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HUA OPERATORS AND POISSON TRANSFORM FOR
BOUNDED SYMMETRIC DOMAINS

KHALID KOUFANY AND GENKAI ZHANG

Abstract. Let Ω be a bounded symmetric domain of non-tube
type in Cn with rank r and S its Shilov boundary. We consider the
Poisson transform Psf(z) for a hyperfunction f on S defined by the

Poisson kernel Ps(z, u) =
(

h(z, z)
n

r /|h(z, u)
n

r |2
)s

, (z, u) × Ω × S,
s ∈ C. For all s satisfying certain non-integral condition we find
a necessary and sufficient condition for the functions in the image
of the Poisson transform in terms of Hua operators. When Ω is
the type I matrix domain in Mn,m(C) (n ≤ m), we prove that an
eigenvalue equation for the second order Mn,n-valued Hua operator
characterizes the image.

1. Introduction

Let Ω = G/K be a Riemannian symmetric space. Any parabolic sub-
group P of G defines a boundary G/P of the symmetric space Ω. The
Poisson transform is an integral operator from hyperfunctions on G/P
into the space of eigenfunctions on Ω of the algebra D(Ω)G of invariant
differential operators. Any such boundary G/P can be viewed as coset
space of the maximal boundary G/Pmin defined by a minimal parabolic
subgroup Pmin. In this case the most general result was obtained by
Kashiwara et al. [9] where they proved that under certain conditions
on the eigenvalues that the Poisson transform is a G−isomorphism
between the space of hyperfunctions on G/Pmin and the space of eigen-
functions of invariant differential operators on Ω, namely the Helgason
conjecture. It thus arises the question of characterizing the image of
the Poisson transform for other smaller boundaries.

Suppose Ω is a bounded symmetric domain in a complex n−dimensional
space V . Let S be its Shilov boundary and r its rank. In this paper
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we consider the characterization of the image of the Poisson transform

Psϕ(z) =

∫

S

Ps(z, u)ϕ(u)dσ(u)

on the Shilov boundary S when s satisfies the following condition

(1) −4[b + 1 + j
a

2
+

n

r
(s − 1)] /∈ {1, 2, 3, . . .}, for j = 0 and 1

where a and b are some structure constants of Ω. For a specific value of s
(s = 1 in our parameterization) the kernel Ps(z, u), (z, u) ∈ Ω×S, is the
so called Poisson kernel for harmonic functions, and the corresponding
Poisson transform P := P1 maps hyperfunctions on S to harmonic
functions on Ω; here harmonic functions are defined as the smooth
functions that are annihilated by all invariant differential operators that
annihilate the constant functions. When Ω is a tube domain Johnson
and Korányi [8] proved that the image of the Poisson transform P is
exactly the set of all Hua-harmonic functions. For non-tube domains
the characterization of the image of the Poisson transform P was done
by Berline and Vergne [1] where certain third-order differential Hua-
operator was introduced to characterize the image.

In his paper [15] Shimeno considered the Poisson transform Ps on
tube domains; it is proved that Poisson transform maps hyperfunctions
on the Shilov boundary to certain solution space of the Hua operator.
For general domains and for other boundaries, the image of the Poisson
transform was characterized in [16]. However for the Shilov boundary of
a non-tube domain the problem is still open. We will construct two Hua
operators of third order and use them to give a characterization. For the
matrix ball Ir,r+b of r × (r + b)−matrices some eigenvalue equation for
second-order Hua operator (constructed by Hua [7] and reformulated
by Berline and Vergne [1]) is proved to give the characterization. We
proceed to explain the content of our paper.

The Hua operator of second-order H for a general symmetric domain
is defined as a kC-valued operator, see section 4. For tube domains
it maps the Poisson kernels into the center of kC, namely the Poisson
kernels are its eigenfunctions up to an element in the center, but it is not
true for non-tube domains, see section 5. However for type I domains
of non-tube type, see section 6, there is a variant of the Hua operator,
H(1), by taking the first component of the operator, since in this case

kC = k
(1)
C

+ k
(2)
C

is a sum of two irreducible ideals. We prove that the
operator H(1) has the Poisson kernels as its eigenfunctions and we find
the eigenvalues. We prove further that the eigenfunctions of the Hua
operator H(1) are also eigenfunctions of invariant differential operators
on Ω. For that purpose we compute the radial part of the Hua operator
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H(1), see Proposition 6.3. We give eventually the characterization of
the image of the Poisson transform in terms of the Hua operator for
type Ir,r+b domains :

Theorem 1.1 (Theorem 6.1). Suppose s ∈ C satisfies the following
condition

−4[b + 1 + j + (r + b)(s − 1)] /∈ {1, 2, 3, · · · }, for j = 0 and 1.

A smooth function f on Ir,r+b is the Poisson transform Ps(ϕ) of a
hyperfunction ϕ on S if and only if

H(1)f = (r + b)2s(s − 1)fIr.

Our method of proving the characterization is the same as that in
[10] by proving that the boundary value of the Hua eigenfunctions
satisfy certain differential equations and is thus defined only on the
Shilov boundary, nevertheless it requires several technically demanding
computations. In section 7 we study the characterization of range of
the Poisson transform for general non-tube domains. We construct two
new Hua operators of third order and prove, by essentially the same
method as for the previous theorem, the characterization of the image
of the Poisson transform using the third-order Hua-type operators U
and W :

Theorem 1.2 (Theorem 7.2). Let Ω be a bounded symmetric non-tube
domain of rank r in C

n. Let s ∈ C and put σ = n
r
s. If a smooth

function f on Ω is the Poisson transform Ps of a hyperfunction in
B(S), then

(2)
(

U −
−2σ2 + 2pσ + c

σ(2σ − p − b)
W

)

f = 0.

Conversely, suppose s satisfies the condition

−4[b + 1 + j
a

2
+

n

r
(s − 1)] /∈ {1, 2, 3, · · · }, for j = 0 and 1.

Let f be an eigenfunction f ∈ M(λs) (see (8)) with λs given by (11). If
f satisfies (2) then it is the Poisson transform Ps(ϕ) of a hyperfunction
ϕ on S.

