
HAL Id: hal-00091290
https://hal.science/hal-00091290

Submitted on 5 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ito’s- and Tanaka’s-type formulae for the stochastic heat
equation: The linear case

Mihai Gradinaru, Ivan Nourdin, Samy Tindel

To cite this version:
Mihai Gradinaru, Ivan Nourdin, Samy Tindel. Ito’s- and Tanaka’s-type formulae for the stochas-
tic heat equation: The linear case. Journal of Functional Analysis, 2005, 228, pp.114-143.
�10.1016/j.jfa.2005.02.008�. �hal-00091290�

https://hal.science/hal-00091290
https://hal.archives-ouvertes.fr


Ito’s and Tanaka’s type formulae for

the stochastic heat equation: the linear

case

Mihai GRADINARU, Ivan NOURDIN, Samy TINDEL
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Abstract

In this paper we consider the linear stochastic heat equation with additive

noise in dimension one. Then, using the representation of its solution X as a

stochastic convolution of the cylindrical Brownian motion with respect to an

operator-valued kernel, we derive Itô’s and Tanaka’s type formulae associated

to X.
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1 Introduction

The study of stochastic partial differential equations (SPDE in short) has been seen
as a challenging topic in the past thirty years for two main reasons. On the one
hand, they can be associated to some natural models for a large amount of physical
phenomenon in random media (see for instance [4]). On the other hand, from a
more analytical point of view, they provide some rich examples of Markov processes
in infinite dimension, often associated to a nicely behaved semi-group of operators,
for which the study of smoothing and mixing properties give raise to some elegant,
and sometimes unexpected results. We refer for instance to [9], [10], [5] for a deep
and detailed account on these topics.

It is then a natural idea to try to construct a stochastic calculus with respect
to the solution to a SPDE. Indeed, it would certainly give some insight on the
properties of such a canonical object, and furthermore, it could give some hints
about the relationships between different classes of remarkable equations (this second
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motivation is further detailed by L. Zambotti in [21], based on some previous results
obtained in [20]). However, strangely enough, this aspect of the theory is still poorely
developped, and our paper proposes to make one step in that direction.

Before going into details of the results we have obtained so far and of the method-
ology we have adopted, let us describe briefly the model we will consider, which is
nothing but the stochastic heat equation in dimension one. On a complete prob-
ability space (Ω,F ,P), let {W n;n ≥ 1} be a sequence of independent standard
Brownian motions. We denote by (Ft) the filtration generated by {W n;n ≥ 1}. Let
also H be the Hilbert space L2([0, 1]) of square integrable functions on [0, 1] with
Dirichlet boundary conditions, and {en;n ≥ 1} the trigonometric basis of H, that
is

en(x) =
√

2 sin(πnx), x ∈ [0, 1], n ≥ 1.

The inner product in H will be denoted by 〈 , 〉H .
The stochastic equation will be driven by the cylindrical Brownian motion (see

[9] for further details on this object) defined by the formal series

Wt =
∑

n≥1

W n
t en, t ∈ [0, T ], T > 0.

Observe that Wt 6∈ H, but for any y ∈ H,
∑

n≥1〈y, en〉W n
t is a well defined Gaussian

random variable with variance |y|2H . It is also worth observing thatW coincides with
the space-time white noise (see [9] and also (2.1) below).

Let now ∆ = ∂2

∂x2 be the Laplace operator on [0, 1] with Dirichlet boundary con-
ditions. Notice that ∆ is an unbounded negative operator that can be diagonalized
in the orthonormal basis {en;n ≥ 1}, with ∆en = −λnen and λn = π2n2. The
semi-group generated by ∆ on H will be denoted by {et∆; t ≥ 0}. In this context,
we will consider the following stochastic heat equation:

dXt = ∆Xt dt+ dWt, t ∈ (0, T ], X0 = 0. (1.1)

Of course, equation (1.1) has to be understood in the so-called mild sense, and in
this linear additive case, it can be solved explicitely in the form of a stochastic
convolution, which takes a particularly simple form in the present case:

Xt =

∫ t

0

e(t−s)∆dWs =
∑

n≥1

Xn
t en, t ∈ [0, T ], (1.2)

where {Xn;n ≥ 1} is a sequence of independent one-dimensional Ornstein-Uhlen-
beck processes:

Xn
t =

∫ t

0

e−λn(t−s)dW n
s , n ≥ 1, t ∈ [0, T ].

With all those notations in mind, let us go back to the main motivations of this
paper: if one wishes to get, for instance, an Itô’s type formula for the process X
defined above, a first natural idea would be to start from a finite-dimensional version
(of order N ≥ 1) of the the representation given by formula (1.2), and then to take
limits as N → ∞. Namely, if we set

X
(N)
t =

∑

n≤N

Xn
t en, t ∈ [0, T ],
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and if FN : R
N → R is a C2

b -function, then X(N) is just a N -dimensional Ornstein-
Uhlenbeck process, and the usual semi-martingale representation of this approxima-
tion yields, for all t ∈ [0, T ],

FN

(

X
(N)
t

)

= FN(0) +
∑

n≤N

∫ t

0

∂xnFN(X(N)
s ) dXn

s +
1

2

∫ t

0

Tr
(

F ′′
N(X(N)

s )
)

ds, (1.3)

where the stochastic integral has to be interpreted in the Itô sense. However, when
one tries to take limits in (1.3) as N → ∞, it seems that a first requirement on
F ≡ limN→∞ FN is that Tr(F ′′) is a bounded function. This is certainly not the case
in infinite dimension, since the typical functional to which we would like to apply
Itô’s formula is of the type F : H → R defined by

F (ℓ) =

∫ 1

0

σ(ℓ(x))φ(x) dx, with σ ∈ C2
b (R), φ ∈ L∞([0, 1]),

and it is easily seen in this case that, for non degenerate coefficients σ and φ, F
is a C2

b (H)-functional, but F ′′ is not trace class. One could imagine another way
to make all the terms in (1.3) convergent, but it is also worth mentioning at this
point that, even if our process X is the limit of a semi-martingale sequence X(N),
it is not a semi-martingale itself. Besides, the mapping t ∈ [0, T ] 7→ Xt ∈ H is only
Hölder-continuous of order (1/4)− (see Lemma 2.1 below). This fact also explains
why the classical semi-martingale approach fails in the current situation.

In order to get an Itô’s formula for the process X, we have then decided to use
another natural approach: the representation (1.2) of the solution to (1.1) shows that
X is a centered Gaussian process, given by the convolution of W by the operator-
valued kernel e(t−s)∆. Furthermore, this kernel is divergent on the diagonal: in
order to define the stochastic integral

∫ t

0
e(t−s)∆dWs, one has to get some bounds

on ‖et∆‖2
HS

(see Theorem 5.2 in [9]), which diverges as t−1/2. We will see that the
important quantity to control for us is ‖∆et∆‖op, which diverges as t−1. In any case,
in one dimension, the stochastic calculus with respect to Gaussian processes defined
by an integral of the form

∫ t

0

K(t, s) dBs, t ≥ 0,

where B is a standard Brownian motion and K is a kernel with a certain divergence
on the diagonal, has seen some spectacular advances during the last ten years, mainly
motivated by the example of fractional Brownian motion. For this latter process,
Itô’s formula (see [2]), as well as Tanaka’s one (see [7]) and the representation of
Bessel type processes (see [11], [12]) are now fairly well understood. Our idea is then
to adapt this methodology to the infinite dimensional case.

