucan solutions
have been characterized using a Contraves LS30 Couette
rheometer in range of shear rates 0.016 s−1 ≤ γ̇ ≤ 87 s−1.
The rheological properties of the solutions have been verified
to be constant with time within experimental error (over a
time lapse of 3 days) and to be identical for the dyed and
transparent solutions (for a same polymer concentrations).
The variation of the viscosity η with γ̇ is well fitted by the
classical Carreau formula :

η =
η0 − η∞

(1 + ( γ̇
γ̇0

)2)
1−n

2

+ η∞. (3)

The values of these rheological parameters for the poly-
mer solutions used in the present work are listed in Ta-
ble 1. η∞ is taken equal to the value of the solvent vis-
cosity (10−3 Pa.s for water) since its determination would
require measurements beyond the experimental range lim-
ited to γ̇ = 87 s−1. In Eq.(3), γ̇0 corresponds to a crossover
between two regimes. For γ̇ < γ̇0, the viscosity η tends
to η0, and the fluid behaves as a newtonian fluid. On the
other hand, for γ̇ > γ̇0, η decreases following a power law
µ ∝ γ̇(n−1). Note that, due to the small volume fraction of
polymer, the molecular diffusion coefficient keeps the same
value as in pure water.

Table 1. Rheological parameters of scleroglucan solutions
used in the flow experiments.

Polymer Conc. n γ̇0 η0

ppm s−1 mPa.s
500 0.38± 0.04 0.077± 0.018 410 ± 33
1000 0.26± 0.02 0.026± 0.004 4490 ± 342

3.3. Optical relative concentration measurements

The flow rate is kept constant during each experiment
and ranges between 0.01 and 1 ml/min. The total duration
of the experiments in order to obtain a complete saturation
of the fracture by the invading fluid varies between 20 min
and 33 hours. The transparent fracture is back illuminated
by a light panel : about 100 images of the distribution of
light transmitted through the fracture are recorded at con-
stant intervals during the fluid displacement using a Roper
Coolsnap HQ digital camera with a high, 12 bits, dynamic
range. Reference images are recorded both before the exper-
iments and after the full saturation by the displacing fluid
in order to have images corresponding to the fracture fully
saturated with both the transparent and the dyed fluid.

The local relative concentration of the displacing fluid
(averaged over the fracture aperture) is determined from
these images by the following procedure. First, the ab-
sorbance A(x, y, t) of light by the dye on an image obtained
at the time t is computed by the relation :

A(x, y, t) = ln(
It(x, y)

I(x, y, t)
) (4)

in which It(x, y) and I(x, y, t) are the transmitted light in-
tensities (in grey levels) measured for a pixel of coordinates
(x, y) respectively when the fracture is saturated with trans-
parent fluid and at time t. When the fracture is saturated
with the dyed fluid (c(x, y) = c0), the transmitted light in-
tensity is I0(x, y) so that the adsorbance A0(x, y) is :

A0(x, y) = ln(
It(x, y)

I0(x, y)
) (5)

The relation between the local concentration c(x, y, t) (av-

eraged over the local fracture aperture), the dye concentra-

tion c0 in the dyed fluid and the absorbances A and A0

has been determined independently from calibration pic-

tures realized with the fracture saturated with dyed solu-

tions of concentrations c increasing from 0.1 to 0.5 g/l. The

ratio A(x, y)/A0(x, y) is found experimentally to be con-

stant within ± 3% over the picture area : for more preci-

sion, the ratio < A >x,y / < A0 >x,y of the averages is

therefore used to determine the calibration curve. Due to

non linear adsorbance (Detwiler et al. [2000]), the relation

c/c0 =< A >x,y / < A0 >x,y predicted by Beer-Lambert’s

law is not valid. The variation of c/c0 with < A > / < A0 >

follows however accurately the polynomial relation :

c

c0
= b1

A

A0
+ b2(

A

A0
)2 + b3(

A

A0
)3 (6)

with b1 = 0.186 ± 0.023, b2 = 0.0087 ± 0.04 and b3 =

0.108±0.021. Practically, Eq. 6 is applied to all pixels (x, y)

in the pictures recorded during the experiment in order to

obtain c(x, y, t)/c0. An instantaneous relative concentration

map obtained in this way is displayed in Fig. 2.