After this paper was finished we were informed by Professor T. Os-
hima that he and N. Shimeno have obtained some similar results about
Poisson transforms and Hua operators.
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2. Preliminaries and notation

2.1. General setting. We recall some basic facts about the Jordan
triple characterization of bounded symmetric domains and fix nota-
tions. Our presentation is mainly based on [11]. Let Ω be an irreducible
bounded symmetric domain in a complex n−dimensional space V . Let
G be the identity component of the group of biholomorphic automor-
phisms of Ω, and K be the isotropy subgroup of G at the point 0 ∈ Ω.
Then K is a maximal compact subgroup of G and as a Hermitian
symmetric space, Ω = G/K. Let g be the Lie algebra of G, and

g = k + p

be its Cartan decomposition. The Lie algebra k of K has one dimen-
sional center z. Then there exists an element Z0 ∈ z such that adZ0

defines the complex structure of p. Let

(3) gC = p+ ⊕ kC ⊕ p−

be the corresponding eigenspace decomposition of gC, the complexifi-
cation of g. We will use the Jordan theoretic characterization of Ω; the
corresponding Lie theoretic characterization will be then more trans-
parent and which we will also use.

There exists a quadratic form Q : V → End(V̄ , V ) (here V̄ is the
complex conjugate of V ), such that

p = {ξv; v ∈ V },

where ξv(z) = v −Q(z)v̄. We will hereafter identify p+ with V via the
natural mapping

1

2
(ξv − iξiv) = v 7→ v,

and p− with V̄ via the mapping

−
1

2
(ξv + iξiv) = Q(z)v̄ 7→ v̄ ∈ V̄ ;

we will write v̄ = Q(z)v̄ when viewed as element in the Lie algebra and
when no ambiguity would arise.

Let {zv̄w} the polarization of Q(z)v̄, i.e.,

{zv̄w} = Q(z + w)v̄ − Q(z)v̄ − Q(w)v̄.

This defines a triple product V × V̄ × V → V , with respect to which
V is a JB?−triple, see [20]. We define D(z, v̄) ∈ End(V ) by

D(z, v̄)w = {zv̄w}.
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The space V carries a K−invariant inner product

(4) 〈z, w〉 =
1

p
trD(z, w̄),

where “tr” is the trace functional on End(V ), and p = p(Ω) is the
genus of Ω (see (6) below). Beside the Euclidean norm, V carries also
the spectral norm,

‖z‖ = ‖
1

2
D(z, z̄)‖1/2,

where the norm of an operator in End(V ) is taken with respect to the

Hilbert norm 〈·, ·〉
1
2 on V . The domain Ω can now be realized as the

open unit ball of V with respect to the spectral norm,

Ω = {z ∈ V ; ‖z‖ < 1}.

An element c ∈ V is a tripotent if {cc̄c} = c. In the matrix Cartan
domains (of type I, II, and III, see below) the tripotents are exactly
the partial isometries. Each tripotent c ∈ V gives rise to a Peirce
decomposition of V ,

V = V0(c) ⊕ V1(c) ⊕ V2(c)

where
Vj(c) = {v ∈ V : D(c, c̄)v = jv}.

Two tripotents c1 and c1 are orthogonal if D(c1, c̄2) = 0. Orthogonality
is a symmetric relation. A tripotent c is minimal if it can not be
written as a sum of two non-zero orthogonal tripotents. A tripotent
c is maximal if V0(c) = {0}. A Jordan frame is a maximal family of
pairwise orthogonal, minimal tripotents. It is known that the group K
acts transitively on Jordan frames. In particular, the cardinality of all
Jordan frames is the same, and is equal to the rank r of Ω. Every z ∈ V
admits a (unique) spectral decomposition z =

∑r
j=1 sjvj, where {vj} is

a Jordan frame and s1 ≥ s2 ≥ · · · ≥ sr ≥ 0 are the spectral values of
z. The spectral norm of z is equal to the largest spectral value s1.

Let us choose a Jordan frame {cj}
r
j=1 in V . Then, by the transitivity

of K on frames, each element z ∈ V admits a polar decomposition
z = k

∑r
j=1 sjcj, where k ∈ K and sj are the spectral values of z. Let

e = c1 + c2 + · · · + cr; then e is a maximal tripotent. Let

V =
∑

0≤j≤k≤r

⊕Vj,k

be the joint Peirce decomposition of V associated with the Jordan frame
{cj}

r
j=1, where

(5) Vj,k = {v ∈ V ; D(c`, c̄`)v = (δ`,j + δ`,k)v, 1 ≤ ` ≤ r}
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for (j, k) 6= (0, 0) and V0,0 = {0}. By the minimality of cj , Vj,j = Ccj,
1 ≤ j ≤ r. The transitivity of K on the frames implies that the integers

a := dim Vj,k (1 ≤ j < k ≤ r); b := dim V0,j (1 ≤ j ≤ r)

are independent of the choice of the frame and of 1 ≤ j < k ≤ r. The
triple of integers (r, a, b) uniquely determines Ω. Since e is a maximal
tripotent, the Peirce decomposition associated with e is V = V2 ⊕ V1

with

V2 =
∑

1≤j≤k≤r

Vj,k and V1 =

r
∑

j=1

V0,j .

V2 becomes a Jordan algebra for the product xy = {xēy} with identity
element e. Let n1 = dim V1 and n2 = dim V2. Then we have

n1 = rb, n2 = r +
r(r − 1)

2
a and n = n1 + n2.

The genus of Ω is

(6) p = p(Ω) =
1

r
trD(e, ē) = (r − 1)a + b + 2.

Thus 〈cj, cj〉 = 1
p
trD(cj, c̄j) = 1

rp
trD(e, ē) = 1, and this is true for

every minimal tripotent in V .
The irreducible bounded symmetric domains were completely clas-

sified (up to a biholomorphic isomorphism) by Élie Cartan [2]. We
give here a list of all irreducible bounded symmetric domains and the
corresponding Jordan triples, for more details see [11] .

Ω V (r, a, b)

In,m (n ≤ m) Mn,m(C) (n, 2, m − n)

IIn {z ∈ Mn,n(C) : zt = −z}
(n/2, 4, 0) (n even)

((n − 1)/2, 4, 2) (n odd)
IIIn {z ∈ Mn,n(C) : zt = z} (n, 1, 0)
IVn C

n (2, n − 2, 0)
V M1,2(O) (2, 6, 4)
VI {z ∈ M3,3(O) : z̄t = z} (3, 8, 0)

where O is the 8−dimensional Cayley algebra.

Let
a = Rξ1 + · · · + Rξr, ξj = ξcj

, j = 1, . . . , r.

Then, a is a maximal Abelian subspace of p. Let {βj}
r
j=1 ⊂ a∗ be the

basis of a∗ determined by

βj(ξk) = 2δj,k, 1 ≤ j, k ≤ r,
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and define an ordering on a∗ such that

(7) βr > βr−1 > · · · > β1 > 0.

