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Integers with a large friable component
Gérald Tenenbaum

1. Introduction and statement

It is well-known (see, e.g., [‘Te95’], chap. III.3) that the logarithms of the prime factors of an
integer normally have exponential growth. Therefore, it is expected that the product of the small
prime factors of a typical integer remains small—a device which has been employed by Erdős in
many different contexts and for which various effective versions appear in the literature. We return
here to the problem of finding a quantitative estimate for the number of exceptional integers. Some
similar results have been obtained concomitantly, through a more elementary approach, by Banks
and Shparlinski [‘BS06’].

Given an integer n and a real parameter y � 1, we define

ny :=
∏

pν‖n, p�y

pν

as the y-friable component of n and we put

Θ(x, y, z) :=
∑
n�x
ny>z

1 (x � 1, y � 1, z � 1).

We also write, for complex s with positive real part,

ζ(s, y) :=
∑

P (n)�y

1/ns =
∏
p�y

(
1 − p−s

)−1
,

where P (n) denotes the largest prime factor of n with the convention that P (1) := 1, we let �
designate Dickman’s function and we set

S(y, z) :=
∑

P (m)�y
m>z

1
m
.

It has been shown in [‘Te99’], Corollary 2, that, writing u := (log x)/ log y, we have

(1·1) Θ(x, y, z) =
xS(y, z)
ζ(1, y)

+ O
(
x�(u)2(1+ε)u + xε

)

uniformly for x � 2, y � 2, z � 2, and also that, denoting Euler’s constant by γ, and writing

τ(w) :=
∫ ∞

w

�(t) dt (w � 0),

we have, with v := (log z)/ log y,

(1·2) S(y, z) =
{

1 + O
( log(v + 2)

log y

)}
τ(v) log y

for all ε > 0 and uniformly for

(1·3) y � 2, 1 � z � exp exp
{
(log y)3/5−ε

}
.

Thus, for all x � 2 and y, z satisfying (1·3), we have

(1·4) Θ(x, y, z) =
{

e−γ + O
( log(v + 2)

log y

)}
xτ(v) + O

(
x�(u)2(1+ε)u + xε

)
.

Note that Θ(x, y, z) = 0 unless z � x and that, when the latter holds, (1·3) is implied by
Hildebrand’s condition

(Hη) x � 2, exp
{
(log2 x)5/3+η

}
� y � x

with η = 3ε.
In particular, if condition (1·3) holds, u → ∞, y → ∞, and, say, z � x1−ε, then

(1·5) Θ(x, y, z) ∼ e−γτ(v)x.
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Formula (1·1) has been derived in [‘Te99’] as a by-product of a general result on the Kubilius
model of probabilistic number theory. However, the estimates established in [‘Te99’] easily yield
an asymptotic formula that is valid also when u is bounded. Let ω denote Buchstab’s function. We
obtain the following result in which we put

σ(u, v) :=
∫ ∞

v

�(t)ω(u− t) dt

ϑ(u, v) := �(u) + σ(u, v)
κ(u, v) := (1 − γ)�(u− 1) + γ�(v)ω(u− v)

(u � 1, v � 0).

Theorem 1.1. Let ε > 0. Under conditions (1·3) and 1 � z � x/y, we have uniformly

(1·6) Θ(x, y, z) = x

{
ϑ(u, v) − κ(u, v)

log y
+ O

(
τ(v)
log y

+
�(v) log(v + 2)

(log y)2
+

1
z

)}
.

In particular, if (log y)2 � z � min
(
x/y1+ε/ log(u+1), e

√
y
)
, we have

(1·7) Θ(x, y, z) =
{

1 + O
( log(v + 2)

log y

)}
ϑ(u, v)x.

Remarks. (i) The condition z � x/y is not restrictive since Θ(x, y, z) = Ψ(x, y)−Ψ(z, y) otherwise.
(ii) It will be clear from the proof that, under suitable assumptions, more precise estimates may

be derived by the same method.
(iii) It follows from classical estimates on Dickman’s function (see e.g. [‘Te95’], chap. III.5) that

(1·8) τ(w) =
�(w)

log(w + 1)

{
1 + O

( 1
log(w + 1)

)}
(w � 1).

Since 1
2 � ω(t) � 1 (t � 1) and �(v + h) � �(v){v log(v + 1)}−h (0 � h � 1 � v)(see

e.g. [‘Te95’], chaps. III.5 and III.6), this implies, for instance, that ϑ(u, v) 	 τ(v) whenever
u− 1 − v � 1/ log(v + 1).