Of course, this leads to some technical and methodological problems, inherent
to this infinite dimensional setting. But our aim in this paper is to show that this
generalization is possible. Moreover, the Itô type formula which we obtain has a
simple form: if F is a smooth function defined on H, we get that

F (Xt) = F (0) +

∫ t

0

〈F ′(Xs), δXs〉 +
1

2

∫ t

0

Tr(e2s∆F ′′(Xs))ds, t ∈ [0, T ], (1.4)
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where the term
∫ t

0
〈F ′(Xs), δXs〉 is a Skorokhod type integral that will be properly

defined at Section 2. Notice also that the last term in (1.4) is the one that one could
expect, since it corresponds to the Kolmogorov equation associated to (1.1) (see, for
instance, [9] p. 257). Let us also mention that we wished to explain our approach
by taking the simple example of the linear stochastic equation in dimension 1. But
we believe that our method can be applied to some more general situations, and
here is a list of possible extensions of our formulae:

1. The case of a general analytical operator A generating a C0-semigroup S(t)
on a certain Hilbert space H. This would certainly require the use of the
generalized Skorokhod integral introduced in [6].

2. The multiparametric setting (see [19] or [8] for a general presentation) of
SPDEs, which can be related to the formulae obtained for the fractional Brow-
nian sheet (see [18]).

3. The case of non-linear equations, that would amount to get some Itô’s repre-
sentations for processes defined informally by Y =

∫

u(s, y)X(ds, dy), where
u is a process satisfying some regularity conditions, and X is still the solution
to equation (1.1).

We plan to report on these possible generalizations of our Itô’s fomula in some
subsequent papers.

Eventually, we would like to observe that a similar result to (1.4) has been
obtained in [21], using another natural approach, namely the regularization of the
kernel et∆ by an additional term eε∆, and then passing to the limit when ε → 0.
This method, that may be related to the one developped in [1] for the fractional
Brownian case, leads however to some slightly different formulae, and we hope that
our form of Itô’s type formula (1.4) will give another point of view on this problem.

The paper will be organized as follows: in the next section, we will give some
basic results about the Malliavin calculus with respect to the process X solution to
(1.1). We will then prove the announced formula (1.4). At Section 3, we will state
and prove the Tanaka type formula, for which we will use the space-time white noise
setting for equation (1.1).

2 An Ito’s type formula related to X

In this section, we will first recall some basic facts about Malliavin’s calculus that
we will use throughout the paper, and then establish our Itô’s type formula.

2.1 Malliavin calculus notations and facts

Let us recall first that the process X solution to (1.1) is only (1/4)− Hölder con-
tinuous, which motivates the use of Malliavin calculus tools in order to get an Itô’s
type formula. This result is fairly standard, but we include it here for sake of
completeness, since it is easily proven in our particular case.
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Lemma 2.1 We have, for some constants 0 < c1 < c2, and for all s, t ∈ [0, T ]:

c1|t− s|1/2 ≤ E
[

|Xt −Xs|2H
]

≤ c2|t− s|1/2.

Proof. A direct computation yields (recall that λn = π2n2):

E
[

|Xt −Xs|2H
]

=
∑

n≥1

∫ s

0

(

e−π2n2(t−u) − e−π2n2(s−u)
)2

du+
∑

n≥1

∫ t

s

e−2π2n2(t−u)du

=
∑

n≥1

(1 − e−π2n2(t−s))2(1 − e−2π2n2s)

2π2n2
+
∑

n≥1

1 − e−2π2n2(t−s)

2π2n2

≤
∫ ∞

0

(1 − e−π2x2(t−s))2

2π2x2
dx+

∫ ∞

0

1 − e−2π2x2(t−s)

2π2x2
dx = cst (t− s)1/2,

which gives the desired upper bound. The lower bound is obtained along the same
lines.

�

2.1.1 Malliavin calculus with respect to W

We will now recall some basic facts about the Malliavin calculus with respect to
the cylindrical noise W . In fact, if we set HW := L2([0, T ];H), with inner product
〈·〉HW

, then W can be seen as a Gaussian family {W (h);h ∈ HW}, where

W (h) =

∫ T

0

〈h(t), dWt〉H :=
∑

n≥1

∫ T

0

〈h(t), en〉H dW n
t ,

with covariance function

E [W (h1)W (h2)] = 〈h1, h2〉HW
. (2.1)

Then, as usual in the Malliavin calculus setting, the smooth functionals of W will
be of the form

F = f (W (h1), . . . ,W (hd)) , d ≥ 1, h1, . . . , hd ∈ HW, f ∈ C∞
b (Rd),

and for this kind of functional, the Malliavin derivative is defined as an element of
HW given by

DW
t F =

d
∑

i=1

∂if (W (h1), . . . ,W (hd))hi(t).

It can be seen that DW is a closable operator on L2(Ω), and for k ≥ 1, we will call
D

k,2 the closure of the set S of smooth functionals with respect to the norm

‖F‖k,2 = ‖F‖L2 +
k
∑

j=1

E
[

|DW,jF |H⊗j
W

]

.

If V is a separable Hilbert space, this construction can be generalized to a V -valued
functional, leading to the definition of the spaces D

k,2(V ) (see also [13] for a more
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detailed account on this topic). Throughout this paper we will mainly apply these
general considerations to V = HW. A chain rule for the derivative operator is also
available: if F = {Fm;m ≥ 1} ∈ D

1,2(HW) and ϕ ∈ C1
b (HW), then ϕ(F ) ∈ D

1,2, and

DW
t (ϕ(F )) =

〈

∇ϕ(F ), DW
t F

〉

HW
=
∑

m≥1

DW
t F

m∂mϕ(F ). (2.2)

The adjoint operator of DW is called the divergence operator, usually denoted by
δW , and defined by the duality relationship

E
[

F δW (u)
]

= E
[

〈

DWF, u
〉

HW

]

, (2.3)

for a random variable u ∈ HW. The domain of δW is denoted by Dom(δW ), and we
have that D

1,2(HW) ⊂ Dom(δW ).
We will also need to consider the multiple integrals with respect to W , which

can be defined in the following way: set I0,T = 1, and if h ∈ HW, I1,T (h) = W (h).
Next, if m ≥ 2 and h1, . . . , hm ∈ HW, we can define Im,T (⊗m

j=1hj) recursively by

Im,T (⊗m
j=1hj) = I1,T (u(m−1)), where u(m−1)(t) =

[

Im−1,t(⊗m−1
j=1 hj)

]

hm, t ≤ T.
(2.4)

Let us observe at this point that the set of multiple integrals, that is

M =
{

Im,T (⊗m
j=1hj); m ≥ 0, h1, . . . , hm ∈ HW

}

,

is dense in L2(Ω) (see, for instance, Theorem 1.1.2 in [15]). We stress that we use a
different normalization for the multiple integrals of order m, which is harmless for
our purposes. Eventually, an easy application of the basic rules of Malliavin calculus
yields that, for a given m ≥ 1:

DW
s Im,T (h⊗m) = Im−1,T (h⊗m−1)h. (2.5)

2.1.2 Malliavin calculus with respect to X

We will now give a brief account on the construction of the Malliavin calculus with
respect to the process X: let C(t, s) be the covariance operator associated to X,
defined, for any y, z ∈ H by

E [〈Xt,y〉H 〈Xs, z〉H ] = 〈C(t, s)y, z〉H , t, s > 0.

Notice that, in our case, C(t, s) is a diagonal operator when expressed in the or-
thonormal basis {en;n ≥ 1}, whose nth diagonal element is given by

[C(t, s)]n,n =
e−λn(t∨s) sinh(λn(t ∧ s))

2λn

, t, s > 0.

