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Abstract: A new approach based on pattern recognition techniques and dedicated to the

monitoring of non stationary systems is presented in this paper. More precisely, it consists

of a recursive subspace identification algorithm combined with an adaptive classifier set for

non stationary environment. The system identification method which provides a recursive

estimation of a linear state space model is firstly described. Then, a feature vector representing

the system functioning state is extracted from this estimated model. Next, the dynamical

clustering algorithm which online learns the functioning modes and continuously determines

the current mode of the system is introduced. Its auto adaptive and unsupervised abilities to

take into account system modes evolutions are finally emphasized on simulation examples.

Keywords: Monitoring, Pattern Recognition, System identification, Recursive algorithms,

Subspace methods, Systems tracking, Non stationary systems, Classification.

1. INTRODUCTION

Supervision systems are more and more used in the

framework of time varying processes. The treatment

of such processes quite often leads to inopportune

alarms and requires a regular maintenance of the ref-

erences of the monitoring and diagnosis functions.

The update of these decision criteria has to be done

after establishing the current functioning mode and the

definition of its tolerances in relation to the updated

reference. Although supervision is an extensive stud-

ied research area, there are few works which consider

the problem of the reference update. This paper tries

to give some solutions to this problem. More precisely,

the monitoring of non stationary systems is concerned.

The non stationarities (modifying the static and/or dy-

namic behaviour of the system) considered hereafter

are defined as evolutions of the model structure and/or

parameters. A convenient way of representing these

evolutions consists in considering two points of view:

• functioning modes change,

• functioning modes drift.

The proposed approach is based on the modelling

of such systems with a set of several linear models

which are representative of all the functioning modes.

Thanks to this representation, the mode change can

be modeled as a model commutation as illustrated

on figure 1 where the functioning modes drift corre-

sponds to a progressive change of the local models

parameters. Thus, the global behaviour of the process

can be modeled by a succession of modes which of-

fer or not shifts or drifts. Unfortunately, this way of

modelling leads to an exhaustive determination of all

the models, all the commutation conditions and all

their distortions in order to get a reliable tracking.
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Fig. 1. Modelling based on a set of linear models.

This approach needs furthermore the knowledge of the

current system mode any time. In order to not resort

to the a priori information used by most of techniques

based on the residuals or the multimodel identification

(Simani et al., 2002), the developed method rests on

the pattern recognition where the modes recognition

is realised thanks to an online learning.

2. PROBLEM FORMULATION AND APPROACH

PRINCIPLE

Based on two consecutive recursive techniques, the

considered approach is composed by the following

stages :

(1) the extraction of a vector representative of the

functioning state from a linear model online

identified thanks to the use of a recursive algo-

rithm;

(2) the determination of the functioning mode from

a decision subspace continuously adapted by

learning, the functioning modes being modelled

by an online data clustering technique.

2.1 Online identification

Since the study of non stationary systems requires to

have access to a reliable representation any time, a

recursive identification algorithm is proposed to es-

timate a linear model of the tracked system at each

data acquisition. The considered method has more pre-

cisely the goal to online determine a state space model

representative of the functioning state of the process

under the hypotheses that the order is a priori known

and that the analysed system is stable and observable.

The choice of such a representation can be justified

by the fact that the state space realization is particu-

larly adapted to MIMO processes and does not require

any canonical parameterization. In this framework,

the EIVPM algorithm (Mercère et al., 2004) is used

for its implementation straightforwardness and its low

computational cost (Mercère et al., 2004). From the

estimated model, a representative vector of the func-

tioning state is extracted.

2.2 Dynamical data clustering

The goal of this stage is to determine the actual func-

tioning modes. The decision is based on a classifica-

tion space obtained by online learning. Indeed, each

mode is characterized by the class model label. The

novelty of the proposed approach consists in exploit-

ing a specific classification technique making possible

the continuous modelling of the functioning modes.

