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We establish a general and optimal lower bound for the complete sum of the probabilities of k-intersections of n events. We then describe various applications to additive and multiplicative number theory, graph theory, coding theory, study of lattice points on circles, and divisors of polynomials for the right-hand side is a convex function of x, with equality when x is an integer. We also note that Q 1 (x) = x, and that, for all m, the function Q m is continuous, convex and satisfies Q m (x) = 0 whenever x m -1.

We state our main result in a probabilistic setting.

Introduction

Let µ be a positive measure on a set Ω, {E j } k j=1 a family of measurable subsets, and set τ m :=

1 j1<•••<jm k µ(E j1 ∩ • • • ∩ E jm ) (m 1).
We address here the problem of obtaining lower bounds for τ m in terms of τ 1 . For m 2, the quantity τ m may be thought of as the global amount of m-overlapping in the family {E j } k j=1 . Many problems in Combinatorial Number Theory may be tackled by using estimates for τ m . According to the specific situation under consideration, appropriate choices of the set Ω, the family of subsets {E j } k j=1 and the measure µ may be performed.

The integer parameter m 1 being fixed, our results will be conveniently described in terms of the continuous, piecewise linear, interpolation of the binomial coefficients n m (n ∈ N). Thus, we define

Q m (x) := x m + x m -1 x = x m x + x + 1 m (1 -x ) (x ∈ R + )
where x and x denote respectively the integer part and the fractional part of x.

We have

Q m (x) x m (x ∈ R + ),
Theorem 1.1 (Overlapping Theorem). Let (Ω, A, P) be a probability space and let {E j } k j=1 denote a family of events. Write

σ m := 1 j1<•••<jm k P(E j1 ∩ • • • ∩ E jm ) (m 1
).

Then we have

(1.1) σ m Q m (σ 1 ).
The case m = 2 is essentially due to Gillis [START_REF] Gillis | Note on a property of measurable sets[END_REF]. The general bound has been outlined by Klazar in [START_REF] Klazar | Comments on a result of Trotter and Winkler in combinatorial probability[END_REF]. By a different method, we prove, the above result in the next section, together with the fact that inequality (1.1) is optimal in its generality.

In section 3, we describe various applications. The results obtained there are not all new: our main purpose is to point out that they all allow a unified approach.

The overlapping theorem

We first prove Theorem 1.1. Put f (ω) := 1 j k 1 Ej (ω). Then

(1 + t) f (ω) = 1 j k (1 + 1 Ej (ω)t) (ω ∈ Ω).
Equating coefficients of t m on both sides, we obtain

Q m (f (ω)) = f (ω) m = 1 j1<•••<jm k 1 Ej 1 1 Ej 2 • • • 1 Ej m (ω ∈ Ω).
Integrating with respect to dP(ω), we obtain

σ m = E(Q m (f )).
Since Q m is convex, we may apply Jensen's inequality (see, e.g., [START_REF] Rudin | Real and complex analysis[END_REF], Theorem 3.3) to get

Q m (σ 1 ) = Q m (E(f )) E(Q m (f )) = σ m
It is not difficult to see that Theorem 1.1 cannot be improved. Let I = R/Z be equipped with the Haar measure. For given 0 < σ < k ∈ N and all integers j, 1 j k, we define E j := {x ∈ I : 0 x + j/k < σ/k (mod 1)}, so that each E j has measure σ/k. Put ν = σ . Then each x ∈ I belongs to exactly ν or ν + 1 sets E j , the latter case being excluded if σ ∈ N. Thus

f (x) = 1 j k 1 Ej (x) ∈ {ν, ν + 1} (x ∈ I).
Writing A κ := f -1 ({κ}), we infer that

E(f ) = σ = νP(A ν ) + (ν + 1)P(A ν+1 ) = ν + P(A ν+1 ).
This implies in turn, with w

:= P(A ν+1 ) = σ -ν, E(Q m (f )) = ν + 1 m w + ν m (1 -w) = Q m (σ).
Actually, equality holds if and only if f = 1 Ej takes no more than two consecutive integer values and E(f ) = σ.

For most the applications, the next corollary, which is also optimal, is sufficient.

Corollary 2.1. Let (Ω, A, P) be a probability space and let {E j } k j=1 denote a family of events. Then, for each m 1, we have

k m max 1 j1<•••<jm k P(E j1 ∩ • • • ∩ E jm ) Q m (σ 1 ).
Proof. This is obvious since σ m is a sum with k m summands.

We now proceed with our optimality assertion.