Now, the reproducing kernel Hilbert space HX associated to X is defined as the
closure of

Span
{

1[0,t]y; t ∈ [0, T ],y ∈ H
}

,

with respect to the inner product
〈

1[0,t]y, 1[0,s]z
〉

HX
= 〈C(t, s)y, z〉H .
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The Wiener integral of an element h ∈ HX is now easily defined: X(h) is a centered
Gaussian random variable, and if h1, h2 ∈ HX,

E [X(h1)X(h2)] = 〈h1, h2〉HX
.

In particular the previous equality provide a natural isometry between HX and the
first chaos associated toX. Once these Wiener integrals are defined, one can proceed
like in the case of the cylindrical Brownian motion, and construct a derivation
operator DX, some Sobolev spaces D

k,2
X (HW), and a divergence operator δX.

Following the ideas contained in [2], we will now relate δX with a Skorokhod
integral with respect to the Wiener process W . To this purpose, recall that HW =
L2([0, T ];H), and let us introduce the linear operators G : HW → HW defined by

Gh(t) =

∫ t

0

e(t−u)∆h(u)du, h ∈ HW, t ∈ [0, T ] (2.6)

and G∗ : Dom(G∗) → HW defined by

G∗h(t) = e(T−t)∆h(t)+

∫ T

t

∆e(u−t)∆[h(u)−h(t)]du, h ∈ Dom(G∗), t ∈ [0, T ]. (2.7)

Observe that

‖∆et∆‖op ≤ sup
α≥0

αe−αt =
1

e t
, for all t ∈ (0, T ]

and thus, it is easily seen from (2.7) that, for any ε > 0, Cε([0, T ];H) ⊂ Dom(G∗),
where Cε([0, T ];H) stands for the set of ε-Hölder continuous functions from [0, T ]
to H. At a heuristic level, notice also that, formally, we have X = GẆ , and thus,
if h : [0, T ] → H is regular enough,

δX(h) =

∫ T

0

〈h(t), δXt〉 =

∫ T

0

〈h(t), GW(dt)〉H . (2.8)

Of course, the expression (2.8) is ill-defined, and in order to make it rigorous, we
will need the following duality property:

Lemma 2.2 For every ε > 0, h, k ∈ Cε([0, T ];H) and t ∈ [0, T ], we have:

∫ t

0

〈G∗h(s), k(s)〉H ds =

∫ t

0

〈h(s), Gk(ds)〉H . (2.9)

Proof. Without loss of generality, we can assume that h is given by h(s) = 1[0,τ ](s)y
with τ ∈ [0, t] and y ∈ H. Indeed, to obtain the general case, it suffices to use the
linearity in (2.9) and the fact that the set of step functions is dense in Cε([0, T ];H).
Then we can write, on one hand:

∫ t

0

〈h(s), Gk(ds)〉H =

∫ t

0

〈

1[0,τ ](s)y, Gk(ds)
〉

H

=

〈

y,

∫ τ

0

Gk(ds)

〉

H

= 〈y, Gk(τ)〉H =

∫ τ

0

〈

y, e(τ−s)∆k(s)
〉

H
ds.
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On the other hand, we have, by (2.7):

∫ t

0

〈G∗h(s), k(s)〉H ds

=

∫ t

0

〈

e(T−s)∆h(s) +

∫ T

s

∆e(σ−s)∆[h(σ) − h(s)]dσ, k(s)

〉

H

ds

=

∫ τ

0

〈

e(T−s)∆y −
∫ T

τ

∆e(σ−s)∆y dσ, k(s)

〉

H

ds

=

∫ τ

0

〈

e(τ−s)∆y, k(s)
〉

H
ds =

∫ τ

0

〈

y, e(τ−s)∆k(s)
〉

H
ds,

where we have used the integration by parts and the fact that, if h(t) = et∆y, then
h′(t) = ∆et∆y for any t > 0. The claim follows now easily.

�

Lemma 2.2 suggests, replacing k by Ẇ in (2.9), that the natural meaning for the
quantities involved in (2.8) is, for h ∈ Cε([0, T ];H),

δX(h) =

∫ T

0

〈G∗h(t), dWt〉H .

This transformation holds true for deterministic integrands like h, and we will now
see how to extend it to a large class of random processes, thanks to Skorokhod
integration.

Notice that G∗ is an isometry between HX and a closed subset of HW (see also
[2] p.772), which means that

HX = (G∗)−1(HW).

We also have D
1,2
X (HX) = (G∗)−1(D1,2(HW)), which gives a nice characterization of

this Sobolev space. However, it will be more convenient to check the smoothness
conditions of a process u with respect to X in the following subset of D

1,2
X (HX): let

D̂
1,2
X (HX) be the set of H-valued stochastic processes u = {ut, t ∈ [0, T ]} verifying

E

∫ T

0

|G∗ut|2H dt <∞ (2.10)

and

E

∫ T

0

dτ

∫ T

0

dt ‖DW
τ G

∗ut‖2
op = E

∫ T

0

dτ

∫ T

0

dt ‖G∗DW
τ ut‖2

op <∞, (2.11)

where ‖A‖op = sup|y|H=1|Ay|H . Then, for u ∈ D̂
1,2
X (HX), we can define the Sko-

rokhod integral of u with respect to X by:

∫ T

0

〈us, δXs〉 :=

∫ T

0

〈G∗us, δWs〉H , (2.12)

and it is easily checked that expression (2.12) makes sense. This will be the meaning
we will give to a stochastic integral with respect to X. Let us insist again on the
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fact that this is a natural definition: if g(s) =
∑k

j=1 1[tj ,tj+1)(s)yj is a step function
with values in H, we have:

∫ T

0

〈g(s), δXs〉 =
k
∑

j=1

〈

yj, Xtj+1
−Xtj

〉

H
.

Indeed, if y ∈ H and t ∈ [0, T ], an obvious computation gives G∗(1[0,t]y)(s) =
1[0,t](s)e

(t−s)∆y, and hence we can write:

∫ T

0

〈

1[0,t](s)y, δXs

〉

=

∫ t

0

〈

e(t−s)∆y, dWs

〉

H
=

∫ t

0

〈

y, e(t−s)∆dWs

〉

H
= 〈y, Xt〉H .

2.2 Itô’s type formula

We are now in a position to state precisely and prove the main result of this section.

Theorem 2.3 Let F : H → R be a C∞ function with bounded first, second and
third derivatives. Then F ′(X) ∈ Dom(δX) and:

F (Xt) = F (0) +

∫ t

0

〈F ′(Xs), δXs〉 +
1

2

∫ t

0

Tr(e2s∆F ′′(Xs))ds, t ∈ [0, T ]. (2.13)

Remark 2.4 By a standard approximation argument, we could relax the assump-
tions on F , and consider a general C2

b function F : H → R.

Remark 2.5 As it was already said in the introduction, if Tr(F ′′(x)) is uniformly
bounded in x ∈ H, one can take limits in equation (1.3) as N → ∞ to obtain:

F (Xt) = F (0) +

∫ t

0

〈F ′(Xs), dXs〉H +
1

2

∫ t

0

Tr(F ′′(Xs))ds, t ∈ [0, T ]. (2.14)

Here, the stochastic integral is naturally defined by

∫ t

0

〈F ′(Xs), dXs〉H := L2 − lim
N→∞

N
∑

n=1

∫ t

0

∂nF (Xs)dX
n
s .

In this case, the stochastic integrals in formulae (2.13) and (2.14) are obviously
related by a simple algebraic equality. However, our formula (2.13) remains valid
for any C2

b function F , without any hypothesis on the trace of F ′′.

Proof of Theorem 2.3. For simplicity, assume that F (0) = 0. We will split the
proof into several steps.