2. Proof of ‘evalT’

We start with an improvement of (1·2) established by the same method. As usual, we define
the derivatives of the Dickman function by right continuity at integer points. It is known (see e.g.
[‘Te95’], cor. III.5.8.3) that �(k)(w) ∼ (−1)k(logw)k�(w) as w → ∞. We also denote by {aj}∞j=0

the Taylor coefficients of sζ(s + 1)/(s + 1) at s = 0.

Lemma 2.1. Let ε > 0 and k ∈ N be given. Then, uniformly under condition (1·3), we have

(2·1) S(y, z) = τ(v) log y −
∑

0�j�k

aj+1
�(j)(v)
(log y)j

− Ψ(z, y)
z

+ O

(
�(v){log(v + 2)}k+1

(log y)k+1

)
.

In particular, we have

(2·2) S(y, z) = τ(v) log y − γ�(v) + O

(
�(v) log(v + 2)

log y
+

1
z

)
.

Proof. We have

S(y, z) = (log y)
∫ ∞

v

Ψ(yw, y)
yw

dw − Ψ(z, y)
z

.

Inserting Saias’ estimate for Ψ(yw, y) (see [‘Sa89’] or [‘Te95’], th. III.5.9) in its range of validity
and estimating the contribution of large w as in [‘Te99’], we obtain∫ ∞

v

Ψ(yw, y)
yw

dw =
{

1 + O
(
e−(log y)3/5−ε

)}∫ ∞

0−
τ(v − t) d

( [yt]
yt

)
.

Formula (2·1) follows by integrating by parts and inserting the generalized Taylor expansion for the
Dickman function established in [‘FT91’], lemma 4.2. We omit the details, which are very similar
to those in [‘FT91’]. Then, we derive (2·2) by appealing to Hildebrand’s formula [‘Hi86a’]

(2·3) Ψ(z, y) = z�(v)
{

1 + O
( log(v + 1)

log y

)}
+ O(1)

(
z � 2, y � e(log2 z)5/3+ε)

.

��
For y � 2, t � 1, we write ut := (log t)/ log y.



Integers with a large friable component 3

Lemma 2.2. Under conditions (1·3) and 1 � z � x/y, we have uniformly

(2·4)
∑

P (m)�y
m>z

ω(u− um)
m

= σ(u, v) log y − κ(u, v) + �(u− 1) + O

(
τ(v) +

�(v) log(v + 2)
log y

+
1
z

)
.

Proof. Since ω(s) is continuous for s � 1 and differentiable for s > 1, we have

∑
P (m)�y

m>z

ω(u− um)
m

=
∑

P (m)�y
z<m�x/y

1
m

{
1 +

∫ u−1

um

ω′(u− t) dt
}

= S(y, z) − S(y, x/y) +
∫ u−1

v

ω′(u− t){S(y, z) − S(y, yt)}dt

= ω(u− v)S(y, z) − S(y, x/y) −
∫ u−1

v

ω′(u− t)S(y, yt) dt.

The required formula then follows by inserting (2·2), using the estimate (1·8). We omit the details
which only involve standard partial integration and the fact that ω′ ∈ L1(R). ��

We are now in a position to complete the proof of ‘evalT’.
We first consider the case when (x, y) lies outside the region (Hε). Appealing to the bound

ω(t) − e−γ 
 �(t) (t � 0) established, in a more precise form, in lemma 4 of [‘Te99’] and noting
that, say, u > 3v provided y is large enough, we see that

σ(u, v) = e−γτ(v)
{
1 + O

(
1/(log y)2

)}
,

κ(u, v) = γe−γ�(v)
{
1 + O

(
1/(log y)2

)}
.

Thus (1·6) is in this case an immediate consequence of (1·1) and (2·2).
When (x, y) ∈ Hε, z � x/y, we apply the formula

Θ(x, y, z) =
∑

P (m)�y
z<m�x/y

Φ
( x

m
, y

)
+ Ψ(x, y) − Ψ(x/y, y),

where Φ(t, y) denotes the number of positive integers not exceeding t and all of whose prime factors
exceed y. The last two terms may be evaluated by (2·3). Note that Ψ(x/y, y) may be regarded
as an error term since this is 
 x�(v)/y. Thus, we may restrict our attention to evaluating the
m-sum. To this end, we apply Corollary 3 of [‘Te99’] in the form

Φ
( x

m
, y

)
=

eγxω(u− um)
mζ(1, y)

− eγy

ζ(1, y)
+ O

(x�(u− um)
m(log y)2

)
(z < m � x/y).

By (1·2), the contribution of remainder term of the left-hand side is dominated by that of (1·6) and
that of the second term equals −x�(u−1)/ log y to within an acceptable error. Since the remaining
sum depends on (2·4), this completes the proof of (1·6). Formula (1·7) then follows from the bound
τ(v) � v−2v.
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