Figure 2. Experimental relative concentration field ob-
tained with a 1000 ppm polymer concentration for a mean
front displacement of half the fracture length. Grey lev-
els represent values of the ratio c(x, y, t)/c0. Size of
field of view : 81 mm × 70 mm; only a part of the ac-
tual image is shown. Solid line : front profile xf (y, t)
as defined in section 6.1; white dots are pixels where
c(x, y, t)/c0 = 0.5 ± 0.03.

In the following, c0 is omitted and c(x,y,t) refers to the

local relative concentration at a given time (still averaged as

above over the fracture aperture).

4. Local concentration variations

As already pointed above, transport in the fracture re-

sults from the combination of front spreading due to large

scale flow velocity variations and of mixing due to local dis-

persion mechanisms and concentration gradients. In order

to identify these different processes, a local analysis is first

performed.



X - 4 BOSCHAN ET AL.: MISCIBLE FLUID DISPLACEMENTS INSIDE ROUGH FRACTURES

Figure 3. Time variation of the relative concentration
c(x, y, t) for x = 20 mm and y = 36 mm for 1000 ppm
polymer solutions. Mean flow velocity U = 0.014mm/s

(Pe = 150). Solid line : fit by Eq.7 with t(x, y) = 1212 s
and D(x, y) = 0.315 mm2/s.

For each pixel (x, y), the variation c(x, y, t) with time of
the local relative concentration of the dyed fluid has been
determined; as can be seen in Fig. 3, it is well fitted by the
following solution of the convection-dispersion equation cor-
responding to the stepwise concentration variations induced
experimentally :

c(x, y) =
1

2
(1 + erf

t − t(x, y)
√

4D(x,y)

U2 t
) (7)

In Eq. 7, U is the mean velocity, D(x, y) is the local disper-
sion coefficient and t(x, y) the mean transit time. Note that,
if the injected fluid is the transparent one, the + sign should
be replaced by a - in Eq. 7. Both D(x, y) and t(x, y) are
defined locally and may depend on the measurement point.

In the following, the variations of these quantities are an-
alyzed : on the one hand, the spatial variations of t(x, y)
reveal the channelized structure of the flow that leads to
macrodispersion. On the other hand, D(x, y) reflects local
mixing processes taking place on each flow line.

5. Local dispersive mixing

In this section, the variation of D(x, y) is studied as a
function of the distance x from the inlet and of the fluid
velocity and rheology. The probability distribution of the
local values of D(x, y) determined for all pixels at a same
distance x for a given experiment is displayed in Fig. 4a in
a grey level scale as a function of x (45 ≤ x ≤ 125mm);
Fig. 4b shows the two extreme distributions corresponding
to x = 45 (solid line) and 125 mm. One observes that the
mean value D of the distributions increases only by 20% be-
tween x = 45 and 125 mm. x (D will just be refered to as D
in the following and the deviations of the local values will be
characterized by the width ∆D of P (D) at mid-height which
increases also slowly with distance). The drift of D may be
due to slow variations of the mean aperture and flow veloc-
ity. It may also reflect an increased dispersion in distorted
regions of the front : there, dye diffuses across the flow lines
which contributes to broaden the front. The slow variation
of the mean value of D with x together with the good fit
displayed in Fig. 3, demonstrate that the Fickian dispersion
model describes well the local spreading of the front during
all the experiment . The symmetry of the process is finally
checked by realizing the same experiments with the trans-
parent solution displacing the dyed one. The distributions
of the dispersion coefficients for given values of x are the

same as in the reverse configuration : there is therefore no
effect of small residual density contrasts..

Figure 4. Probability distribution P (D, x) of the dis-
persion coefficient for a dyed solution displacing a trans-
parent one : mean flow velocity U = 0.014 mm/s (Pe =
150), polymer concentration 1000 ppm). - (a) Grey lev-
els correspond to the value of the probability P(D) at the
corresponding values of D and x - (b) Distributions P (D)
respectively for x = 45 (solid line) and 125 mm (dashed
line).

The dependence of the local dispersion on the flow veloc-
ity U for the 500 ppm and 1000 ppm solutions is displayed
in figure 5 where D is plotted as a function of the Péclet
number Pe defined above. The same variation trends are
followed for both solutions : for low Pe values the disper-
sion coefficient tends towards a constant close to 1, while at
high Pe, D increases as the square of Pe. These variations
are similar to the predictions of Eq. 2 (solid, dotted and
dashed lines) also plotted in figure 5 for a newtonian fluid
and two power law shear thinning fluids for which µ ∝ γ̇n−1

(n is taken equal to the values listed in Tab. 1 and the
value of f in Eq.2 is computed from Eq. 4 in Boschan et al

[2003]). The overall agreement observed implies that Tay-
lor dispersion is indeed the dominant mechanism controlling
local dispersion.