Step 1: strategy of the proof. Recall (see Section 2.1.1) that the set M is a total
subset of L2(Ω) and M itself is generated by the random variables of the form
δW(h⊗m), m ∈ N, with h ∈ HW. Then, in order to obtain (2.13), it is sufficient to
show:

E[YmF (Xt)] = E

[

Ym

∫ t

0

〈F ′(Xs), δXs〉
]

+
1

2
E

[

Ym

∫ t

0

Tr(e2s∆F ′′(Xs))ds

]

, (2.15)
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where Y0 ≡ 1 and, for m ≥ 1, Ym = δW(h⊗m) with h ∈ HW. This will be done in
Steps 2 and 3. The proof of the fact that F ′(X) ∈ D̂

1,2
X (HX) is postponed at Step 4.

Step 2: the case m = 0. Set ϕ(t,y) = E[F (et∆y + Xt)], with y ∈ H. Then, the
Kolmogorov equation given e.g. in [9] p. 257, states that

∂tϕ =
1

2
Tr(∂2

yy
ϕ) + 〈∆y, ∂yϕ〉H . (2.16)

Furthermore, in our case, we have:

∂2
yy
ϕ(t,y) = e2t∆E[F ′′(et∆y +Xt)],

and since F ′′ is bounded:

∣

∣Tr
(

∂2
yy
ϕ(t,y)

)∣

∣ ≤ cst
∑

n≥1

e−2λnt ≤ cst

t1/2
for all t > 0,

which means in particular that
∫ t

0
Tr
(

∂2
yy
ϕ(s,y)

)

ds is a convergent integral. Then,
applying (2.16) with y = 0, we obtain:

E[F (Xt)] = ϕ(t, 0) =

∫ t

0

∂sϕ(s, 0)ds

=
1

2

∫ t

0

Tr(∂2
yy
ϕ(s, 0))ds =

1

2

∫ t

0

E[Tr(e2s∆F ′′(Xs))]ds, (2.17)

and thus, (2.15) is verified for m = 0.

Step 3: the general case. For the sake of readability, we will prove (2.15) only for
m = 2, the general case m ≥ 1 being similar, except for some cumbersome notations.
Let us recall first that, according to (2.4), we can write, for t ≥ 0:

Y2 = δW(h⊗2) =

∫ T

0

〈ut, δWt〉H = δW(u) with ut =

(
∫ t

0

〈h(s), δWs〉H
)

h(t).

(2.18)
On the other hand, thanks to (1.2) and (2.2), it is readily seen that:

DW

s1
F (Xt) =

∑

n≥1

e−λn(t−s1)∂nF (Xt)1[0,t](s1) en (2.19)

and

DW

s2
(DW

s1
F (Xt)) =

∑

n,r≥1

e−λn(t−s1)e−λr(t−s2)∂2
nrF (Xt)1[0,t](s1)1[0,t](s2) en ⊗ er, (2.20)

where ∂2F (y) is interpreted as a quadratic form, for any y ∈ H. Now, set

(G⊗2
nr h)(t) :=

1

2

(
∫ t

0

hn(s1)e
−λn(t−s1)ds1

)(
∫ t

0

hr(s2)e
−λr(t−s2)ds2

)

. (2.21)
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Putting together (2.18) and (2.19), we get:

E[Y2F (Xt)] = E[δW(u)F (Xt)] =

∫ t

0

ds1 E
[〈

us1
, DW

s1
F (Xt)

〉

H

]

=

∫ t

0

ds1 E
[〈

δW(1[0,s1]h)h(s1), D
W

s1
F (Xt)

〉

H

]

=
∑

n≥1

∫ t

0

ds1E[δW(1[0,s1]h)h
n(s1)D

n,W
s1

F (Xt)]

=
∑

n≥1

∫ t

0

ds1E

[
∫ t

0

ds2

〈

1[0,s1](s2)h(s2), h
n(s1)D

W

s2

(

Dn,W
s1

F (Xt)
)〉

H

]

,

where we have written Dn,W
s1

F (Xt) for the nth component in H of DW

s1
F (Xt). Thus,

invoking (2.20) and (2.21), we obtain

E[Y2F (Xt)] =
∑

n,r≥1

∫ t

0

ds1

∫ s1

0

ds2 h
r(s2)h

n(s1)e
−λn(t−s1)e−λr(t−s2)E

[

∂2
nrF (Xt)

]

(2.22)

=
∑

n,r≥1

(G⊗2
nr h)(t)E[∂2

nrF (Xt)].

Let us differentiate now this expression with respect to t: setting ψnr(s,y) :=
E[∂2

nrF (es∆y +Xs)], we have

E[Y2F (Xt)] = A1 + A2,

where

A1 :=
∑

n,r≥1

∫ t

0

E[∂2
nrF (Xs)](G

⊗2
nr h)(ds) and A2 :=

∑

n,r≥1

∫ t

0

(G⊗2
nr h)(s)∂sψnr(s, 0)ds.

Let us show now that

A1 = E

[

Y2

∫ T

0

〈F ′(Xs)1[0,t](s), δXs〉
]

≡ Â1.

Indeed, assume for the moment that F ′(X) ∈ Dom(δ). Then, the integration by
parts (2.3) yields, starting from Â1:

Â1 = E

[

Y2

∫ T

0

〈G∗F ′(Xs)1[0,t](s), δWs〉H
]

= E

[
∫ T

0

〈DW
s Y2, G

∗F ′(Xs)1[0,t](s)〉Hds
]

,

11



and according to (2.5), we get

Â1 = E

[

δW (h)

∫ T

0

〈h(s), G∗F ′(Xs)1[0,t](s)〉Hds
]

=

∫ t

0

〈Gh(ds),E[δW (h)F ′(Xs)]〉H

=
∑

n≥1

∫ t

0

Ghn(ds1)E

[
∫ T

0

〈h(s2), D
W
s2

(∂nF (Xs1
))〉Hds2

]

=
∑

n,r≥1

∫ t

0

E[∂2
nrF (Xs1

)]Ghn(ds1)

∫ s1

0

hr(s2)e
−λr(s1−s2)ds2.

Now, symmetrizing this expression in n, r we get

Â1 =
1

2

∑

n,r≥1

∫ t

0

E[∂2
nrF (Xs1

)]

[

Ghn(ds1)

∫ s1

0

hr(s2)e
−λr(s1−s2)ds2

+Ghr(ds1)

∫ s1

0

hn(s2)e
−λn(s1−s2)ds2

]

,

and a simple use of (2.21) yields

Â1 =
∑

n,r≥1

∫ t

0

E[∂2
nrF (Xs1

)](G⊗2
nr h)(ds1) = A1. (2.23)

Set now

Â2 = E

[

Y2

∫ t

0

Tr(e2s∆F ′′(Xs))ds

]

,

and let us show that 2A2 = Â2. Indeed, using the same reasoning which was used
to obtain (2.22), we can write:

Â2 = Tr

(
∫ t

0

e2s∆E[Y2 F
′′(Xs)]ds

)

= Tr

(

∫ t

0

e2s∆
∑

n,r≥1

(G⊗2
nr h)(s)E[∂2

nrF
′′(Xs)]

)

= 2A2, (2.24)

by applying relation (2.17) to ∂2
nrF . Thus, putting together (2.24) and (2.23), our

Itô type formula is proved, except for one point whose proof has been omitted up
to now, namely the fact that F ′(X) ∈ Dom(δX).

Step 4: To end the proof, it suffices to show that F ′(X) ∈ D̂
1,2
X (HX). To this purpose,

we first verify (2.10), and we start by observing that

E

∫ T

0

|G∗F ′(Xs)|2Hds ≤ cst

(

∫ T

0

E
[

|e(T−s)∆F ′(Xs)|2H
]

ds

+

∫ T

0

E

[

(
∫ T

s

|∆e(t−s)∆(F ′(Xt) − F ′(Xs))|Hdt
)2
]

ds.