Theorem 2.2. Let 0 < σ k ∈ N. There exist a probability space and a sequence of events {E j } k j=1 such that every intersection

E j1 ∩ • • • ∩ E jm , 1 j 1 < • • • < j m k has probability Q m (σ)/ k m . Proof. Let k ∈ N, A := [1, k] ∩ N
, Ω := P(A), and define

E j := {J ⊂ A : j ∈ J} ∈ Ω (1 j k).
Let ν := σ , w := σν, and let Ω ν denote the subset of Ω comprising all sets E with ν elements. Then, obviously,

f (E) = 1 j k 1 Ej (E) = ν, j1<•••<jm 1 Ej 1 (E) . . . 1 Ej m (E) = ν m (E ∈ Ω ν ).
Hence, selecting P as the uniform measure µ ν supported on Ω ν ,

σ m = E f m = ν m .
Furthermore, by symmetry, all E j1 ∩ • • • ∩ E jm have the same probability. By linear combination, the above is also true for P = wµ ν+1 + (1w)µ ν . Therefore we get for this choice

σ m = w ν + 1 m + (1 -w) ν m = Q m (σ).
3. Applications 3.1. Primes. Our first application is an unusual proof of a well-known estimate for the sum of the reciprocals of primes.

Theorem 3.1. For n 3, we have

p n 1 p log log(2n + 1) log 2 + 1.
Proof. Let X denote the random variable defined by

P(X = r) = 1/n for 1 r n 0 otherwise,
and, for each prime p n, select E p := {ω : X(ω) ≡ 0 (mod p)}. We have,

σ m = pi 1 <•••<pi m n P(E pi 1 • • • E pi m ) = 1 n pi 1 <•••<pi m n n p i1 • • • p im 1 r .
where ν(r) denotes the number of prime factors of r. This also holds for m = 0 if we set σ 0 = 1. Therefore

2 σ1 = m 0 σ 1 m m 0 σ m 1 r n 1 r log(2n + 1).
the stated bound follows, since we have from above

σ 1 = 1 n p n n p p n 1 p -1.
3.2. Graphs. The study of extremal problems in graph theory was initiated by Erdős and Turán. The theorem below was originally proved by Kővari, Sós and Turán [START_REF] Kővari | On a problem of K. Zarankiewicz[END_REF]. The complete bipartite graph K r,s is a graph with two sets of vertices, one with r members and one with s, such that each vertex in one set is adjacent to every vertex in the other set and to no vertex in its own set.

Theorem 3.2. Let r, s be positive integers and G be a graph with n vertices containing no subgraph K r,s . Then G contains at most

1 2 (r -1) 1/s n 2-1/s + 1 2 (s -1)n edges.
Proof. Let V be the set of vertices of G, so that |V | = n, and E be the set of edges. Define a random variable X : Ω = V → V with law P(X = v) = 1/n and, for each

v ∈ V , let E v := {ω : {X(ω), v} ∈ E}, deg(v) := |E v |. Then P(E v ) = deg(v)/n and σ 1 = 1 n v∈E deg(v) = 2|E| n .
Since G contains no subgraph of type K r,s , we have

P(E v1 • • • E vs ) (r -1)
/n whenever the E vj are pairwise distinct. Therefore,

σ s r -1 n n s .
Now we apply the overlapping theorem to obtain

(3.1) r -1 n n s s! r -1 n n s σ s σ 1 s = 2|E|/n s (2|E|/n -(s -1)) s s! .
This yields the required inequality.

Remark. It is known that the constant (r -1) 

F (N ) N 1/2 + O(N 1/4 )
and Lindström [START_REF] Lindström | On a combinatorial problem in number theory[END_REF] gave a more precise estimate (stated and proved below) which has not been improved in 37 years. Ruzsa [START_REF] Ruzsa | Solving a linear equation in a set of integers, I[END_REF] gave a new proof of it, using an easy but interesting lemma, which we prove via the overlapping theorem.

Lemma 3.3. Let A and B be two finite sets of integers. If A is a Sidon set then

|A + B| |A| 2 |B| |A| + |B| -1 .
Proof. Let X denote the integer random variable with law given by

P(X = m) = 1/|A + B| if m ∈ A + B 0 otherwise.
For each b ∈ B we set

E b = {X ∈ A + b}. Then P(E b ) = |A|/|A + B| and σ 1 = |A||B| |A + B| . On the other hand, if b = b , P(E b E b ) 1/|A + B|, for A is a Sidon set, whence σ 2 |B| 2 /|A + B|. Finally, |B| 2 1 |A + B| σ 2 Q 2 (σ 1 ) σ 1 (σ 1 -1) 2 = |A||B| 2|A + B| |A||B| |A + B| -1 ,
and the stated inequality follows.

Theorem 3.4 (Lindström).

