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Abstract

We study large partial sums, localized with respect to the sums of variances, of a sequence
of centered random variables. An application is given to the distribution of prime factors of
typical integers.
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1 Introduction

Consider random variables X1, X2, . . . with EXj = 0 and EX2
j = σ2

j . Let

Sn = X1 + · · · +Xn, s2n = σ2
1 + · · · + σ2

n,

and assume that (a) sn → ∞ as n→ ∞.
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Given a positive function fN � 1 + 1/N , we are interested in the behavior of

I = lim inf
N→∞

max
N<s2

n�NfN

|Sn|/sn.

If we replace lim inf by lim sup, it immediately follows from the law of the iterated
logarithm that I = ∞ almost surely when fN is bounded. Our results answer a
question originally raised, in oral form, by A. Sárközy and for which a partial an-
swer had previously been given by the second author, see Chap. 3 of Oon (2005).

2 Independent random variables

Assume that the Xj are independent. Then ES2
n = s2n. In addition to condition (a),

we will work with two other mild assumptions, (b) sj+1/sj � 1 when sj > 0
and (c) for every λ > 0, there is a constant cλ > 0 such that if n is large enough
and s2m > 2s2n, then

P (|Sm − Sn| � λsm) � cλ.

Condition (b) says that no term in Sn dominates the others. Condition (c) follows
if the Central Limit Theorem (CLT) holds for the sequence of Sn, since CLT for Sn

implies CLT for Sm−Sn as (m−n) → ∞. For example, (c) holds for i.i.d. random
variables, under the Lindeberg condition

∀ε > 0, lim
n→∞

∑
1�j�n

E

(
X2

j /s
2
n : |Xj| > εsn

)
= 0

and the stronger Lyapunov condition

∃δ > 0 :
∑

1�j�n

E|Xj|2+δ = o(s2+δ
n ).

Condition (c) is weaker, however, than CLT.

Theorem 1 (i) Suppose (a), (b), and fN = (logN)M for some constant M > 0.
Then I <∞ almost surely.

(ii) Suppose (a), (b), (c) and fN = (logN)ξ(N) with ξ(N) tending monotonically
to ∞. Then I = ∞ almost surely.

Remark. In the first statement of the theorem we show in fact that almost surely
I � 15

√
M + 1(maxsj>0 sj+1/sj)

2.

Lemma 2 (Kolmogorov’s inequality, 1929) We have

P(max1�j�k |Sj| � λsk) � 1/λ2 (k � 1).
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Proof of Theorem 1. By (a) and (b), there is a constant D so that sj+1/sj � D for
all large j. Define

h(n) := max{k : s2k � n} (n ∈ N
∗),

so that the conditions N < s2n � NfN and h(N) < n � h(NfN) are equivalent.

We first consider the case when fN := (logN)M . Let

Nj := j(M+3)j, t(j) := �(M + 1)(log j)/ log 2�, Hj := 2t(j),

and

Uj := h(Nj), Uj,t := h(2tNj) (0 � t � t(j)), Vj := h(HjNj) = Uj,t(j).

It is possible that Uj,t+1 = Uj,t for some t. Note that for large j, HjNj � NjfNj
.

Let k be a constant depending only on M and D. For j � 1 define the events

Aj := {|SVj
| � sUj+1

},

Bj :=
⋂

0�t�t(j)−1

Bj,t where Bj,t :=

{
max

Uj+1,t�n�Uj+1,t+1

|SUj+1,t+1
− Sn| � ksUj+1,t

}
,

Cj := {|SUj+1
− SVj

| � 2sUj+1
}.

By (b) and the definition of h(N), we have

D−1
√

2tNj � sUj,t
�

√
2tNj (1)

for all j, t. It follows from Lemma 2 that

P(Aj) � D2HjNj

Nj+1

� D2

j2
.

Thus,
∑

j�1 P(Aj) <∞ and hence almost surely there is a j0 so that Aj occurs for
j � j0. Applying Lemma 2 again yields

P(Bj,t) �
s2Uj+1,t+1

− s2Uj+1,t

k2s2Uj+1,t

� D22t+1Nj+1

k22tNj+1

=
2D2

k2
.

If k = 3D
√
M + 1, then

P(Bj) �
(

1 − 2D2

k2

)t(j)

� 1

j1/2

for large j. Also by Lemma 2, P(Cj) � 3
4
, and since Bj and Cj are independent,∑

j�1

P(BjCj) = ∞.
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Since the events BjCj are independent, the Borel–Cantelli lemma implies that al-
most surely the events BjCj occur infinitely often. Thus, the event AjBjCj occurs
for an infinite sequence of integers j. Take such a index j, let n ∈ [Uj+1, Vj+1] and
Uj+1,g−1 < n � Uj+1,g, where 1 � g � t(j + 1). We have by several applications
of (1)

|Sn| � |SVj
| + |SUj+1

− SVj
| +

∑
0�t�g−2

|SUj+1,t
− SUj+1,t+1

| + |Sn − SUj+1,g−1
|

� 3sUj+1
+ k

∑
0�t�g−1

sUj+1,t

�
{
3 + k(1 + 21/2 + · · · + 2(g−1)/2)

}√
Nj+1

� 5k
√

2g−1Nj+1

� 5kDsn = 15D2(M + 1)1/2sn.