)
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Clearly, the hypothesis “F ′ is bounded” means, in our context, that:

sup
y∈H

|F ′(y)|2H = sup
y∈H

∑

n≥1

(∂nF (y))2 <∞.

Then, we easily get

E

∫ T

0

[

|e(T−s)∆F ′(Xs)|2H
]

ds =

∫ T

0

∑

n≥1

e−2λn(T−s)E
[

(∂nF (Xs))
2
]

ds <∞.

On the other hand, we also have that

|∆e(t−s)∆(F ′(Xt) − F ′(Xs))|2H =
∑

n≥1

λ2
ne

−2λn(t−s)(∂nF (Xt) − ∂nF (Xs))
2

≤ sup
α≥0

{α2e−2α(t−s)}|F ′(Xt) − F ′(Xs)|2H

≤ cst (t− s)−2 |Xt −Xs|2H sup
y∈H

‖F ′′(y)‖2
op.

Thus, we can write:

E

∫ T

0

[

(
∫ T

s

|∆e(t−s)∆(F ′(Xt) − F ′(Xs))|Hdt
)2
]

ds ≤ cst

∫ T

0

fT (s)ds,

with fT given by

fT (s) := E

{

(
∫ T

s

(t− s)−1|Xt −Xs|Hdt
)2
}

. (2.25)

Fix now ε > 0 and consider the positive measure νs(dt) = (t− s)−1/2−2εdt. Invoking
Lemma 2.1, we get that

fT (s) = E

{

(
∫ T

s

(t− s)−1/2+2ε|Xt −Xs|H νs(dt)

)2
}

≤ cst νs([s, T ])

∫ T

s

(t− s)−1+4εE(|Xt −Xs|2H)νs(dt)

≤ cst (T − s)1/2−2ε

∫ T

s

(t− s)−1+2εdt = cst (T − s)1/2.

Hence, fT is bounded on [0, T ] and (2.10) is verified.
We verify now (2.11). Notice first that F ′(Xt) ∈ H, and thus DWF ′(Xt) can be
interpreted as an operator valued random variable. Furthermore, thanks to (1.2),
we can compute, for τ ∈ [0, T ]:

DW
τ F

′(Xt) =
∑

n≥1

DW
τ [∂nF (Xt)]en =

∑

n,r≥1

e−λr(t−τ)∂2
nrF (Xt)1[0,t](τ) en ⊗ er.
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Hence ‖DW
τ F

′(Xs)‖2
op ≤ ‖F ′′(Xs)‖2

op and

E

∫ T

0

dτ

(
∫ T

0

ds‖e(T−s)∆DW
τ F

′(Xs)‖op

)2

≤ E

∫ T

0

dτ

(
∫ T

0

ds‖e(T−s)∆‖op‖DW
τ F

′(Xs)‖op

)2

<∞, (2.26)

according to the fact that ‖e(T−s)∆‖op ≤ 1. On the other hand, since Xt is Ft-
adapted, we get

E

∫ T

0

dτ

∫ T

0

ds

(
∫ T

s

dt‖∆e(t−s)∆(DW
τ F

′(Xt) −DW
τ F

′(Xs))‖op

)2

= B1 +B2,

(2.27)
with

B1 := E

∫ T

0

dτ

∫ τ

0

ds

(
∫ T

τ

dt‖∆e(t−s)∆DW
τ F

′(Xt)‖op

)2

B2 := E

∫ T

0

dτ

∫ T

τ

ds

(
∫ T

s

dt‖∆e(t−s)∆(DW
τ F

′(Xt) −DW
τ F

′(Xs))‖op

)2

.

Moreover, for y ∈ H such that |y|H = 1 and t > τ , we have:

|∆e(t−s)∆DW
τ F

′(Xt)y|2H =
∑

n≥1

λ2
n e

−2λn(t−s)

(

∑

r≥1

e−λr(t−τ)∂2
nrF (Xt)yr

)2

≤ sup
α≥0

{α2e−2α(t−s)}
∑

n,r≥1

e−2λr(t−τ)(∂2
nrF (Xt))

2
∑

r≥1

y2
r ≤ cst

(t− s)2
,

and thus
‖∆e(t−s)∆DW

τ F
′(Xt)‖op ≤ cst(t− s)−1,

from which we deduce easily

B1 = E

∫ T

0

dτ

∫ τ

0

ds

(
∫ T

τ

dt‖∆e(t−s)∆DW
τ F

′(Xt)‖op

)2

<∞. (2.28)

We also have, for y ∈ H such that |y|H = 1 and t > s > τ :

|∆e(t−s)∆(DW
τ F

′(Xt) −DW
τ F

′(Xs))y|2H

=
∑

n≥1

λ2
n e

−2λn(t−s)

[

∑

r≥1

(

e−λr(t−τ)∂2
nrF (Xt) − e−λr(s−τ)∂2

nrF (Xs)
)

yr

]2

≤ sup
α≥0

{α2e−2α(t−s)}
∑

n,r≥1

(

e−λr(t−τ)∂2
nrF (Xt) − e−λr(s−τ)∂2

nrF (Xs)
)2
.
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But, F ′′ and F ′′′ being bounded, we can write:

∑

n,r≥1

(

e−λr(t−τ)∂2
nrF (Xt) − e−λr(s−τ)∂2

nrF (Xs)
)2

≤cst
∑

n,r≥1

(

e−λr(t−τ) − e−λr(s−τ)
)2

(∂2
nrF (Xt))

2

+ cst
∑

n,r≥1

(

∂2
nrF (Xt) − ∂2

nrF (Xs)
)2
e−2λr(s−τ)

≤cst sup
α≥0

(

e−α(t−τ) − e−α(s−τ)
)2 ‖F ′′(Xt)‖2

op + cst‖F ′′(Xt) − F ′′(Xs)‖2
op

≤cst
{

(t− s)2 + |Xt −Xs|2H
}

,

and consequently,

‖∆e(t−s)∆(DW
τ F

′(Xt) −DW
τ F

′(Xs))‖op ≤ cst(t− s)−1|Xt −Xs|H

and

B2 = E

∫ T

0

dτ

∫ T

τ

ds

(
∫ T

s

dt‖∆e(t−s)∆(DW
τ F

′(Xt) −DW
τ F

′(Xs))‖op

)2

≤ cst

∫ T

0

dτ

∫ T

τ

dsfT (s) (2.29)

with fT given by (2.25). By boundedness of fT , and putting together (2.26), (2.27),
(2.28) and (2.29), we obtain that (2.11) holds true, which ends the proof of our
theorem.

�

3 A Tanaka’s type formula related to X

In this section, we will make a step towards a definition of the local time associated to
the stochastic heat equation: we will establish a Tanaka’s type formula related to X,
for which we will need a little more notation. Let us denote Cc(]0, 1[) the set of real
functions defined on ]0, 1[, with compact support. Let {Gt(x, y); t ≥ 0, x, y ∈ [0, 1]}
be the Dirichlet heat kernel on [0, 1], that is the fundamental solution to the equation

∂th(t, x) = ∂2
xxh(t, x), t ∈ [0, T ], x ∈ [0, 1], h(t, 0) = h(t, 1) = 0, t ∈ [0, T ].

Notice that, following the notations of Section 1, Gt(x, y) can be decomposed as

Gt(x, y) =
∑

n≥1

e−λnten(x)en(y). (3.1)

Now, we can state:
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Theorem 3.1 Let ϕ ∈ Cc(]0, 1[) and Fϕ : H → R given by Fϕ(ℓ) =
∫ 1

0
|ℓ(x)|ϕ(x)dx.