The restricted root system Σ(g, a) of g relative to a is of type Cr or
BCr and it consists of the roots ±βj (1 ≤ j ≤ r) with multiplicity 1,
the roots ±1

2
βj ±

1
2
βk (1 ≤ j 6= k ≤ r) with multiplicity a, and possibly

the roots ±1
2
βj (1 ≤ j ≤ r) with multiplicity 2b. The set positive roots

Σ+(g, a) consists of 1
2
(βk±βj) (1 ≤ j < k ≤ r) ; βj and 1

2
βj (1 ≤ j ≤ r),

while the set of negative roots is Σ−(g, a) = −Σ+(g, a).
It follows that ρ, the half sum of the positive roots, is given by

ρ =

r
∑

j=1

ρjβj ,

where

ρj =
b + 1 + a(j − 1)

2
, j = 1, . . . , r.

Let n± be the sum of positive respectively negative roots spaces,

n± =
∑

β∈Σ±

gβ =
∑

1≤j<k≤r

g±
βk±βj

2 +
∑

1≤j≤r

g±βj +
∑

1≤j≤r

g±
βj
2 .

The Iwasawa decomposition is then given by

g = k ⊕ a ⊕ n− .

Let, as usual, m = Zk(a) be the centralizer of a in k, then we have

g = n− ⊕ m ⊕ a ⊕ n+.

We let P = Pmin = MAN be the minimal parabolic subgroup of G,
with M , A and N the corresponding Lie groups with Lie algebras m,
a and n−.

Let t−
C

be the subspace

t−
C

= CD(c1, c̄1) + · · ·+ CD(cr, c̄r)

of kC. Then t−
C

is Abelian and we extend it to a Cartan subalgebra
tC = t−

C
+ t+

C
of kC. The root system Ψ := Σ(gC, tC) of gC with respect

to tC, when restricted to t−
C

is of the form

Ψ|t−
C

= Σ(gC, t−
C
) = {±

1

2
(γk±γj), 1 ≤ j 6= k ≤ r ; ±γj , ±

1

2
γj, 1 ≤ j ≤ r}

where γj are the Harish-Chandra strongly orthogonal roots defined by

γj(D(ck, c̄k)) = 2δjk, γj|t+
C

= 0, 1 ≤ j, k ≤ r.
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The set of compact roots Ψc := Σ(kC, tC) is such that

Ψc|t−
C

= {
1

2
(γk − γj), 1 ≤ j 6= k ≤ r ; ±

1

2
γj, 1 ≤ j ≤ r},

and the set of noncompact roots Ψn satisfies

Ψn|t−
C

= {±
1

2
(γk + γj), 1 ≤ j 6= k ≤ r ; ±γj ; ±

1

2
γj, 1 ≤ j ≤ r}.

We choose a consistent ordering with (3) and (7)

γr > γr−1 > · · · > γ1.

We will also need the set of positive noncompact roots Ψn|
+

t
−

C

,

Ψn|
+

t
−

C

= {
1

2
(γk + γj), 1 ≤ j 6= k ≤ r ;

1

2
γj, γj, 1 ≤ j ≤ r}.

2.2. Bounded symmetric domain of type Ir,r+b. Let V = Mr,r+b(C)
be the vector space of complex r × (r + b)−matrices. V is a Jordan
triple system for the following triple product

{xȳz} = xy∗z + zy∗x.

Then the endomorphisms D(z, v̄) are given by

D(z, v̄)w = {zv̄w} = zv∗w + wv∗z.

There is a canonical and natural choice of frames. One considers the
standard matrix units {ei,j, 1 ≤ i ≤ r, 1 ≤ j ≤ r + b} and defines cj =
ej,j, 1 ≤ j ≤ r. Then the Pierce decomposition V =

∑

0≤j≤k≤r ⊕Vj,k of
V is given by

Vj,j = Ccj , 1 ≤ j ≤ r,

Vj,k = Cej,k + Cek,j, 1 ≤ j < k ≤ r,

V0,j = span{ej,k, r < k ≤ r + b}, 1 ≤ j ≤ r.

Let

Ir,r+b = {z ∈ Mr,r+b(C) : Ir − z∗z � 0}

where Ir denote the unit matrix of rank r. Then Ir,r+b is a bounded
symmetric domain of dimension r(r + b), rank r and genus 2r + b. The
multiplicities are 2b and a = 2 if 2 ≤ r, a = 0 if r = 1. The domain
Ir,r+b is of tube type if and only if b = 0. Its Shilov boundary is

S = {z ∈ Mr,r+b(C) : z∗z = Ir}.

Let G = SU(r, r + b) denote the special unitary group of the hermit-
ian form

〈z, w〉 = z1w̄1 + · · · + zrw̄r − zr+1w̄r+1 − · · · − z2r+bw̄2r+b
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on C2r+b and write its elements in block form
(

a b
c d

)

; a ∈ Mr,r(C), b ∈ Mr,r+b(C) etc.

Then G acts transitively on Ir,r+b via

g · z = (az + b)(cz + d)−1, with g =

(

a b
c d

)

.

The subgroup K = S(U(r) × U(r + b)) consisting of elements of the
form

(

a 0
0 d

)

, a ∈ U(r), d ∈ U(r + b), det(a)det(d) = 1

is easily seen to be a maximal compact subgroup of G. The Lie algebra
g of G decomposes into g = k+p where k, the Lie algebra of K, consists
of all matrices

(

a 0
0 d

)

, a ∈ Mr,r(C), d ∈ Mr+b,r+b(C), a∗ = −a, d∗ = −d

and p consists of all matrices
(

0 v
v∗ 0

)

, v ∈ Mr,r+b(C).

The induced vector fields are given respectively by

z 7→ az − zd,

and
z 7→ ξv(z) = v − zv∗z.

The complex Lie algebra kC is given by the set of all matrices
(

a 0
0 d

)

, a ∈ Mr,r(C), d ∈ Mr+b,r+b(C), tr(a) + tr(d) = 0.

Hence, kC can be written as the sum

kC = k
(1)
C

⊕ k
(2)
C

,

where k
(1)
C

and k
(2)
C

are the ideals consisting respectively of the matrices
(

a 0

0 − tr(a)
r+b

Ir+b

)

, a ∈ Mr,r(C),

and
(

0 0
0 d

)

, d ∈ Mr+b,r+b(C), tr(d) = 0.

Then, identifying kC as linear transformations of V , we have

kC = span{D(u, v̄), u, v ∈ V },
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and

k
(1)
C

= span{D(u, v̄)(1), u, v ∈ V },

where the endomorphism D(u, v̄)(1) is given by

D(u, v̄)(1)z = uv∗z.