In a more detailed analysis, one must however take into
account the fact that, for real fluids, the viscosity does not
diverge at low shear rates but becomes constant (Newtonian
plateau viscosity) for γ̇ < γ̇0. In a Poiseuille Newtonian flow
between two parallel flat plates, the shear rate is maximum
at the wall with γ̇ = 6U/a. It follows that the transition
value γ̇0 is reached for U = Uc = aγ̇0/6. Using the val-
ues of γ̇0 in Tab.1, the velocities Uc (resp. Péclet numbers
Pec) corresponding to the 500 ppm and 1000 ppm solutions
are 0.01 mm/s and 0.003 mm/s (resp. Pec = 11 and 4).
Below Pec, the dispersion coefficient should be the same as
for a Newtonian fluid; above Pec, its variation should pro-
gressively merge with that predicted for power law fluids.
This crossover is clearly observed in Fig.5 : for Pe < 30,
values of D obtained with the 500 ppm and 1000 ppm solu-
tions cöıncide with the predictions for Newtonian fluids. At
high Péclet numbers, data points corresponding to the two
solutions get separated and the values of D become close to
the predictions for power law fluids with the corresponding
values of n.
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Figure 5. Variation of normalized dispersion coefficient
D/Dm with Pe = Ua0/Dm. Insert : variation of the
dispersivity ld = D/U . Solid, dotted and dashed lines :
predictions from Eq. 2 respectively for n = 1 (Newtonian
fluid), n = 0.38 and n = 0.26 (shear thinning solutions
with respective 500 ppm and 1000 ppm polymer concen-
trations).

It is often convenient to replace the dispersion coeffi-

cient D by the dispersivity ld = D/U to identify more

easily the influence of spatial heterogeneities of the flow

field. For Taylor like dispersion verifying Eq.2 and for a

Newtonian fluid, the dispersivity has a minimum equal to

ld = 2a/
√

210 ≈ 0.0095a for Pe =
√

210 ≃ 14.5. The insert

of Fig.5 displays the variation of the dispersivity with Pe :

its minimum value corresponds well to the theoretical pre-

diction for Newtonian fluids (solid line). This confirms that,

in this range of Péclet numbers, the two polymer solutions

behave like Newtonian fluids.

These results demonstrate that the local dispersion

D(x, y) in the rough model fracture is mainly due to the

flow profile in the gap between the walls and similar to that

between flat parallel plates. This is likely due to two prop-

erties of the flow field : first, as for parallel plates, flow

lines initially located in the center of the gap remain there

during their full path through the fracture and, similarly,

those located close to a wall only move away from it through

molecular diffusion. Also, the orientation of the local flow

velocity is always close to that of the mean flow as will be

seen below. In the next section, we discuss on the contrary

macrodispersion due to variations in the plane of the frac-

ture of the local velocities (averaged this time over the gap).

6. Macrodispersion in the model fractures

6.1. Flow structure and mean front profile

As pointed above, the complementary rough walls of the

fracture model are translated relative to each other in the

direction y perpendicular to the mean flow (along the x axis)

: in this configuration, large scale channels parallel to x ap-

pear (Gentier et al. [1997]; Drazer et al. [2004]; Auradou

et al. [2005]) with only weak variations of the flow velocity

along their length (Auradou et al. [2006]). In the following,

we use a simple model in which the fracture is described as a

set of independent parallel channels where the effective flow

velocity U(y) depends only on the transverse coordinate.

Figure 6. Greyscale map of the normalized local

transit time t(x, y)U/x. Flow is from left to right.
Dark (resp. light) regions correspond to locations where

t(x, y)U/x < 1 (resp. t(x, y)U/x > 1). Mean flow veloc-
ity U = 0.014 mm/s (Pe = 150), polymer concentration
1000 ppm).

The validity of this assumption is tested in Fig. 6 in
which the values of the normalized transit time t(x, y)U/x

are represented as grey levels at all points (x, y) inside the
field of view; t(x, y) is the local effective transit time deter-

mined by fitting the curve of Fig. 3 corresponding to point

(x, y) by solutions of Eq. 7. Dark (resp. light) pixels mark
points where t(x, y)U/x is respectively higher (resp. lower)

than 1 : dark and light streaks globally parallel to x are

clearly visible and extend over the full length of the model

fractures. These streaks correspond to slow (resp. fast) flow

paths and their orientation deviates only slightly from x :

this is in agreement with the above simple model of paral-

lel flow paths with different velocities remaining correlated

along the full path length.