If A ⊂ [1, N] is a Sidon set, then |A| N 1/2 +N 1/4 +1.
Proof. Write |A| = m, take B = {1, . . . , n} with n = (mN ) 1/2 + 1 and apply above lemma. We get

N + (Nm) 1/2 N + n -1 |A + B| m 2 n m + n -1 m 2 (mN ) 1/2 m + (mN ) 1/2 , from which we derive that m N 1/2 + 1 4 + 1 2 2 < N 1/2 + N 1/4 + 1.
3.4. Coding theory. Write Z q := [1, q] ∩ N. The Hamming distance d(w, w ) of two words w, w ∈ Z n q of length n, is the number of locations at which the letters from w and w are different. A classical problem in coding theory is to estimate the cardinality A q (n, d) of the largest code in Z n q with given minimal Hamming distance d. Applying the overlapping theorem, we establish an upper bound for this problem, known as Plotkin bound.

Theorem 3.5 (Plotkin bound). Assume qd > n(q -1). Then

A q (n, d) qd qdn(q -1) .

Proof. Let Ω := {(k, h) : 1 k n, 0 h q -1} and define a random variable X such that P(X = (k, h)) = 1 nq .

Assume C := {w i : 1 i A q (n, d)} is a code such that min i =j d(w i , w j ) = d. Writing k i for the kth letter, or k-component, of w i we consider the events

E i := 1 k n {X = (k, k i )} 1 i A q (d, n) .
Then P(E i ) = 1/q and σ 1 = A q (n, d)/q. Also

E i E j = 1 k n {X = (k, k i ) = (k, k j )}, so P (E i E j ) = n -d(w i , w j ) qn n -d qn .
Therefore,

A q (n, d) 2 n -d qn σ 2 Q 2 (σ 1 ) A q (n, d)/q 2 ,
and the required bound follows.

3.5. Divisors. Given integers a 1 , . . . , a , we denote by (a 1 , . . . , a k ) their greatest common divisor. Let E j = {ω : X|d j }. Then P(E j ) = (log d j )/ log n and

P(E j1 • • • E jm ) = log(d j1 , . . . , d jm ) log n .
We observe that σ 1 = k j=1 P(E j ) kα. We may hence apply Corollary 2.1 to infer that there exist d j1 , . . . , d jm such that log(d j1 , . . . , d jm )

log

n = P(E j1 • • • E jm ) Q m (σ 1 ) k m -1 Q m (kα) k m -1
.

For all values of k, m and α, the exponent α m is optimal.

Theorem 3.7. For any positive integer k, and for any α, 0 α 1, there exists infinitely many integers n with k divisors n α < d 1 < • • • < d k n and such that, for each m, 2 m k and for any (1) , where

d i1 < • • • < d im we have (d i1 , . . . , d im ) n αm+o
α m := Q m (kα)/ k m .
Proof. The result is obtained in a straightforward manner by adapting the construction of Theorem 2.3. We omit the details.

The case m = 2 was studied in [START_REF] Cilleruelo | The hyperbola xy = N[END_REF], where the following result was stated.

Corollary 3.8. For α > 0, k ∈ N * , α 2 = Q 2 (kα)/ k 2 , the interval ]n α , n α + n α2 ], contains at most, k -1 divisors of n.
Proof. Apply Theorem 3.6 for m = 2, noticing that if d i , d j belong to an interval I, then (d i , d j ) |I|.

Remark. It is an interesting and difficult problem to decide whether the exponent α 2 in the corollary is sharp.

It is a natural problem to consider the divisors of an integer lying in an arithmetic progression. We give an easy proof of the following theorem of Lenstra [START_REF] Lenstra | Divisors in residue classes[END_REF] Corollary 3.9 (Lenstra). Let α > 1/4, n, q ∈ N * , q > n α . Then, the number of divisors d of n such that d ≡ a (mod q) is bounded by a function of α alone.

Proof. Write q = n (1/4)+2ε . We prove that the number of divisors in the form d i = a + m i q lying in the interval I r = [n rε , n (r+1)ε ] is bounded by 1 + 1/ε for each integer r with 0 r 1/ε. This indeed implies that the total number of divisors in the arithmetic progression a(mod q) is bounded by (1 + 1/ε) 2 .

Let k be the number of divisors in I r . Then, there exist i, j such that

n (r+1)ε d i -d j = q(m i -m j ) q(m i , m j ) q(d i , d j ) n (1/4)+2ε n Q2(krε)/( k 2
) . Thus, rε + ε 1 4 + 2ε + {krε(krε -1)}/{k(k -1)}, which may be rewritten as

1 k -1 (1/4) + ε rε(1 -rε) -1.
Since rε(1rε) 1/4, we obtain k 1 + 1/ε, as required.

The following result was suggested by R. de la Bretèche and was used in [START_REF] De La Bretèche | Nombre de valeurs polynomiales qui divisent un entier[END_REF].