3. The Poisson transform

Let D(Ω)G be the algebra of all invariant differential operators on
Ω. Recall the definition of the Harish-Chandra eλ−function : eλ, for
λ ∈ a∗

C
is the unique N−invariant function on Ω such that

eλ(exp(t1ξ1 + · · ·+ trξr) · 0) = e2t1(λ1+ρ1)+···+2tr(λr+ρr).

Then eλ are the eigenfunctions of T ∈ D(Ω)G and we denote χλ(T ) the
corresponding eigenvalues. Denote further

(8) M(λ) = {f ∈ C∞(Ω); Tf = χλ(T )f, T ∈ D(Ω)G}.

Recall the parabolic subgroup P = Pmin introduced in the subsection
2.1. Corresponding to P there is the Poisson transform on the maximal
boundary G/P = K/M . For λ ∈ a∗

C
, the Poisson transform Pλ,K/M is

defined by

Pλ,K/Mf(gK) =

∫

K

eλ(k
−1g)f(k)dk

on the space B(K/M) of hyperfunctions on K/M .

It is proved by Kashiwara et al. in [9] that for λ ∈ a∗
C
, if

(9) −2
〈λ, α〉

〈α, α〉
/∈ {1, 2, 3, . . .}

for all α ∈ Σ+(g, a), then the Poisson transform is a G-isomorphism
from B(K/M) onto M(λ).

We now introduce the Poisson transform on the Shilov boundary. Let
h(z) be the unique K−invariant polynomial on V whose restriction to
Rc1 + · · ·+ Rcr is given by

h(
r

∑

j=1

tjcj) =
r

∏

j=1

(1 − t2j ).

As h is real-valued, we may polarize it to get a polynomial on V ×
V , denoted by h(z, w), holomorphic in z and anti-holomorphic in w
such that h(z, z) = h(z). Recall that the function h is related to the
Bergman operator (see (13) below) by that

det b(z, z̄) = h(z, z̄)p.
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The Poisson kernel P (z, u) on Ω × S is

P (z, u) =
( h(z, z)

|h(z, u)|2

)
n
r
.

For a complex number s we define the Poisson transform Psϕ on the
space B(S) of hyperfunctions ϕ on S by

(Psϕ)(z) =

∫

S

P (z, u)sϕ(u)dσ(u).

The kernel P (z, u)s has the following transformation property

(10) P (gz, gu)s = |Jg(u)|−
2ns
rp P (z, u)s, ∀g ∈ G

where Jg(u) is the Jacobian of g at u.

The kernel P (z, u)s, for u = e is a special case of the eλ−function.
The Poisson transform Ps on S can be viewed as a restriction of the
Poisson transform Pλ,K/M . However for fixed s there are various choices
of λ and we will find a specific λ so that the above condition (9) is valued
when s satisfies (1). Let

ξc = ξ1 + · · ·+ ξr

and consider the decomposition

a = Rξc ⊕ ξ⊥c = Rξc ⊕

r−1
∑

j=1

R(ξj − ξj+1)

under the (negative) Killing form on g. We denote ξ∗c the dual vector,
ξ∗c (ξc) = 1. We extend ξ∗c to a via the orthogonal projection defined
above. Observe first that

ρ(ξc) = n = nξ∗c (ξc).

We have then

Psf(z) = Pλs,K/Mf(z)

where f on S is viewed as a function on K and thus on K/M , λs ∈ a∗
C

is given by

(11) λs = ρ + 2n(s − 1)ξ∗c .

Thus

PsB(S) ⊂ Pλs,K/MB(K/M) ⊂ M(λs).

When s satisfies (1) we have then Pλs,K/MB(K/M) = M(λs).
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4. The second-order Hua operator

We shall define the Hua operator both in terms of the enveloping
algebra and using the covariant Cauchy-Riemann operator, the later
having the advantage of being geometric and more explicit. To avoid
some extra constants we fix and normalize the Killing form B on gC

by requiring that on p+ × p− it is given by,

B(u, v̄) = 〈u, v〉 =
1

p
trD(u, v̄), u ∈ V = p+, v̄ ∈ V̄ = p−

where the trace is computed on the space V . (So the standard Killing
form, (X, Y ) 7→ trAd(X) Ad(Y ), is −pB(X, Y ).)

Let {vj} and {v∗
j} be dual bases of p+ and p− with respect to the

normalized Killing form B. Let U(gC) be the enveloping algebra of gC.
Since [p+, p−] ⊂ kC, the operator

H = HkC
= −

∑

i,j

viv
∗
j ⊗ [vj , v

∗
i ]

is an element of U(gC) ⊗ kC, and is independent of choice of the basis;
it is called the second-order Hua operator. If we identify U(gC) with
left invariant differential operators on G, H defines a homogeneous op-
erator from C∞(G/K) to the C∞−sections of G×K kC. H can also be
viewed as a differential operator from C∞(G) to C∞(G, kC).

For X ∈ kC, define

HX = −
∑

j

[X, vj]v
∗
j ∈ U(gC).

Let S be a linear subspace of k, SC its complexification. Let {Xj}
be a basis of SC and {X∗

j } be the dual basis with respect to the Killing
form B. Then the projection of H onto U(gC) ⊗ SC is

HSC
=

∑

j

HXj ⊗ X∗
j .

It can also be defined independently of basis, see e.g. [10, Proposition
1].

We need another more explicit and geometric definition of the Hua
operator using the covariant Cauchy-Riemann operator studied in [3],
[18] and [23]. Recall briefly that the covariant Cauchy-Riemann oper-
ator can be defined on any holomorphic Hermitian vector bundle over
a Kähler manifold. Trivializing the sections of a homogeneous vector
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bundle E on the bounded symmetric space Ω as the space C∞(Ω, E)
of E-valued functions on Ω, where E is a holomorphic representation
of KC, the covariant Cauchy-Riemann operator D̄ is defined by

(12) D̄f = b(z, z̄)∂̄f,

where b(z, z̄) is the inverse of the Bergman metric, also called Bergman
operator of Ω, given by

(13) b(z, w̄) = 1 − D(z, w̄) + Q(z)Q(w̄).

The operator D̄ maps C∞(Ω, E) to C∞(Ω, V ⊗ E), with V viewed as
the holomorphic tangent space.