Another important feature of the maps of Fig. 6 is

that they allow to determine an instantaneous front pro-

file xf (y, t) at a given time t : in the following, it will be

defined as the set of all points for which t(x, y) = t. In our

experiments this profile was very similar to the isoconcen-

tration line c(x, y, t)/c0 = 0.5 (as can be seen in Fig. 2). In

the following, the macrodispersion process will be directly

characterized by the variations of these front profiles with

time without analyzing extensively the concentration maps.

6.2. Global front dynamics

Fig.7 displays several front profiles obtained at different

times by this procedure. As expected, the profile is initially

quite flat but large structures appear and grow with time.

A key feature is the fact that similar structures are observed

on all fronts : it is only their size parallel to the mean flow

that increases with time. This confirms the large correlation

length parallel to x of the high and low velocity regions and,

therefore, the flow channelization already assumed above.
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Figure 7. Front profiles xf (y, t) at times t = 6.5, 8, 9.5,
11 and 12.5 min for a 1000 ppm polymer solution and
U = 0.014 mm/s (Pe = 150) The mean flow velocity is
oriented from the bottom to the top of the figure).

In such cases, as pointed out by Drazer et al. [2004], the
size of the structures of the front, and therefore its global
width σ(t) should increase linearly with distance (and time).
In the following, the width σ(t) is defined by σ2(t) =<
(xf (y, t)− < xf (y, t) >y)2 >y in which < xf (y, t) >y is
the mean distance of the front from the inlet at time t :
as shown in the insert of Fig.8, σ(t) increases as expected
linearly with time.

Figure 8. Variation in Log linear coordinates of the

relative front width σ(t)/x(t) with the normalized mean
velocity U/Uc; crossover velocity Uc = 0.01 mm/s (resp.
0.003 mm/s) for (�) : 500 ppm (resp. (◦) 1000 ppm)
solutions. Solid, dotted and dashed horizontal lines :
predicted values respectively for a Newtonian fluid and
power law fluids with same index n as the 500 ppm and
1000 ppm solutions. Insert : variation of σ(t) (mm)
with the distance x for a 1000 ppm solution. Diamonds
:U = 0.0056 mm/s (Pe = 60), Crosses :U = 0.056 mm/s
(Pe = 600). Dashed line : linear regression.

Since the mean distance < xf (y, t) >y also increases lin-
early with time, the ratio σ(t)/ < xf (y, t) >y remains con-
stant and may therefore be used to characterize the magni-
tude of the macrodispersion. In the framework of the simple
model assuming parallel independent channels with different
flow velocities, σ(t) and < xf (y, t) > are respectively of the
order of δU t and Ut where δU the root mean square of the
velocity variations between the different channels. There-
fore, the ratio σ(t)/ < xf (y, t) >y corresponds to the rel-
ative magnitude δU/U of the velocity contrasts inside the

fracture (a well known result for stratified media with neg-

ligible exchange between layers).

For both Newtonian (η = cst.) and power law (η ∝ γ̇n−1)

fluids the relative velocity fluctuations δU ∝ U are expected
to be constant with U : σ(t)/x(t) should therefore be in-
dependent of the flow rate Q. The variations of σ(t)/x(t)

with the normalized velocity U/Uc for the two polymer so-

lutions used in our experiments are displayed in Fig.8 (Uc

is the cross-over velocity between the Newtonian and shear

thinning behaviours introduced in section. 5), The values of
σ(t)/x(t) are averages over several time intervals (error bars
indicate fluctuations with time). For U < Uc, σ(t)/x(t)

retains a constant value close to 0.05 independent of the

polymer concentration which likely corresponds to a New-
tonian behaviour. For U > Uc, σ(t)/x(t) increases faster

with U for the more concentrated (1000 ppm) solution. The

normalized widths should reach a new limit at higher flow

rates (U ≫ Uc) : theoretical values for the two solutions are

indicated as horizontal lines.

More precisely, the shear rate γ̇ is always zero in the mid-

dle of the gap of the fracture and highest at the walls. If the

shear rate at the wall is larger than the transition value γ̇0

(see section 5), there are two domains in the velocity pro-

file : the fluid rheology is Newtonian in the central part of

the fracture and non Newtonian near the walls (Gabbanelli

et al. [2005]). When the flow rate Q increases, the fraction

of the flow section where flow is Newtonian shrinks while

the fraction where it is non Newtonian expands : for a shear

thinning fluid with a power law characteristic (n < 1), the

average velocity in a given flow channel (the integral of the

velocity profile over the fracture gap) increases faster with
the longitudinal pressure gradient (as ∇p1/n) than for New-

tonian fluids (as ∇p). This enhances velocity contrasts be-

tween channels of different apertures (assuming that they

are subject to similar pressure gradients) and finally in-

creases the front width compared to the Newtonian case.