The used dynamical classifier algorithm (Lecœuche

and Lurette, 2003) has the capacities to create new

classes (unknown modes) and to adapt the known

classes models when the data distributions which char-

acterize them evolve or move. The variations resulting

from non stationarities thus make the models of the

classes, associated with the functioning modes, evolve

or move in time. When a new observation is presented

at the classification algorithm, the decision space is

updated according to the information brought by the

observation and the current functioning mode is deter-

mined (in terms of closer linear local model).

These two stages will be more precisely introduced in

the following two sections.

3. RECURSIVE SUBSPACE IDENTIFICATION

The method considered in this paper lies on the re-

cursive estimation of a linear state space model of

fixed structure (the order is a priori estimated) by the

subspace approach. This approach lets us indeed to

online get the state space matrices [A,B,C,D] of the

linear model in the following noisy framework

x(t +1) = Ax(t)+Bũ(t)+w(t) (1)

ỹ(t) = Cx(t)+Dũ(t) (2)

u(t) = ũ(t)+υυυ(t) (3)

y(t) = ỹ(t)+v(t) (4)

where ũ ∈ R
nu×1 and ỹ ∈ R

ny×1 are respectively the

noise free input and output vectors, x∈R
nx×1 the state

vector, w∈R
nx×1 the process noise and υυυ ∈R

nu×1 and

v ∈ R
ny×1 respectively the input and output measure-

ment noise. The principle of the proposed technique

rests on the adaptation of the MOESP subspace model

identification (SMI) schemes (Verhaegen, 1994) to the

recursive estimation problem. This SMI class of algo-

rithms relies on the following two steps:

• an input output (I/O) data matrices compression

with the help of a QR factorization (Golub and

Van Loan, 1996),

• the use of a singular value decomposition (SVD)

(Golub and Van Loan, 1996) of particular sub-

matrices obtained from the previous factorization

leading to a consistent estimation of the extended

observability matrix.

Since this last stage is not suitable for online imple-

mentation due to its computational complexity, sev-

eral alternative algorithms have been developed in

the recursive identification framework (Lovera et al.,

2000; Oku and Kimura, 2002; Lovera, 2003). Several

studies (Mercère et al., 2004; Mercère et al., 2005)

have enhanced some theoretical and practical benefits
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of the adaptation of a particular array signal process-

ing technique: the propagator method (Munier and

Delisle, 1991). The main advantage of this approach

lies in the use of a linear operator and unconstrained

and unapproximated quadratic criteria which lead to

easy recursive least squares algorithms. Among the

different recursive subspace identification methods us-

ing the propagator, it has been chosen to apply the

EIVPM algorithm (Mercère et al., 2004) due to its

implementation straightforwardness and its low com-

putational cost. The first phase of this technique con-

sists more precisely in the update of the Ordinary

MOESP (Verhaegen and Dewilde, 1992) QR factoriza-

tion at each new data acquisition as follows 1 (Lovera

et al., 2000; Mercère et al., 2004):

[√
λ

[
R11(t) 0

R21(t) R22(t)

]
u+

f (t +1)

y+
f (t +1)

]⎡

⎣
Q1(t) 0

Q2(t) 0

0 1

⎤

⎦ (5)

with

y+
f (t) =

[
yT (t) · · · yT (t + f −1)

]T ∈ R
ny f×1

, (6)

and f > nx. The update of equation (5) can then be

realized by applying Givens rotations (Golub and Van

Loan, 1996) in order to bring back the R factor to

a lower triangular form (Lovera et al., 2000). This

operation lets us to extract a vector z+
f ∈ R

ny f×1,

named the observation vector, obtained by modifying

y+
f in order to include the information contained in

u+
f and

[
RT

11 RT
21

]T
. It was more particularly proved

in (Mercère et al., 2004) that

z+
f (t) = ΓΓΓ f x(t)+b+

f (t) (7)

where ΓΓΓ f is the observability matrix:

ΓΓΓ f =
[
CT (CA)T · · ·

(
CA f−1

)T
]T

(8)

and b+
f a vector bringing together all the noise terms.