This completes the proof of part (i) of the theorem, since

Vj+1 � h(1
2
jM+1Nj) � h(Nj logM Nj)

for large j.

Now suppose fN = (logN)ξ(N) with ξ(N) tending monotonically to ∞.

Let λ > 0 be arbitrary and defineK := 2D2. LetN∗
1 be so large that fN∗

1
� K. For

j � 1 let N∗
j+1 = N∗

jK
u(j), where u(j) := �log fN∗

j
/ logK�. Put

U∗
j := h(N∗

j ), U∗
j,t := h(KtN∗

j ) (0 � t � u(j)).

Let Jj := [U∗
j , U

∗
j+1] and

Yj := max
n∈Jj

|Sn|/sn.

We have
u(j) � 1 ⇒ N∗

j+1 � KN∗
j ⇒ u(j)/ log j → ∞.

Therefore, by (c), if j is sufficiently large then

P(Yj � λ/2) �
∏

1�t�u(j)

P

(
|SU∗

j,t
− SU∗

j,t−1
| � 1

2
λ(sU∗

j,t
+ sU∗

j,t−1
)
)

�
∏

1�t�u(j)

P

(
|SU∗

j,t
− SU∗

j,t−1
| � λ

√
KtN∗

j

)

� (1 − cλ)u(j) � 1

j2
.

Thus ∑
j�1

P(Yj � λ/2) <∞.

Almost surely, Yk � λ/2 for only finitely many k.

4



Theorem 1 has an analog for Brownian motion, which follows from Theorem 1 and
the invariance principle.

Theorem 3 Let W (t) be Brownian motion on [0,∞). If fN = (logN)M with fixed
M > 0, then almost surely

I = lim inf
N→∞

max
N<t�NfN

|W (t)|√
t

<∞.

If fN = (logN)ξ(N) with ξ(N) → ∞, then I = ∞ almost surely.

Theorem 3 can be proved directly and more swiftly using the methods used to
establish Theorem 1. By invariance principles (e.g. Philipp , 1986), one may deduce
from Theorem 3 a version of Theorem 1 where stronger hypotheses on the Xj are
assumed. As it stands, now, however, Theorem 1 does not follow from Theorem 3.

3 Dependent random variables

The conclusions of Theorem 1 can also be shown to hold for certain sequences of
weakly dependent random variables by making use of almost sure invariance prin-
ciples. We assume that (d) there exists a sequence of i.i.d. normal random variables
Yj with EY 2

j = σ2
j , defined on the same probability space as the sequence of Xj ,

and such that if Zn = Y1 + · · · + Yn, then

|Sn − Zn| = O(sn) a.s.

Of course the variables Yj are dependent on theXj , but not on each other. Property
(d) has been proved for martingale difference sequences, sequences satisfying cer-
tain mixing conditions, and lacunary sequencesXj = {njω} with inf nj+1/nj > 1,
ω uniformly distributed in [0, 1] and {x} is the fractional part of x. See e.g. Philipp
(1986) for a survey of such results.

Theorem 4 (i) Suppose (a), (b), and (d). If fN := (logN)M for some constant
M > 0, then I <∞ almost surely.

(ii) Let ξ(N) tend monotonically to ∞ and set fN := (logN)ξ(N). Then I = ∞
almost surely.

By (d),
I = O(1) + lim inf

N→∞
max

N<s2
n�NfN

|Zn|/sn,

and we apply Theorem 1 to the sequence of Yj . The variable Zn is normal with
variance s2n, hence (c) holds.
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4 Prime factors of typical integers

Consider a sequence of independent random variables Yp, indexed by prime num-
bers p, such that P(Yp = 1) = 1/p and P(Yp = 0) = 1 − 1/p. We can think of Yp

as modelling whether or not a “random” integer is divisible by p. As EYp = 1/p,
we form the centered r.v.’sXp = Yp − 1/p (we may also define Xj for non-prime j
to be zero with probability 1). Let

Tn =
∑
p�n

Yp, Sn =
∑
p�n

Xp.

We have EX2
p = (1 − 1/p)/p, hence by Mertens’ estimate

s2n =
∑
p�n

1

p
− 1

p2
= log2 n+O(1).

Here and in the sequel, logk denotes, for integer k � 2, the k-fold iterated log-
arithm. Since E|Xp|3 � 1/p, the Lyapunov condition holds with δ = 1. Then
(a), (b) and (c) hold, and therefore the conclusion of Theorem 1 holds. Here take
D = maxn�2 sn+1/sn since s1 = 0.