These effects get larger as the concentration increases from

500 to 1000 ppm both because the exponent n decreases and

because the transition shear rate γ̇c is smaller (Tab. 1).

This lower value of γ̇c for the 1000 ppm solution does in-

deed increas the fraction of the flow section where the fluid

rheology is shear thinning.
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6.3. Front geometry

Figure 9. Front geometries for a mean distance from
the inlet equal to half the fracture length. Solid (resp.
dashed) lines : 1000 ppm (resp. 500ppm) solutions. Top
(resp. bottom) curves : U = 0.3 mm/s i.e. Pe = 3000
(resp. U = 0.003 mm/s i.e. Pe = 30). The two sets of
curves have been shifted to allow for easier comparisons.
Insert : close up of the upper curves (U = 0.3 mm/s i.e.
Pe = 3000).

In the previous section, the overall front width has been

shown to depend on the global flow rate and on the fluid

rheology; their influence on the detailed front structure will

now be analyzed. Figure 9 compares front geometries ob-

served for the two solutions used in the experiments at

the lowest (resp. highest) mean velocities investigated :

U = 0.003 mm/s (resp. 0.3 mm/s). The lower velocity is

below Uc and the rheology of both fluids is therefore New-

tonian. The polymer concentration plays then a minor part

and the front geometries are very similar (lower curves). In

addition, at this mean velocity, the Péclet number is ≈ 3

and therefore lower than the value Pe ≃ 14.5 (see section 5)

corresponding to the crossover between Taylor dispersion

and longitudinal molecular diffusion. As a result, trans-

port at the local scale is controlled by molecular diffusion

which smears out the effect of local velocity fluctuations and

smoothens the front geometry.

The higher velocity U = 0.3 mm/s (upper curves) is well

above Uc : the global front width increases then with the

polymer concentration (see section 6.2), as can be seen for

the two upper curves in Fig.9. However, at smaller length

scales, the geometrical characteristics of the front and their

dependence on the fluid rheology are more complex. Geo-

metrical features of lateral size below 10 mm have, for in-

stance, a larger extension parallel to the mean flow for the
500 ppm solution.

Figure 10. Variation of the ratio ∆y(∆x)/∆x as a func-
tion of log10(∆x) for the same fronts as in Fig. 9 with ◦
(resp. �) : 1000 ppm (resp. 500 ppm) polymer solutions.
Symbols with no lines : U = 0.003 mm/s (Pe = 30) and
with dotted lines : U = 0.3 mm/s (Pe = 3000). Insert

: variation of log10(∆y/∆xζf ) as a function of log10(∆x)
(ζf has been chosen equal to 0.8 in order to provide the
best fit with a power law at large ∆x values).

Previous theoretical,experimental and numerical studies
of displacement fronts between sheared complementary self-
affine walls indicate that their geometry is also self-affine
(over a finite range of length scales) with the same charac-
teristic exponent ζ as the fracture walls (Roux et al. [1998];
Drazer et al. [2004]; Auradou et al. [2001]). Such self-affine
profiles y(x) may be characterized quantitatively from the
maximum variation ymax−ymin of y(x) in a window of width
∆x (ymax and ymin are the maximum and minimum values
of y(x) in this window). In this ”min-max” method, the av-
erage ∆y(∆x) of the values of ymax − ymin is computed for
all locations of the window inside the profile and the process
is repeated for the different values of ∆x. For a self-affine
curve of characteristic roughness exponent ζf , one has, for
instance, ∆y ∝ ∆xζ

f (ζf = 1 corresponds to a Euclidian
curve).

This result is verified in the insert of Fig.10 where the
ratio ∆y/∆xζf is plotted as a function of ∆x in log-log co-
ordinates for ζf = 0.8 : ∆y/∆xζf is indeed observed to
remain constant over a broad range of variation of ∆x (see
insert of Fig. 10). The lower boundary of this self affine
domain increases slightly with the polymer concenration
from ≈ 3mm (500 ppm) to ≈ 5mm (1000 ppm) and depends
weakly on the flow velocity (provided Pe ≫ 1). For ∆x
below this cross over length, the slope of the curves is close
to 0.2, reflecting an Euclidean geometry with ∆y ∝ ∆x.