Corollary 3.10. Let ε ∈ ]0, 1] and α ∈ [0, 1]. For all n ∈ N * and all a, q such that (a, q) = 1, q > n α-α 2 +2ε , we have

d | n : d ≡ a (mod q), n α < d n α+ε [ (α -α 2 + ε)/ε.
Proof. Let d j = a + m j q (1 j k) be divisors of n in ]n α , n α+ε [. From Theorem 3.6 with m = 2, we see that max

1 i<j k (d i , d j ) > n α2 .
However, we have (d i , d j ) = (m i q + a, (m im j )q) |m im j | n α+ε /q n α 2 -ε for all i, j with i = j. This is sufficient.

Changing the probability measure in Theorem 1.1, we get interesting variants of the above results. An example, given here without proof, is the following, where ν(d) denotes the number of distinct prime factors of d. Theorem 3.11. Let Let 0 < α < 1 and n 1. Assume {d j } k j=1 is a set of distinct divisors of n with ν(d j ) > αν(n) for all j. Then max

1 i<j k ν((d i , d j )) > α 2 ν(n).
3.6. Lattice points on circles. It is known that the number of lattice points on the circle x 2 + y 2 = n is not bounded uniformly in n. Schinzel proved that, on the circle x 2 + y 2 = R 2 , an arc of length R 1/3 contains at most two lattice points. In [START_REF] Cilleruelo | Trigonometric polynomials and lattice points[END_REF], Córdoba and the first author proved a more general result for which we now provide a simpler proof using Theorem 1.1. Theorem 3.12. Let x 2 + y 2 = R 2 be a circle, k ∈ N * , and

γ k := 1/(4[k/2] + 2).
Then, an arc of length R 1/2-γ k contains at most k lattice points.

Proof. Let x 2 + y 2 = R 2 = n = 1 s t |π s | 2ms be a circle, where the π s ∈ Z[i]
are Gaussian primes, and m s ∈ N * (1 s t). Assume that there are k + 1 lattice points ν 1 , . . . , ν k+1 of Z[i] on an arc of length R γ . Let X denote the random variable defined by

P(X = π s a ) = P(X = π b s ) = log |π s |/ log n (1 s t, 1 a, b m s ). For each j ∈ [1, k + 1] put E j := {X : X|ν j }. Then P(E j ) = log |ν j | log n = 1 2 
and

P(E i E j ) = log |(ν i , ν j )| log n log |ν i -ν j | log n < log R γ log n = γ 2 .
Thus, σ 2 < 1 2 k+1 2 γ and σ 1 = (k + 1)/2. Therefore k + 1 2

γ 2 > σ 2 Q 2 (σ 1 ) Q 2 k + 1 2 ,
and so γ > 2Q 2 ( k+1 2 )/ k+1 2 = 1 2 -1/(4[k/2] + 2).

We do not know whether the number of lattice points on arcs of length R 1/2 can be bounded independently of R. The above theorem yields that the number of lattice points on such arcs is log R.

3.7.

Polynomials. The overlapping theorem may be used to provide an alternative proof of the following result, due to Jiménez and the first author [START_REF] Cilleruelo | Divisors in a Dedekind domain[END_REF]. Let E j = {ω : X|F j (x)}. Then P(E j ) = (deg F j )/ deg M γ. By Corollary 2.1, there exist distinct indices i, j such that

P(E i E j ) Q 2 (σ 1 ) k 2 -1 Q 2 (kγ) k 2 -1 γ 2 - γ(1 -γ) k -1 .

Theorem 3 . 6 .

 36 Let α ∈]0, 1[, n ∈ N * and {d j } k j=1 a set of divisors of n such that min 1 j k d j n α . Then, for all m 1, we have max 1 j1<•••<jm k (d j1 , . . . , d jm ) > n αm where α m := Q m (kα)/ k m . Proof. Let X denote the random variable defined by (3.2) P(X = p ν ) = log p log n (p ν |n)

Theorem 3 . 13 . 2 - 1 deg M γ 2 1 .

 3132121 Let γ > 0, M (x) ∈ Z[x] and F 1 (x), . . . , F k (x) be k divisors of M (x) in Z[x] such that min 1 j k deg F j γ deg M . Then there exist i, j ∈ [1, k], i = j, such that deg(F i -F j ) (deg M )Q 2 (kγ) k γ(1γ) k -Proof. Write M = p α1 1 • • • p αt t a decomposition of M (x)as a product of irreducible factors in Z[x]. Let X denote the random variable defined by P(X = p α s ) = deg p s deg M (1 s t, 1 α α s ).

  1/2 /2 is sharp for s = 2. 3.3. Sidon sets. A set of integers A is called a Sidon set if all sums a + a (a a , a ∈ A, a ∈ A) are distinct. A major problem in this theory consists in estimating the size F (N ) of the largest Sidon set contained in {1, . . . , N}. Erdős [5] proved the upper bound

r n ν(r)=m

We complete the proof by observing that