Then:

Fϕ(Xt) =

∫ t

0

〈

F ′
ϕ(Xs), δXs

〉

+ Lϕ
t , (3.2)

where [F ′
ϕ(ℓ)](ℓ̃) =

∫ 1

0
sgn(ℓ(x))ϕ(x)ℓ̃(x)dx and Lϕ

t is the random variable given by

Lϕ
t =

1

2

∫ t

0

∫ 1

0

δ0(Xs(x))G2s(x, x)ϕ(x)dx ds, (3.3)

where δ0 stands for the Dirac measure at 0, and δ0(Xs(x)) has to be understood as
a distribution on the Wiener space associated to W .

3.1 An approximation result

In order to perform the computations leading to Tanaka’s formula (3.2), it will be
convenient to change a little our point of view on equation (1.1), which will be done
in the next subsection.

3.1.1 The Walsh setting

We have already mentioned that the Brownian sheet W could be interpreted as
the space-time white noise on [0, T ] × [0, 1], which means that W can be seen as a
Gaussian family {W (h);h ∈ HW}, with

W (h) =

∫ T

0

∫ 1

0

h(t, x)W (dt, dx), h ∈ HW

and

E [W (h1)W (h2)] =

∫ T

0

∫ 1

0

h1(t, x)h2(t, x) dtdx, h1, h2 ∈ HW,

and where we recall that HW = L2([0, T ]×[0, 1]). Associated to this Gaussian family,
we can construct again a derivative operator, a divergence operator, some Sobolev
spaces, that we will simply denote respectively by D, δ,Dk,2. These objects coincide
in fact with the ones introduced at Section 2.1.1. Notice for instance that, for a
given m ≥ 1, and for a functional F ∈ D

m,2, DmF will be considered as a random
function on ([0, T ] × [0, 1])m, denoted by Dm

(s1,y1),...,(sm,ym)F . We will also deal with
the multiple integrals with respect to W , that can be defined as follows: for m ≥ 1
and fm : ([0, T ] × [0, 1])m → R such that fm(t1, x1, . . . , tm, xm) is symmetric with
respect to (t1, . . . , tm), we set

Im(fm) = m!

∫

0<t1<...<tm<T

∫

[0,1]m
f(t1, x1, . . . , tm, xm)W (dt1, dx1) . . .W (dtm, dxm).

Eventually, we will use the negative Sobolev space D
−1,2 in the sense of Watanabe,

which can be defined as the dual space of D
1,2 in L2(Ω). We refer to [15] or [14] for

a detailed account on the Malliavin calculus with respect to W . Notice in particular
that the filtration (Ft)t∈[0,T ] considered here is generated by the random variables
{W (1[0,s] × 1A); s ≤ t, A Borel set in [0, 1]}, which is useful for a correct definition
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of Im(fm). Then, the isometry relationship between multiple integrals can be read
as:

E [Im(fm)Ip(gp)] =

{

0 if m 6= p

m! 〈fm, gm〉H⊗m
W

if m = p,
, m, p ∈ N

where H⊗m
W

has to be interpreted as L2(([0, T ] × [0, 1])m).
In this context, the stochastic convolution X can also be written according to

Walsh’s point of view (see [19]): set

Gt,x(s, y) := Gt−s(x, y)1[0,t](s), (3.4)

then, for t ∈ [0, T ] and x ∈ [0, 1], Xt(x) is given by

Xt(x) =

∫ T

0

∫ 1

0

Gt,x(s, y)W (ds, dy) = I1 (Gt,x) . (3.5)

3.1.2 A regularization procedure

For simplicity, we will only prove (3.2) for t = T . Now, we will get formula (3.2) by
a natural method: we will first regularize the absolute value function | · | in order
to apply the Itô formula (2.13), and then we pass to the limit as the regularization
step tends to 0. To complete this program, we will use the following classical bounds
(see for instance [3], p. 268) on the Dirichlet heat kernel: for all η > 0, their exist
two constants 0 < c1 < c2 such that, for all x, y ∈ [η, 1 − η], we have:

c1t
−1/2 ≤ Gt(x, y) ≤ c2t

−1/2. (3.6)

from which we deduce that uniformly in (t, x) ∈ [0, T ] × [η, 1 − η],

c1t
1/2 ≤

∫ t

0

∫ 1−η

η

Gs(x, y)
2dsdy ≤ c2t

1/2. (3.7)

Fix ϕ ∈ Cc(]0, 1[) and assume that ϕ has support in [η, 1 − η]. For ε > 0, let
Fε : H → R be defined by

Fε(ℓ) =

∫ 1

0

σε(ℓ(x))ϕ(x)dx, with σε : R → R given by σε = | · | ∗ pε,

where pε(x) = (2πε)−1/2e−x2/(2ε) is the Gaussian kernel on R with variance ε > 0.
For t ∈ [0, T ], let us also define the random variable

Zε
t = Tr

(

e2t∆F ′′
ε (Xt)

)

=

∫ 1

0

G2t(x, x)ϕ(x)σ′′
ε (Xt(x))dx. (3.8)

We prove here the following convergence result:

Lemma 3.2 If Zε
t is defined by (3.8),

∫ T

0
Zε

t dt converges in L2, as ε → 0, towards
the random variable Lϕ

T defined by (3.3).
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Proof. Following the idea of [7], we will show this convergence result by means of

the Wiener chaos decomposition of
∫ T

0
Zε

t dt, which will be computed firstly.
Stroock’s formula ([17]) states that any random variable F ∈ ∩k≥1D

k,2 can be
expanded as

F =
∞
∑

m=0

1

m!
Im (E [DmF ]) .

In our case, a straightforward computation yields, for any t ∈ [0, T ] and m ≥ 0,

Dm
(s1,y1),...,(sm,ym)Z

ε
t

=

∫ 1

0

G2t(x, x)ϕ(x)G⊗m
t,x ((s1, y1), . . . , (sm, ym))σ(m+2)

ε (Xt(x))dx.

Moreover, since σ′′
ε = pε, we have

E
[

σ(m+2)
ε (Xt(x))

]

= m! (ε+ v(t, x))−m/2 pε+v(t,x)(0)Hm(0),

where v(t, x) denotes the variance of the centered Gaussian random variable Xt(x)
and Hm is the mth Hermite polynomial:

Hm(x) = (−1)me
x2

2
dm

dxm

(

e−
x2

2

)

,

verifying Hm(0) = 0 if m is odd and Hm(0) = (−1)m/2

2m/2 (m/2)!
if m is even. Thus, the

Wiener chaos decomposition of
∫ T

0
Zε

t dt is given by

∫ T

0

Zε
t dt

=
∑

m≥0

∫ T

0

dt

∫ 1

0

dxG2t(x, x)ϕ(x) (ε+ v(t, x))−m/2 pε+v(t,x)(0)Hm(0)Im(G⊗m
t,x )

=
∑

m≥0

∫ T

0

dt

∫ 1

0

dx βm,ε(t, x)Im(G⊗m
t,x ), (3.9)

with

βm,ε(t, x) := G2t(x, x)ϕ(x) (ε+ v(t, x))−m/2 pε+v(t,x)(0)Hm(0), m ≥ 1.

We will now establish the L2-convergence of
∫ T

0
Zε

t dt, using (3.9). For this purpose
let us notice that each term

∫ T

0

dt

∫ 1

0

dx βm,ε(t, x)Im(G⊗m
t,x )

converges in L2(Ω), as ε→ 0, towards

∫ T

0

dt

∫ 1

0

dxG2t(x, x)ϕ(x)v(t, x)−m/2pv(t,x)(0)Hm(0)Im(G⊗m
t,x ).
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Thus, setting

αm,ε := E

{

(
∫ T

0

dt

∫ 1

0

dx βm,ε(t, x)Im(G⊗m
t,x )

)2
}

,

the L2-convergence of
∫ T

0
Zε

t dt will be proven once we show that

lim
M→∞

sup
ε>0

∑

m≥M

αm,ε = 0, (3.10)

and hence once we control the quantity αm,ε uniformly in ε. We can write

αm,ε =

∫

[0,T ]2
dt1dt2

∫

[0,1]2
dx1dx2 βm,ε(t1, x1)βm,ε(t2, x2)E{Im(G⊗m

t1,x1
)Im(G⊗m

t2,x2
)}.