Consider the space C∞(Ω) of C∞-functions on Ω as the sections of
the trivial line bundle. The operator ∂ is then well-defined on C∞(Ω)
and it maps C∞(Ω) to C∞(Ω, V ′) = C∞(Ω, V̄ ) with the later identified
as the space of sections of the holomorphic cotangent bundle. We can
then define the differential operator

AdV ⊗V̄ (D̄ ⊗ ∂) : C∞(Ω) → C∞(Ω, kC), f 7→ AdV ⊗V̄ (D̄ ⊗ ∂f)

with AdV ⊗V̄ : V ⊗ V̄ = p+ ⊗ p− → kC being the Lie bracket, u ⊗ v →
D(u, v). So by the covariant property of ∂ and D̄ (see [23]) we have

AdV ⊗V̄ (D̄ ⊗ ∂)(f(gz)) = dg(z)−1AdV ⊗V̄ (D̄ ⊗ ∂f)(gz),

where dg(z) : V = T
(1,0)
z → T

(1,0)
gz is the differential of the mapping g,

which further is dg(z) = Ad(dg(z)) the adjoint action of dg(z) ∈ KC

on kC. It follows easily that this operator and the operator HkC
agree,

AdV ⊗V̄ (D̄ ⊗ ∂) = H = HkC
.

Symbolically we may write

H = D(b(z, z̄)∂̄, ∂).

Using an orthonormal basis {ej} of V with respect to the hermitian
scalar product (4), the operator H can also be written

Hf(z) =
∑

i,j

D(b(z, z̄)ēi, ej)∂̄i∂jf(z).

5. The Poisson kernel and the Second-order Hua
operator

We will compute the action of the Hua operator on the Poisson
kernel. Let us first recall the notion of quasi-inverse in the Jordan
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triple V ; see [11]. Let z ∈ V and w̄ ∈ V̄ . The element z is called quasi-
invertible with respect to w̄, if b(z, w̄) is invertible. The quasi-inverse
of z with respect to w̄ is then given by

zw̄ = b(z, w̄)−1(z − Q(z)w̄).

For example, in the type Ir,r+b case (see 2.2), let x, y ∈ V = Mr,r+b(C),
then

b(x, ȳ)z = (I − xy∗)z(I − yx∗).

If I − xy∗ is invertible, then the quasi-inverse of x is

xȳ = b(x, ȳ)−1(x−Q(x)ȳ) = (I−xy∗)−1(x−xy∗x)(I−y∗x)−1 = (I−xy∗)−1x.

Fix a Jordan frame {cj}1≤j≤r and choose and orthonormal basis {eα}
of V consisting of the frame {cj}1≤j≤r, orthonormal basis of each of the
subspaces Vjk and an orthonormal basis of each of the subspaces Vj0.
The following lemma can easily be proved by direct computations.

Lemma 5.1. (1) For any irreducible bounded symmetric domain Ω
it holds
(a)

∑r
α=1 D(eα, ēα) = pZ0.

(b)
∑

eα∈Vjk
D(eα, ēα) = a

2

[

D(cj, c̄j) + D(ck, c̄k)
]

.

(2) If Ω is of type Ir,r+b, then
∑

eα∈Vj0
D(eα, ēα)(1) = bD(cj , c̄j)

(1).

We need also the following lemma.

Lemma 5.2. Let w̄ ∈ V̄ . For any complex number s, the holomorphic
and the anti-holomorphic differential of the function z 7→ h(z, w̄) are
given by

∂h(z, w̄)s = −s h(z, w̄)sw̄z ; ∂̄h(z, w̄)s = −s h(z, w̄)swz̄.

Proof. This is a consequence of the formula

w̄z = −∂ logdet b(z, w̄)
1
p = −∂ log h(z, w̄),

see [25, Proposition 3.1]. �

Theorem 5.3. For u fixed in S, the function

z 7→ Ps,u(z) := P (z, u)s

satisfies the following differential equation

HPs,u(z) =
[

(
n

r
s)2D(b(z, z̄)(zz̄ − uz̄), z̄z − ūz) − (

n

r
sp)Z0

]

Ps,u(z).
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Proof. Choose a basis {eα} as in Lemma 5.1. Then

HPs,u(z) =
∑

α,β

D(b(z, z̄)eα, ēβ)∂̄α∂βPs,u(z).

According to Lemma 5.2,

∂Ps,u(z) = ∂
[ h(z, z)

|h(z, u)|2

]
n
r
s

= −
n

r
s
[ h(z, z)

|h(z, u)|2

]
n
r
s
[

z̄z − ūz
]

where we have identified (p−)′ with p+ by the Hermitian form (4).
Performing one more time differentiation, we get

∂̄∂Ps,u(z) = (
n

r
s)2Ps,u(z)

[

zz̄ − uz̄
]

⊗
[

z̄z − ūz
]

−
n

r
sPs,u(z)∂̄

[

z̄z − ūz
]

.

Moreover,

∂̄
[

z̄z − ūz
]

= ∂̄[z̄z ] = ∂̄∂ log h(z, z̄)−1 = b(z, z̄)−1Id,

where Id is the identity form in (p+)′ ⊗ (p−)′. Hence,

∂̄∂Ps,u(z) = (
n

r
s)2Ps,u(z)

[

zz̄ − uz̄
]

⊗
[

z̄z − ūz
]

− (
n

r
s)b(z, z̄)−1Id.

Consequently

HPs,u(z) =
[

(
n

r
s)2

∑

α,β

〈zz̄ − uz̄, eα〉〈z̄
z − ūz, ēβ〉D(b(z, z̄)eα, ēβ)

−(
n

r
s)

∑

α

D(eα, ēα)
]

Ps,u(z)

=
[

(
n

r
s)2D(b(z, z̄)(zz̄ − uz̄), z̄z − ūz) − (

n

r
s)pZ0

]

Ps,u(z),

since
∑

α D(eα, ēα) = pZ0.
�

If Ω is of tube type, then the genus p is given by p = 2n
r

and Theorem
5.3 becomes :

Corollary 5.4. Let Ω be a tube type domain. For any u ∈ S, the
function z 7→ Ps,u(z) satisfies the Hua equation

(14) HPs,u(z) = 2(
n

r
)2s(s − 1)Ps,u(z)I,

where I is the identity operator.

This corollary has been proved also by Faraut and Korányi in [4,
Theorem XIII.4.4]. Notice that the first factor 2 in (14) is because in
this case our Hua operator is twice the Hua operator of Faraut and
Korányi. In fact we are using the definition [u, v̄] = D(u, v̄) so that for
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tube domain it is twice the “square” operator � of Faraut and Korányi.

In [15, Theorem 4.1] Shimeno gives the following characterization of
the image of the Poisson transform for tube type domains :

Theorem 5.5. Let Ω be a tube type domain. Suppose s ∈ C satisfies
the following condition

−4[1 + j
a

2
+

n

r
(s − 1)] /∈ {1, 2, 3, · · · } for j = 0 and 1.