Knowing this observation vector, the EIVPM algo-

rithm proposes to recursively estimate a basis of the

observability matrix assuming that the studied sys-

tem is observable. Under this hypothesis, since ΓΓΓ f ∈
R

ny f×nx with ny f > nx, ΓΓΓ f has at least nx linearly in-

dependent rows, which can be gathered in a submatrix

ΓΓΓ f1 . The complement ΓΓΓ f2 of ΓΓΓ f1 can be expressed as a

linear combination of these nx rows. There is a unique

linear operator P f ∈ R
nx×(ny f−nx), named propagator

(Munier and Delisle, 1991), such that

ΓΓΓ f2 = PT
f ΓΓΓ f1 . (9)

Furthermore, it is easy to verify that

ΓΓΓ f =

[
ΓΓΓ f1

ΓΓΓ f2

]
=

[
ΓΓΓ f1

PT
f ΓΓΓ f1

]
=

[
Inx

PT
f

]
ΓΓΓ f1 = EoΓΓΓ f1 . (10)

Thus, since rank
{

ΓΓΓ f1

}
= nx,

spancol

{
ΓΓΓ f

}
= spancol {Eo} . (11)

1 The forgetting factor λ is introduced to weight the past informa-

tion.

Equation (11) implies that it is possible to estimate the

observability matrix (in a particular basis) by estimat-

ing the propagator. This operator can be determined by

applying a data reorganization to (7) so that the first nx

rows of ΓΓΓ f are linearly independent

z+
f (t) =

[
z+

f1
(t)

z+
f2
(t)

]
=

[
Inx

PT
f

]
ΓΓΓ f1 x(t)+

[
b+

f1
(t)

b+
f2
(t)

]
, (12)

then by considering the following quadratic criterion

JIV (P f ) =

∥∥∥∥Rz+
f2

ξξξ −PT
f Rz+

f1
ξξξ

∥∥∥∥
2

F

(13)

where ξξξ ∈ R
nξ×1 (nξ ≥ nx) is an instrumental vari-

able assumed to be uncorrelated with the noise but

sufficiently correlated with x. The minimisation of the

cost function (13) can be obtained by adapting the

overdetermined instrumental variable technique first

proposed in (Friedlander, 1984). The resulting algo-

rithm is named EIVPM (Mercère et al., 2004).

Once the observability matrix is estimated, the state

space matrices extraction step can be considered.

The matrices A and C are obtained by using the A-

invariance property of ΓΓΓ f

Ĉ = Γ̂ΓΓ f (1 : ny, :) (14)

Â = Γ̂ΓΓ f (1 : ny( f −1), :)† Γ̂ΓΓ f (ny +1 : ny f , :) . (15)

B and D are estimated from a classical linear regres-

sion 2 (see, e.g., (Lovera et al., 2000)).

4. ONLINE MODELLING OF MODES

The modes modelling tool treats the data extracted

from the identified state space matrices as they ar-

rive. The new information is incorporated continu-

ously in order to redefine the structure of the function-

ing modes and thus to model continuously the deci-

sion space. Taking into account the various situations

related to non stationarity environment requires the

setting of specific adaptation rules through a contin-

uous learning process. In the area of machine learn-

ing, some techniques exist with architectures exploit-

ing incremental learning (Deng and Kasabov, 2003),

(Eltoft and deFigueiredo, 1998), (Mouchaweh, 2004).

Most of these algorithms present some disadvantages

related to a coarse classes modelling and/or lim-

ited adaptation capacities in non stationary environ-

ment. In order to fill these gaps, two neural algo-

rithms for the dynamic classification of the evolution-

ary data have been previously developed (Lecœuche

and Lurette, 2003; Amadou-Boubacar and Lecœuche,

2005). These algorithms use a multi-prototype ap-

proach making possible to accurately model the struc-

ture of complex classes. In this paper, the AUDyC

network based on a Gaussian modelling is used. Each

functioning mode corresponds to a label of a com-

plex class which could be defined by an assembly of

2 The evolution of the B and D matrices is not considered in this

paper.
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Gaussian prototypes. The activation function of each

hidden neuron determines the membership degree µ t
j

of the observation Xt to one prototype Φ j. In order to

obtain a fine classes representation, this one is based

on the Mahanalobis distance

µ t
j = exp

(
1

2

(
Xt −X j

)T ∗Σ−1
j ∗

(
Xt −X j

))
(16)

where X j and Σ j are respectively the center and the

covariance matrix of the prototype. The use of the

membership function allows the implementation of

the learning rules. With the first acquisition X1, the

network is initialized: creation of the first prototype

Φ1 constituting the first class Ω1 (first functioning

mode). The prototype is parameterized by its center

X1 = X1 and an initial covariance matrix Σini be-

forehand selected. Then, according to new acquisi-

tions, various situations can arise by comparison of the

membership degree with two fixed thresholds µmin and

µmax (resp. limit of prototype and class membership).