Moreover

E{Im(G⊗m
t1,x1

)Im(G⊗m
t2,x2

)} = m!
〈

G⊗m
t1,x1

, G⊗m
t2,x2

〉

L2([0,T ]×[0,1])m

= m!

(
∫

[0,T ]×[0,1]

Gt1−s(x1, y)1[0,t1](s)Gt2−s(x2, y)1[0,t2](s)dsdy

)m

=: m! (R(t1, x1, t2, x2))
m .

Using (3.6), we can give a rough upper bound on βm,ε(t, x):

|βm,ε(t, x)| ≤ |G2t(x, x)| |ϕ(x)| 1

v(t, x)
m+1

2

cst

2
m
2 (m

2
)!

≤ cst |ϕ(x)|
2

m
2 (m

2
)! t

1

2v(t, x)
m+1

2

.

Then, thanks to the fact that ϕ = 0 outside [η, 1 − η], we get

αm,ε ≤ cm

∫

([0,T ]×[η,1−η])2
dt1dt2dx1dx2

|R(t1, x1, t2, x2)|m |ϕ(x1)| |ϕ(x2)|
t
1/2
1 t

1/2
2 v(t1, x1)(m+1)/2v(t2, x2)(m+1)/2

,

with

cm =
cstm!

2m [(m/2)!]2
≤ cst√

m
,

by Stirling formula. Assume, for instance, t1 ≤ t2. Invoking the decomposition (3.1)
of Gt(x, y) and the fact that {en;n ≥ 1} is an orthogonal family, we obtain

R(t1, x1, t2, x2) =

∫ t1

0

ds

∫ 1

0

dy Gt1−s(x1, y)Gt2−s(x2, y)

=

∫ t1

0

ds

∫ 1

0

dy

(

∑

n≥1

e−λn(t1−s)en(x1)en(y)

)(

∑

r≥1

e−λr(t2−s)er(x2)er(y)

)

=
∑

n≥1

en(x1)en(x2)

∫ t1

0

ds e−λn[(t1−s)+(t2−s)] =
∑

n≥1

2

λn

en(x1)en(x2)e
−λnt2 sinh(λnt1),

and using the same kind of arguments, we can write, for k = 1, 2:

v(tk, xk) =
∑

n≥1

2

λn

en(xk)
2e−λntk sinh(λntk).
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Now Cauchy-Schwarz’s inequality gives

R(t1, x1, t2, x2)

≤
{

∑

n≥1

2

λn

en(x1)
2e−λnt2 sinh(λnt1)

}1/2{
∑

n≥1

2

λn

en(x2)
2e−λnt2 sinh(λnt1)

}1/2

≤
{

∑

n≥1

2

λn

en(x1)
2e−λnt2 sinh(λnt1)

}1/2

v(t2, x2)
1/2.

Introduce the expression

A(t1, t2, x1) :=
∑

n≥1

2

λn

en(x1)
2e−λnt2 sinh(λnt1) =

∫ t1

0

Gt1+t2−2s(x1, x1)ds.

We have obtained that R(t1, x1, t2, x2) ≤ A(t1, t2, x1)
1/2v(t2, x2)

1/2. Notice that (3.7)
yields c1t

1/2 ≤ v(t, x) ≤ c2t
1/2 uniformly in x ∈ [η, 1 − η]. Thus, we obtain

αm,ε ≤
cst√
m

∫

([0,T ]×[η,1−η])2
dt1dt2dx1dx2

v(t2, x2)
m/2A(t1, t2, x1)

m/2 |ϕ(x1)| |ϕ(x2)|
t
1/2
1 t

1/2
2 v(t1, x1)(m+1)/2v(t2, x2)(m+1)/2

,

and hence

αm,ε ≤
cst√
m

∫

([0,T ]×[η,1−η])2
dt1dt2dx1dx2

t
m/4
2

t
1/2
1 t

1/2
2 t

(m+1)/2
1 t

(m+1)/2
2

(
∫ t1

0

Gt1+t2−2s(x1, x1)ds

)m/2

.

Hence, according to (3.6), we get

αm,ε ≤
cst√
m

∫ T

0

t
−(m+3)/4
1 dt1

∫ T

t1

t
−3/4
2

[

(t2 + t1)
1/2 − (t2 − t1)

1/2
]m/2

dt2

≤ cst√
m

∫ T

0

t
−(m+3)/4
1 dt1

∫ T

t1

t
−3/4
2

t
m/2
1

t
m/4
2

dt2 ≤
cst√
m

∫ T

0

t
(m−3)/4
1 dt1

∫ T

t1

dt2

t
(m+3)/4
2

≤ cst

m3/2
.

Consequently, the series
∑

m≥0 αm,ε converges uniformly in ε > 0, which gives im-
mediately (3.10).

Thus, we obtain that
∫ T

0
Zε

t dt→ Z in L2(Ω), as ε→ 0, where

Z :=
∑

m≥0

∫ T

0

dt

∫ 1

0

dxG2t(x, x)ϕ(x)v(t, x)−m/2pv(t,x)(0)Hm(0)Im(G⊗m
t,x ).

To finish the proof we need to identify Z with (3.3). First, let us give the precise
meaning of (3.3). Using (3.5), we can write

Lϕ
T =

1

2

∫ T

0

∫ 1

0

δ0(W (Gt,x))G2t(x, x)ϕ(x)dxdt,
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where we recall that δ0 stands for the Dirac measure at 0, and we will show that
Lϕ

T ∈ D
−1,2 (this latter space has been defined at Section 3.1.1). Indeed, (see also

[16], p. 259), for any random variable U ∈ D
1,2, with obvious notation for the

Sobolev norm of U , we have

|E (Uδ0(W (Gt,x)))| ≤
‖U‖1,2

|Gt,x|HW

≤ cst
‖U‖1,2

t1/4
,

using (3.4) and (3.7). This yields

|E (ULϕ
T )| ≤ cst

∫ T

0

∫ 1−η

η

‖U‖1,2

t1/4
|G2t(x, x)| |ϕ(x)|dxdt <∞,

according to (3.6). Similarly,
∫ T

0
Zε

t dt ∈ D
−1,2, since

∫ T

0

Zε
t dt =

∫ T

0

∫ 1

0

σ′′
ε (W (Gt,x))G2t(x, x)ϕ(x)dxdt

and the same reasoning applies. Moreover 1
2

∫ T

0
Zε

t dt → Lϕ
T in D

−1,2 as ε → 0.
Indeed, for any random variable U ∈ D

1,2,

E

{

U

(

1

2

∫ T

0

Zε
t dt− Lϕ

T

)}

=
1

2

∫ T

0

∫ 1

0

dxdtG2t(x, x)ϕ(x)

× E {U [σ′′
ε (W (Gt,x)) − δ0(W (Gt,x))]}

and, as in [16],

E {U [σ′′
ε (W (Gt,x)) − δ0(W (Gt,x))]}

= E

{

1

|Gt,x|2HW

U〈DW [σ′
ε(W (Gt,x)) − sgn(W (Gt,x))], Gt,x〉HW

}

=
1

|Gt,x|2HW

E
{

(σ′
ε − sgn)(W (Gt,x))δ

W (UGt,x)
}

.