A smooth function f on Ω is the Poisson transform Ps of a hyperfunc-
tion on S if and only if f satisfies the following Hua equation

Hf = 2(
n

r
)2s(s − 1)fZ0.

This is a slight different formulation of Shimeno’s result. In fact, if
s′ denotes the Shimeno’s parameter, then our parameter s is

s =
r

2n

(

s′ +
n

r

)

.

6. The main result for type Ir,r+b domains

In this section we restrict ourself to the case Ω = Ir,r+b. Recall that

in subsection 2.2 we have fixed a decomposition kC = k
(1)
C

⊕ k
(2)
C

. We let
H(1) be the first component of the Hua operator H .

Symbolically H(1) is given by

H(1) = D(b(z, z̄)∂̄, ∂)(1),

and can be identified with the operator

(Ir − zz∗)∂̄z · (Ir+b − z∗z) · t∂z

introduced by Hua [7], since in this case b(z, z̄)v = (I − zz∗)v(I − z∗z).

We state now the main theorem of this section.

Theorem 6.1. Suppose s ∈ C satisfies the following condition

(15) −4[b + 1 + j + (r + b)(s − 1)] /∈ {1, 2, 3, · · · } for j = 0 and 1.

A smooth function f on Ir,r+b is the Poisson transform Ps(ϕ) of a hy-
perfunction ϕ on S if and only if f satisfies the following Hua equation

(16) H(1)f = (r + b)2s(s − 1)fIr,

where Ir is the identity matrix of rank r.

Note here that the constant r + b = n
r

for the domain Ir,r+b.
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6.1. The necessity of the Hua equation (16). To show the neces-
sity of the Hua equation it is sufficient to show that the function Ps,u

satisfies (16) for every u ∈ S.

Proposition 6.2. If Ω is of type Ir,r+b, then

H(1)Ps,u(z) = (r + b)2s(s − 1)Ps,u(z)Ir.

Proof. It is sufficient to prove the formula at z = 0. Specifying the
result of Theorem 5.3 to the type Ir,r+b domain we get for any u ∈ S,

H(1)Ps,u(0) = [(
n

r
s)2D(u, u)(1) − (

n

r
sp)Z

(1)
0 ]Ps,u(0).

Now, obviously D(u, u)(1) = Ir and Z
(1)
0 = r+b

2r+b
Ir. Therefore,

H(1)Ps,u(0) = (r + b)2s(s − 1)Ps,u(0)Ir.

�

6.2. The Hua operator and the eigenfunctions of invariant dif-
ferential operators. We give first the expression for the radial part
of the Hua operator H(1), i.e. its restriction to K−invariant functions.
We fix a Jordan frame {cj}

r
j=1, then every element of V can be written

as

z = k
r

∑

j=1

tjcj ,

with k ∈ K, and tj ≥ 0. If f is a function on Ω invariant under K, we
write

f(z) = F (t1, . . . , tr).

The function F is a symmetric function of the variables t1, . . . , tr, de-
fined on the unit cube 0 ≤ tj < 1.

Proposition 6.3. Let Ω be the type Ir,r+b domain. Let f be C2 and
K−invariant function, then for a =

∑r
j=1 tjcj,

(17) H(1)f(a) =

r
∑

j=1

HjF (t1, . . . , tr)D(cj , c̄j)
(1),

where the scalar-valued operators Hj are given by

Hj=(1 − t2j )
2
( ∂2

∂t2j
+

1

tj

∂

∂tj

)

+

+
∑

k 6=j

(1 − t2j)(1 − t2k)
[ 1

tj − tk

( ∂

∂tj
−

∂

∂tk

)

+
1

tj + tk

( ∂

∂tj
+

∂

∂tk

)

]

+
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+2b(1 − t2j )
1

tj

∂

∂tj
.

Proof. The proof is similar to the proof of [4, Theorem XIII.4.7] and
we will only show how one can compute the last term of the radial part

H
(1)
j , namely 2b(1 − t2j )

1
tj

∂
∂tj

. Let {eα} be an orthonormal basis of V

consisting of the frame {cj}
r
j=1, an orthonormal basis of each of the

subspaces Vjk and an orthonormal basis of each of the subspaces Vj0;
and let zα = xα + iyα be the complex coordinates. Let f be a function
on Ω and fix a =

∑r
k=1 tkck. Then,

H(1)f(a) =
∑

α,β

D(b(a, ā)eα, ēβ)(1) ∂2

∂zα∂z̄β
f(a).

For any X ∈ g and any v ∈ V , it is known that

∂Xv∂Xvf + ∂X2vf = 0.

We will apply this formula for different elements in g. Suppose eα =
eβ ∈ Vj,0. For the element X = i(D(eα, c̄j) + D(cj, ēα)) ∈ k, we have

Xa = i(D(eα, c̄j) + D(cj , ēα))a = iD(eα, c̄j)a = iD(a, ēα)eα = itjeα,

and

X2a = X(itjeα) = −tj(D(eα, c̄j) + D(cj, ēα))a = −tjcj .

Therefore
∂itjeα∂itjeαf(a) + ∂−tjcj

f(a) = 0,

which implies
∂2

∂y2
α

f =
1

tj

∂

∂tj
F.

Similarly, For X = D(eα, c̄j) − D(cj, ēα) ∈ k, we have

Xa = (D(eα, c̄j) − D(cj, ēα))a = tjeα,

and
X2a = X(tjeα) = tj(D(eα, c̄j) − D(cj, ēα))eα = −tjcj .

Hence,
∂tjeα∂tjeαf(a) + ∂−tjcj

f(a) = 0.

From this we obtain
∂2

∂x2
α

f =
1

tj

∂

∂tj
F.

Summarizing, we find on Vj,0,

4
∂2

∂zα∂z̄β

f =

{

0 if α 6= β

( ∂2

∂x2
α

+ ∂2

∂y2
α
)f = 2 1

tj
∂

∂tj
F if α = β
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Furthermore,

D(b(a, ā)eα, ēα)(1) = D((1 − t2j)eα, ēα)(1) = (1 − t2j )D(eα, ēα)(1).

Hence,
r

∑

j=1

∑

eα,eβ∈Vj,0

D(b(a, ā)eα, ēβ)(1) ∂2

∂zα∂z̄β
f(a)

=
r

∑

j=1

∑

eα∈Vj,0

(1 − t2j)D(eα, ēα)(1)2
1

tj

∂F

∂tj

= 2
r

∑

j=1

(1 − t2j)
1

tj

∂F

∂tj

∑

eα∈Vj,0

D(eα, ēα)(1)

= 2b
r

∑

j=1

(1 − t2j )
1

tj

∂F

∂tj
D(cj, c̄j)

(1),

since we already proved in Lemma 5.1, that
∑

eα∈Vj,0
D(eα, ēα)(1) =

bD(cj, cj)
(1). This finishes the proof. �

The next proposition claims that the Hua equation (16) for s ∈ C is
sufficient for f being an eigenfunction of D(Ω)G. A similar result for
general tube domains is proved in [15].