Each case leads to a specific procedure (see Table 1).

Table 1. Classifier Adaptation rules.

If Then

1 µ t
j < µmin∀ j ∈ {1..J} Creation

Φnew ∈ Ωnew

2 ∃Φ j ∈!Ωi,µmin < µ t
j < µmax

Creation

Φnew ∈ Ωi

3 ∃Φ j,µmax < µ t
j

Adaptation

Φ̂ j = Φ j(Xt)

4
∃Φl ∈!Ωp ∪

∃Φm ∈!Ωq,µmin < µT
l,m < µmax

Ambiguity Xt ∈
χamb

Then, the AUDyC learning process is established in

three principal phases:

4.1 First phase: classification

The classification stage corresponds to the creation

and adaptation of prototypes and classes. In cases 1

and 2 of table 1, the observation Xt is not close to

any existing prototype. These cases are similar to a

distance rejection which could be used to detect the

novelty in the multiclass environment. If the observa-

tion is not sufficiently close to any class (case 1), it

leads to the creation of a new prototype and a new

class corresponding to a new system mode. In the

case 2, a new prototype is created and affected to the

nearest class in order to contribute to a better definition

of the mode model. In situation 3, the observation is

rather close to a prototype to take part in its definition.

The functioning mode adaptation is then carried out

by using the following recursive equations

X
t
j = X

old
j +

1

Np

(Xt −Xt−Np+1) (17)

Σt
j = Σold

j +ΔX

(
1

Np

1
Np(Np−1)

1
Np(Np−1)

−(Np+1)
Np(Np−1)

)
ΔXT (18)

with ΔX =
[
Xt −X

old
j Xi−N+1 −X

old
j

]
, Np : pro-

totype size.

4.2 Second phase: fusion

The case 4 of table 1 depicts the case of the rejection

in ambiguity when an observation is sufficiently close

to two or several prototypes (e.g. l,m) to contribute to

their structure. The fusion procedure consists in evalu-

ating the similarity of two densities by using an accep-

tance criterion based on the Kullback-Leibler distance

(Zhou and Chellappa, 2004). When this criterion is

higher than a threshold, the different classes (e.g. p,q)

merge onto a unique new functioning mode.

4.3 Third phase: evaluation

The evaluation phase is significant to eliminate the

parasite prototypes and classes possibly created by the

noise influence. To detect not-representative modes,

this phase is based on the cardinality of the models.

For example, if the number of allocated data is less

than the NPmin (NCmin) threshold, the prototype (the

class) is eliminated .

For more details on the AUDyC network, the reader

can consult (Lecœuche and Lurette, 2003). A similar

technique based on SVM technique can also be found

in (Amadou-Boubacar and Lecœuche, 2005).

5. SIMULATIONS

This last part relates to the application of the suggested

method. Only results coming from simulated systems

are given. Two cases are more precisely considered in

the following subsections.

5.1 Commutation of functioning modes

The first simulation shows the abilities of the pre-

sented approach to model and to analyze non linear

system that could be modelled as a linear model set.

x(t +1) = Aix(t)+
[

0 0
−0.6 0

0 0.5

]
ũ(t)+w(t) (19)

y(t) =
[

0.5 0.5 0
0 0 1

]
x(t)+v(t) (20)

Fig. 2. Evolutions of the A matrix.