Let ω(m, t) denote the number of distinct prime factors of m which are � t. The
sequence {Tn : n � 1} mimics well the behavior of the function ω(m,n) for a
“random” m, at least when n is not too close to m. This is known as the Kubilius
model. It can be made very precise, see (Elliott , 1979, Ch. 3, especially pp. 119–
122) and Tenenbaum (1999) for the sharpest estimate known to date. Suppose r
is an integer with 2 � r � x and r = x1/u, ωr(m) = (ω(m, 1), . . . , ω(m, r)) and
suppose Q is any subset of Z

r. Then, given arbitrary c < 1, and uniformly in x, r
and Q, we have

1

x
|{m � x : ωr(m) ∈ Q}| = P

(
(T1, . . . , Tr) ∈ Q

)
+O

(
x−c + e−u log u

)
. (2)

An analog of Theorem 1, established by parallel estimates, provides via (2) infor-
mation about localized large values of

/(m, t) := |ω(m, t) − log2 t|/
√

log2 t.

Theorem 5 (i) LetM > 0 be fixed, fN := (logN)M and putK := 30D2
√
M + 1.

If g = g(m) → ∞ monotonically as m → ∞ in such a way that g2fg2 � log2m
for large m, then for a set of integers m of natural density 1, 2 we have

min
g(m)�N�g(m)2

max
N<log2 t�NfN

/(m, t) � K.

2 A subset A of N
∗ is said to have natural density 1 if |A ∩ [1, x]| = x+ o(x) as x → ∞.
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(ii) Let ξ(N) → ∞ in such a way that fN := (logN)ξ(N) � N . Suppose that
g(m) → ∞ monotonically as m→ ∞, that g(m) � (log2m)1/10, and let

Im := min
g(m)�N

NfN �log2 m

max
N�log2 t�NfN

/(m, t).

Then, Im → ∞ on a set of integers m of natural density 1.

We follow the proof of Theorem 1. Keeping the notation introduced there, we see
that for large J ,

P

 ⋂
J�j�3J/2

AjBjCj

 �
∑

J�j�3J/2

D2

j2
+

∏
J�j�3J/2

(
1 − 3

4
√
j

)
� 1

J
·

For large G, define J by NJ+1 < G � NJ+2. Then G5/3 > N�3J/2�+2 and J �M

(logG)/ log2G. Thus, for large G,

P

(
min

G�N�G5/3
max

h(N)<n�h(NfN )

|Sn|
sn

� K

)
� 1 −O

(
1

J

)
� 1 −O

(
log2G

logG

)
.

The direct number theoretic analog of |Sn|/sn is

/̃(m, t) :=

∣∣∣ω(m, t) − ∑
p�t 1/p

∣∣∣√∑
p�t(1 − 1/p)/p

.

By (2), if G is large and G �
√

log2 x (so that G5/3fG5/3 � (log2 x)
7/8), then

1

x

∣∣∣∣{m � x : min
G�N�G5/3

max
h(N)<n�h(NfN )

/̃(m, t) � K
}∣∣∣∣ � 1 −O

(
log2G

logG

)
.

Since /̃(m, t) = /(m, t) +O
(
1/

√
log2 t

)
, the first part of the theorem follows.

The second part is similar. Note that ω(n, x) − ω
(
n, x1/

√
log2 x

)
�

√
log2 x for

n � x, and, for brevity, write g = g(
√
x). By (2) with u :=

√
log2 x, we have, for

any fixed K and large x,

1

x

∣∣∣∣∣
{
m � x : min

N�g
NfN �log2 m

max
N<log2 t�NfN

/̃(m, t) � K

}∣∣∣∣∣
� 1

x

∣∣∣∣∣∣∣
{√

x � m � x : min
N�g

NfN �L (x)

max
N�log2 t�NfN

/̃(t) � K + 2

}∣∣∣∣∣∣∣ +
1√
x

� P

 inf
N�g

NfN �L (x)

max
h(N)<n�h(NfN )

|Sn|
sn

� K + 2

 +O
(

1

log2 x

)
,
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where L (x) := log2 x − 1
2
log3 x. Since fN � N , we have N∗

j+1 � (N∗
j )2 in the

notation of the proof of Theorem 1. The interval[
(log2 x)

1/10,L (x)1/2
]

therefore contains at least one interval Jj . By the proof of Theorem 1, for large x,
the probability above does not exceed

∑
j�j0 1/j2 � 1/(j0 − 1), where j0 → ∞ as

x→ ∞.

Remarks. The upper bound g2 of N in the first part can be sharpened. By the
same methods, similar results can be proved for a wide class of additive arithmetic
functions r(m, t) =

∑
pa‖m r(p

a) in place of ω(m, t).
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