Proposition 6.4. Let Ω be the type Ir,r+b domain. Let s ∈ C and let
λs be given by (11). Suppose f on Ω satisfies the Hua equation (16).
Then f is an eigenfunction of all T ∈ D(Ω)G with eigenvalues χλs(T ).

Proof. Let f be a function on Ω solution of the Hua equation. Let
g ∈ G, then the function

Φ(z) =

∫

K

f(gk · x)dk, z ∈ Ω

is a K−biinvariant solution of differential equations (17). Thus by a
result of Yan [22]1, f is proportional to the unique spherical function

ϕλs(z) =

∫

K

eλs(k · z)dk

in M(λs), i.e. f(z) = cϕλs(z). It is easy to see that c = f(g · 0), then
∫

K

f(gk · z)dk = ϕλs(z)f(g · 0);

1Roughly speaking, the the differential equations used in [22] is obtained from
(17) by the change of coordinates xj = −t2j/1 − t2j .
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and consequently, by [6, Proposition 2.4, Chapter IV], f is a joint
eigenfunction of all T ∈ D(Ω)G with eigenvalues χλs(T ). �

6.3. The sufficiency of the Hua equation (16). We suppose in
the rest of section 6 that s ∈ C satisfies the condition (15) and that f
satisfies the sufficient condition (16) in Theorem 6.1. It follows imme-
diately from Proposition 6.4 that f ∈ M(λs), and thus by Kashiwara
et al. [9], f is the Poisson transform of a function ϕ on the Furstenberg
boundary G/Pmin, f = Ps(ϕ). To prove that ϕ is a function on the
Shilov Boundary S, we follow a method by Berline and Vergne [1] (see
also [10]), the reader is refereed that paper for some general arguments.

We need first two elementary lemmas for general bounded symmetric
domain Ω; the first one gives explicit formulas for the root spaces gα,
α ∈ Σ(g, a) and can easily be deduced from the Peirce decomposition
(see [11], [19] and [21]). The second is essentially stated in [1] in terms
of the Cayley transform, it has however an easier form in terms of
the Jordan triple and can easily be proved using the first. To state
them we need some notational preparation. Recall the quadratic map
z → Q(z) given in section 2. For the fixed Jordan frame {cj} and the
corresponding Peirce decomposition (5), the map

τ : z → τ(z) = Q(e)z̄

where e = c1 + . . . + cr, defines a real involution of V2 and thus a real
form

A(e) = {z ∈ V ; τ(z) = z}

of V2; let V2 = A(e)⊕ iA(e) be corresponding decomposition with A(e)
being a real Jordan algebra. Let

B(e) = {z ∈ V ; τ(z) = −z},

then A(e) = iB(e). For 1 ≤ j ≤ k ≤ r, let

Vjk = Ajk ⊕ Bjk

be the decomposition of the space Vjk into real and imaginary part
relative to the real form A(e).

Lemma 6.5. The root spaces gα, α ∈ Σ(g, a) are explicitly given as
follows :

g±βj = R(ξicj
∓ 2iD(cj , c̄j)),

g
βk−βj

2 = {ξa + D(ck − cj, ā) ; a ∈ Ajk},

g±
βk+βj

2 = {ξb ∓ D(ck + cj , b̄) ; b ∈ Bjk},

g±
βj
2 = {ξv ± (D(cj, v̄) − D(v, c̄j); v ∈ V0j}.

for 1 ≤ j, k ≤ r.
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Lemma 6.6. The corresponding root spaces for the positive compact
roots

γk−γj

2
, 1 ≤ j < k ≤ r and 1

2
γj, 1 ≤ j ≤ r are given by

k
γk−γj

2
C

= {D(ck, v̄); v ∈ Vjk} = {D(v, c̄j); v ∈ Vjk},

and

k
γj
2

C
= {D(cj, v̄); v ∈ Vj0}.

For the matrix domain Ω of type Ir,r+b in Mr,r+b(C) we choose as
in subsection 2.2 an explicit frame {cj} = {ej,j} consisting of diagonal
matrices, viewed as a r × (r + b)−matrices. Let now {vα} be an or-
thonormal basis of V = Mr,r+b(C) consisting of root vectors. The dual
basis vectors are v∗

α = v̄α.

Recall that
H(1) = H

(1)
tC

+ H
(1)

k
+
C

+ H
(1)

k
−

C

,

therefore, the system (16) implies in particular

(18) H
(1)

k+
C

f = 0.

However,

H
(1)

k
+
C

=
∑

k>j

H
(1)

k
(γk−γj )/2

C

+

r
∑

j=1

H
(1)

k
γj/2

C

.

Lemma 6.7. We have,
(

k
γj
2

C

)(1)
= 0.

Proof. Indeed, using Lemma 6.6, let D(cj, v̄) ∈ k
γj
2

C
, with v = ej,j+m ∈

Vj,0 (m > 0). Then

D(cj, v̄)(1) = ej,je
∗
j,j+m = 0.

�

Hence, from (18) it follows

(19)
∑

k>j

H
(1)

k
(γk−γj )/2

C

f = 0.

Lemma 6.8. We have
(

k+
C

)(1)
=

∑

k>j

(

k
γk−γj

2
C

)(1)
,

and the right hand side is a linear direct sum, namely the spaces
(

k
γk−γj

2
C

)(1)

are linearly independent.
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Proof. This follows easily from Lemma 6.6 by observing that D(ck, v̄) 7→
D(ck, v̄)(1) is a linear homomorphism, and that D(ck, v̄)(1) = ᾱek,j for
v = αej,k + bek,j ∈ Vj,k.

�

We conclude from (19) and the above lemma that

(20) H
(1)

k
(γk−γj )/2

C

f = 0

for any positive compact root
γk−γj

2
.

Let Ψ
+,(i)
c be the set positive compact roots in k

(i)
C

, for i = 1, 2. Then
(20) implies

Hβf = 0, for β ∈ Ψ+,(1)
c with β ≡

γk − γj

2
(k > j)

where Hβ is the component of H given by

Hβ =
∑

α∈Ψ+
n

[Eβ , vα]v̄α

and Eβ is the root vector of β.

Now we fix for the rest of this section β ∈ Ψ
+,(1)
c such that

β|t−
C

=
γj − γj−1

2
.