In order to analyse the influence of the fluid properties
and of the flow velocity U on these results, the variation of
the ratio ∆y/∆x with ∆x is displayed in Fig. 10 for the two
polymer solutions and for two different values of U (U < Uc

and U > Uc). ∆y has been normalised by the window width
∆x to reduce the amplitude of the global variations of ∆y
and make more visible the differences between the curves.

For the lowest velocity U , the curves are similar for both
polymer concentrations (as expected for a Newtonian rheol-
ogy). The ratio ∆y/∆x increases with U , reflecting a higher
amplitude of the geometrical features of the front at all
length scales : in addition to this global trend, the variation
of ∆y with ∆x depends however significantly on the polymer
concentration. For U > Uc (upper curves in Fig. 10), fea-
tures of the front with large transverse sizes ∆x are of larger
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amplitude ∆y for the more concentrated solution (as noted
above); on the contrary, smaller features corresponding to
low ∆x values are more developed for the less concentrated
solution (this is qualitatively visible on Fig. 9). The two
curves cross each other for ∆x ≈ 4mm. This attenuation of
small scale features of the front for the more concentrated so-
lution may reflect an enhancement of the transverse diffusion
of the fluid momentum due to its higher viscosity (in other
words, drag forces between parallel layers of fluid moving at
different velocities become larger). This smoothens out both
the local velocity gradients and the associated small features
of the front but does not influence large scale velocity varia-
tions. These are due to effective aperture contrasts between
between parallel channels : their influence is amplified when
the exponent n decreases for higher polymer concentrations,
resulting in a larger global front width parallel to the flow.

7. Discussion and conclusion

Studying miscible displacement processes by an optical
method in a transparent model fracture has revealed impor-
tant characteristics of flow and transport in rough fractures
: these results may be applicable to fluid displacements and
transport in fractured reservoirs. A major feature of this
approach is the possible simultaneous analysis of both local
mixing and global front spreading due to large scale hetero-
geneities : the different transport mechanisms may in par-
ticular be characterized by maps of the local transit time
from the inlet and of the local dispersion coefficient.

The multiple length scales features of natural fractures
have been reproduced by assuming rough walls of comple-
mentary self-affine geometries and with a relative displace-
ment parallel to their mean plane (this models the effect of
shear during fracturing). In the present experiments, this
relative displacement was perpendicular to the mean flow :
this induced a channelization of the flow field with small ve-
locity variations along the flow lines and larger ones across
them. Large macrodispersion effects are observed in such a
geometry : in the present experiments, the front width in-
creases linearly with distance from the inlet and its structure
reflects closely the velocity variations between the different
parallel channels.

In contrast, front spreading at the local scale remains dif-
fusive : moreover, the corresponding dispersion coefficient
is close to that estimated for Taylor dispersion in an Hele-
Shaw cell with plane walls separated by a distance of the
order of the main aperture of the fracture. This value may
however be locally increased by transverse diffusion in highly
distorted regions of the fronts where they get locally parallel
to the mean flow.

These fluid displacements are strongly influenced by the
rheology of the flowing fluids so that additional informa-
tions can be obtained by varying the polymer concentration
and/or the shear rate. At low shear-rates (below a tran-
sition value γ̇0), the polymer solutions used in the present
work behave like Newtonian fluids and their concentration
has no effect at low mean velocities (U < Uc). At higher
shear rates (U > Uc), the shear thinning effects become sig-
nificant : they increase with the polymer concentration but
may be very different depending on the scale of observation.
The global width ∆x of the front parallel to the mean flow
gets larger at larger polymer concentrations while, in con-
trast, smaller geometrical features of the front are reduced.
In addition, for U > Uc, polymer also influence at the lo-
cal scale the Taylor-like dispersion due to the flattening of
the flow profile between the fracture walls. Such rheological
effects may strongly influence the efficiency of enhanced oil
and waste recovery processes.

Such results raise a number of questions to be answered
in future work. First, one may expect the spatial correla-
tions of the velocity to decay with distance, leading finally
to normal Fickian dispersion. The present samples were not

long enough to allow for the observation of this transition
: it may however be more easily observable for models de-
signed so that flow is parallel to the relative shear of the
complementary fracture surfaces (in this case, the correla-
tion length should be smaller). Another important issue is
the influence of contact area on the transport process : one
may expect in this case the development of low velocity re-
gions leading to anomalous dispersion curves.
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