By Cauchy-Schwarz inequality, the right hand side is bounded by

1

|Gt,x|2HW

{

E |(σ′
ε − sgn)(W (Gt,x))|2

}
1

2
{

E
∣

∣UW (Gt,x) − 〈Gt,x, D
WU〉HW

∣

∣

2
}

1

2

and the conclusion follows using again (3.6) and (3.7), and also the fact that σ′
ε →

sgn, as ε→ 0.
Finally, it is clear that Lϕ

T = 1
2
Z. The proof of Lemma 3.2 is now complete.

�

3.2 Proof of Theorem 3.1

In order to prove relation (3.2) (only for t = T for simplicity), let us take up our
regularization procedure: for any ε > 0, we have, according to (2.13), that

Fε(XT ) =

∫ T

0

〈F ′
ε(Xt), δXt〉 +

1

2

∫ T

0

Zε
t dt. (3.11)
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We have seen that 1
2

∫ T

0
Zε

t dt → Lϕ
T as ε → 0, in L2(Ω). Since it is obvious that

Fε(XT ) converges in L2(Ω) to Fϕ(XT ), a simple use of formula (3.11) shows that
∫ T

0
〈F ′

ε(Xt), δXt〉 converges. In order to obtain (3.2), it remains to prove that

lim
ε→0

∫ T

0

〈F ′
ε(Xt), δXt〉 =

∫ T

0

〈F ′
ϕ(Xt), δXt〉. (3.12)

But, from standard Malliavin calculus results (see, for instance, Lemma 1, p. 304
in [7]), in order to prove (3.12), it is sufficient to show that

G∗V ε → G∗V as ε→ 0, in L2([0, T ] × Ω;H), (3.13)

with
V ε(t) = F ′

ε(Xt) = σ′
ε(Xt)ϕ ∈ H and V (t) = sgn(Xt)ϕ ∈ H.

We will now prove (3.13) through several steps, adapting in our context the approach
used in [7].

Step 1. To begin with, let us first establish the following result:

Lemma 3.3 For s, t ∈ (0, T ), x ∈ [η, 1 − η] and a ∈ R,

P (Xt(x) > a, Xs(x) < a) ≤ cst (t− s)1/4s−1/2, (3.14)

where the constant depends only on T, a and η.

Proof. The proof is similar to the one given for Lemma 4, p. 309 in [7]. Indeed, the
first part of that proof can be invoked in our case since (Xt(x), Xs(x)) is a centered
Gaussian vector (with covariance ω(s, t, x)). Hence we can write

P (Xt(x) > a, Xs(x) < a) ≤ 1 + |a|ρ
√

2π

2π

√

v(t, x)v(s, x)

ω(s, t, x)2
− 1, (3.15)

where

ρ2 =
E [(Xt(x) −Xs(x))

2]

v(t, x)v(s, x) − ω(s, t, x)2
. (3.16)

Furthermore, it is a simple computation to show that

ω(s, t, x) = E [Xt(x)Xs(x)] ≥ cst s1/2. (3.17)

Indeed, using again (3.6) we deduce that

E [Xt(x)Xs(x)] =

∫ s

0

du

∫ 1

0

dy Gt−u(x, y)Gs−u(x, y)

≥
∫ s

0

du

∫ 1−η

η

dy Gt−u(x, y)Gs−u(x, y) ≥ cst

∫ s

0

du
√

(t− u)(s− u)

= cst

∫ s
t−s

0

du
√

(1 + w)w
≥ cst

√

t− s

t

∫ s
t−s

0

du√
u

= cst

√

s

t
≥ cst

√
s.
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Moreover, one can observe, as in [7], that

v(t, x)v(s, x) − ω(s, t, x)2 ≤ E
[

(Xt(x) −Xs(x))
2
]

E
[

Xs(x)
2
]

.

Consequently,
√

v(t, x)v(s, x)

ω(s, t, x)2
− 1 ≤ cst (t− s)1/4s−1/4,

since it is well-known that

E
[

(Xt(x) −Xs(x))
2
]

≤ cst (t− s)1/2.

Eventually, following again [7], we get that

ρ

√

v(t, x)v(s, x)

ω(s, t, x)2
− 1 =

√

E [(Xt(x) −Xs(x))2]

ω(s, t, x)
.

Inequality (3.14) follows now easily.

�

Step 2. We shall prove that G∗V ∈ L2([0, T ] × Ω;H). First, using the fact that
∥

∥e(T−t)∆
∥

∥

op
≤ 1, we remark that

E

[
∫ T

0

∣

∣e(T−t)∆sgn(Xt)ϕ
∣

∣

2

H
dt

]

≤ E

[
∫ T

0

∥

∥e(T−t)∆
∥

∥

2

op
|sgn(Xt)ϕ|2H dt

]

<∞.

Now, let us denote by A the quantity

A := E

[

∫ T

0

∣

∣

∣

∣

∫ T

t

∆e(r−t)∆ (sgn(Xr)ϕ− sgn(Xt)ϕ) dr

∣

∣

∣

∣

2

H

dt

]

.

We have

A ≤ E

[

∫ T

0

(
∫ T

t

∥

∥∆e(r−t)∆
∥

∥

op
|sgn(Xr)ϕ− sgn(Xt)ϕ|H dr

)2

dt

]

,

with
sgn(Xr(x)) − sgn(Xt(x)) = 2

(

U+
r,t(x) − U−

r,t(x)
)

where U+
r,t(x) = 1{Xr(x)>0, Xt(x)<0} and U−

r,t(x) = 1{Xr(x)<0, Xt(x)>0}. Thus

A ≤ cst

∫ T

0

dtE





(

∫ T

t

dr

r − t

(
∫ 1

0

dx
[(

U+
r,t(x) − U−

r,t(x)
)

ϕ(x)
]2
)1/2

)2




≤ cst

∫ T

0

dtE





(

∫ T

t

dr

r − t

(
∫ 1

0

dxU+
r,t(x)ϕ(x)2

)1/2
)2


 .
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Then A ≤ cst
∫ T

0
Atdt with

At :=

∫ T

t

dr2
r2 − t

∫ T

t

dr1
r1 − t

E

[

(
∫ 1

0

U+
r1,t(x)ϕ(x)2dx

)1/2

(
∫ 1

0

U+
r2,t(x)ϕ(x)2dx

)1/2
]

,

which gives

At ≤
∫ T

t

dr2
r2 − t

∫ T

t

dr1
r1 − t

(
∫

[0,1]2
dx1dx2ϕ(x1)

2ϕ(x2)
2E
[

U+
r1,t(x1)U

+
r2,t(x2)

]

)1/2

≤
∫ T

t

dr2
r2 − t

∫ T

t

dr1
r1 − t

(
∫ 1

0

dx1ϕ(x1)
2E
[

U+
r1,t(x1)

]1/2
)1/2

(
∫ 1

0

dx2ϕ(x2)
2E
[

U+
r2,t(x2)

]1/2
)1/2

=

[

∫ T

t

dr

r − t

(
∫ 1

0

dxϕ(x)2 P [Xr(x) > 0, Xt(x) < 0]1/2

)1/2
]2

.

Plugging (3.14) into this last inequality, we easily get that G∗V ∈ L2([0, T ] ×
Ω, H). The remainder of the proof follows now closely the steps developed in [7] and
the details are left to the reader.

�
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Hennequin (ed.) École d’Été de Probabilités de Saint-Flour XIV-1984, Lecture

Notes in Math. 1180, 265-439, 1986.

[20] L. Zambotti. A reflected stochastic heat equation as symmetric dynamics with
respect to the 3-d Bessel bridge. J. Funct. Anal. 180, no. 1, 195-209, 2001.
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