The system inputs are white Gaussian noises of vari-

ance 1. The system is disturbed by an output colored

measurement noise (variance 0.03) and by a colored

process noise (variance 0.05). During the simulation,

the A matrix parameters change according to temporal
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events. Figure 2 shows the change directions for each

numbered event. At the simulation beginning, both

algorithms are initialized ( f = 6, λ = 0.995) under

the assumption 3 that the system order is a priori

known. Then in a recursive way, the EIVPM technique

identifies the process and determines the state matrices

corresponding to the linear model best approximating

the process. The eigenvalues vpt
i of the matrix Â con-

stitute the Xt observation vector used to determine the

functioning mode: Xt =
[
vpt

i vpt
2 vpt

3

]
(see figure 3).

In fact, this vector consists in all the monitored param-

eters. For more complex applications, its dimension

could be increased by adding the B and C coefficients.

Fig. 3. The eigenvalues of the Â matrix online esti-

mated with EIVPM.

The Xt vector observation is then directly sent to the

AUDyC network. From this information, the dynam-

ical classifier updates the decision space (functioning

modes models) and determines the current functioning

mode. For the whole of this study, the parameters

are fixed as follows: Σini = 0.05,µmin = 0.015,µmax =
0.02,NPmin = 50,NP = 500 and Namb = 5. For more

information about the choice of the parameters, the

reader can refer to (Amadou-Boubacar et al., 2005).

Figure 4.a illustrates the final representation space of

the raw data (Xt ). In fact, the data are online classified

in a sequential way. From the first acquisition, the AU-

DyC network initializes the first class corresponding

to the initial functioning mode of the system. When

changes occur, an observation fast drift is detected un-

til stabilization. A new class is created when the num-

ber of stable observations exceeds the NPmin thresh-

old. This threshold can be interpreted as the minimum

duration making it possible the characterization of a

stable mode. New classes are created in this way. The

figure 4.b gives the final classes locations.

The current functioning mode is determined by using

the membership degree of the observation (member-

ship ratio rule). On figure 5, it can be noticed that the

observations located between modes are non classified

and the class creation (4 first situations) is effective

after an extra delay corresponding to the NPmin thresh-

old. When the mode is already known, the decision is

done quicker.

3 No mode is a priori known.

Fig. 4. Modes learning and class jump detection.

Fig. 5. Classification of the observations.

5.2 Evolution of a functioning mode

This second simulation characterizes a progressive

mode evolution. The used system has the same repre-

sentation as the previous (see (19)), only the A matrix

changes in order to describe two mode jumps followed

by a drifting mode

A(t) =

⎡

⎣
v1 −0.4 0.2

0 v2 −0.5

0 0 v3

⎤

⎦ (21)

with

[ v1 v2 v3 ] =

⎧
⎪⎪⎨

⎪⎪⎩

[0.8 −0.6 0.1 ] for 0<t≤1000

[0.65 −0.45 0.1 ] for 1000<t≤2000

[0.65 −0.65 0.05 ] for 2000<t≤2780

[0.65 −0.65 0.05 ]− [0.05 0.05 0.2 ]∗ t
2780

else.

(22)

Figure 6 gives the appearances of the decision space

at different instants. The decision space is adapted by

the integration of new knowledge.

Concerning the class representing the mode 3, its

model is correctly defined at every moment (Figure

6.b to 6.d) by using the prototype adaptation rules.

Figure 7 shows that mode commutations have been

detected. For the class 3, the current mode is still

the same even if its model evolves. Of course, from

this point, expert knowledge should be introduced in

order to define if this evolution is “normal” (running

in periods, chemical transition, ...) or if a progressive

failure appears to the process.

6. CONCLUSION

In this paper, a new approach has been presented for

the online determination of the functioning mode of
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Fig. 6. Class adaptation according to the evolution of

a functioning mode.

Fig. 7. Observation labels.

a non stationary system. This approach is based on a

recursive identification tool coupled with a dynamic

classification algorithm. Thanks to its recursive rules,

this dynamic classifier online models the functioning

modes. The interest of this approach is to take into ac-

count commutations and evolutions of system modes

without a priori knowledge in order to continuously

determine the current functioning mode of the system.

The simulation results have shown the efficiency of

this approach. New tools for jumps and drifts modes

detection are being studied in order to propose a com-

plete supervisory module.
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