The root vector Eβ has the form Eβ = D(cj, w̄) with w = ej,j−1 or w =
ej−1,j being one of the basis vectors {vα}. Observe that [Eβ, vα] = 0
unless α is in the set Ψ1 ∪ Ψ2 ∪ Ψ3 where

Ψ1 = {α ∈ Ψ+
n ; α|t−

C

=
γk+γj−1

2
, k ≤ j − 1},

Ψ2 = {α ∈ Ψ+
n ; α|t−

C

=
γk+γj−1

2
, k ≥ j},

Ψ3 = {α ∈ Ψ+
n ; α|t−

C

=
γj−1

2
}.

Consider the Poincaré-Birkhoff-Witt decomposition

U(gC) = U(gC)kC + U(aC + n−
C
)

and let π be the projection

π : U(gC) = U(gC)kC + U(aC + n−
C
) → U(aC + n−

C
)

The function f is now viewed as a function on G = NAK, and the
group A will be identified as (R+)r. Under this identification, f satisfies
furthermore the equation

R(π(Hβ))f = 0,



HUA OPERATORS ON BOUNDED SYMMETRIC DOMAINS 23

where R is the mapping from U(aC + nC) to differential operators on
NA defined by

R(ξk) = tk
∂

∂tk
, R(X−α) = tαX−α,

for ξk ∈ a, 1 ≤ k ≤ r, and X−α ∈ n identified with the corresponding
left-invariant differential operator.

We will prove that the operator t−
1
2
(βj−βj−1)R(π(Hβ)) has analytic

coefficient near t = 0 and study the induced equation of t−
1
2
(βj−βj−1)R(π(Hβ))f =

0.

6.3.1. The projection of the Hua operator in the PBW-decomposition.
We will compute the Poincaré-Birkhoff-Witt components of the Hua
operators as an element in the universal algebra of gC. Let now Ω be
a general bounded symmetric domain.

Lemma 6.9. The Iwasawa decomposition of v ∈ p+ and v̄ ∈ p− in
gC = aC + n−

C
+ kC is given as follows :

(1) For v ∈ Vkj, r ≥ k > j ≥ 1,

v = ζv + ζ ′
v − D(v, c̄k),

v̄ = ηv̄ + η′
v̄ − D(ck, v̄)

where ζv, ηv̄ ∈ g
−

βk−βj
2

C
, ζ ′

v, η
′
v̄ ∈ g

−
βk+βj

2
C

are given by

ζv =
1

2
[v − τ(v) + D(v, c̄k − c̄j)],

ζ ′
v =

1

2
[v + τ(v) + D(v, c̄j + c̄k)],

ηv̄ =
1

2
[v̄ − τ(v) + D(cj − ck, v̄)],

η′
v̄ =

1

2
[τ(v) + v̄ + D(cj + ck, v̄)].

(2) For v = cj ∈ Vjj, 1 ≤ j ≤ r,

cj =
1

2
ξj −

1

2
ζj − D(cj , c̄j),

c̄j = −
1

2
ξj −

i

2
ζj − D(cj, c̄j),

with

ζj = i[ξicj
+ 2D(cj, c̄j)].
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(3) For v ∈ Vj0, 1 ≤ j ≤ r,

v = ζv − D(v, c̄j),

v̄ = ηv̄ − D(cj , v̄),

with

ζv = v + D(v, c̄j) ∈ n
−

βj
2

C

ηv̄ = v̄ + D(cj, v̄) ∈ n
−

βj
2

C
.

We denote by πn0
C

the projection onto the nilpotent subalgebra

n0
C =

∑

k>j≥1

g
−

βk−βj
2

C

in the Iwasawa decomposition of gC,

gC = kC + aC +
∑

k≥j≥0

g
−

βk+βj
2

C
+ n0

C
.

Then, it follows from Lemma 6.9

(21) πn0
C
(v̄) = −πn0

C
(τ(v)),

which we will need in the next proposition.
Return back to type Ir,r+b domains. We compute now the projection

π(Hβ) of Hβ . Recall that the β−root vector is Eβ = D(cj, w̄), with
w = ej,j−1 or w = ej−1,j.

Proposition 6.10. The projection π(Hβ) is given by

π(Hβ) =

j−2
∑

k=1

∑

vα∈Vk,j−1

(ζ{cjw̄vα} + ζ ′
{cjw̄vα})(ηv̄α + η′

v̄α
) + jηw̄ + jη′

w̄

+ (ζτ(w) + ζ ′
τ(w))(−

1

2
ξj−1 −

i

2
ζj−1)

+

r
∑

k=j+1

∑

vα∈Vk,j−1

(ζ{cjw̄vα} + ζ ′
{cjw̄vα})(ηv̄α + η′

v̄α
)

+ (
1

2
ξj −

1

2
ζj)(ηw̄ + η′

w̄)

+
∑

vα∈Vj−1,0

ζ{cjw̄vα}ηv̄α + Jβ

where the last term

Jβ =

{

b(ηw̄ + η′
w̄) if w = ej−1,j

0 if w = ej,j−1
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and where the sum
∑

vα∈Vkj
is taken over the orthonormal basis {vα}of

Vk,j.

Proof. We compute the projection
∑

α∈Ψ+
n

π([Eβ , vα]v∗
α). For α ∈ Ψ+

n

we know that [Eβ , vα] = 0 unless α ∈ Ψ1 ∪ Ψ2 ∪ Ψ3.

• Case I : α ∈ Ψ1, with α|t−
C

=
γk+γj−1

2
. Then vα ∈ Vk,j−1 and

vβ+α := [Eβ, vα] = [D(ci, w̄), vα] = D(ci, w̄)vα ∈ Vj,k.

By the previous Lemma, for k < j − 1,

vβ+α = ζvβ+α
+ ζ ′

vβ+α
− D(vβ+α, cj)

and modulo the ideal U(gC)kC,

[Eβ , vα]v∗
α = vβ+αv̄α ≡ (ζvβ+α

+ ζ ′
vβ+α

)(ηv̄α + η′
v̄α

) − [D(vβ+α, cj), v̄α]

= (ζvβ+α
+ ζ ′

vβ+α
)(ηv̄α + η′

v̄α
) + D(cj, v̄β+α)vα.

To find the last term we note first that for any Jordan triple system
[11],

[D(vα, v̄α), D(w, c̄j)] = D(vα, D(cj, w̄)vα) − D(D(w, c̄j)vα, v̄α);

we let it act on cj and then sum over vα

∑

vα∈Vk,j−1

D(cj, D(cj, w̄)vα)vα =
a

2
(D(cj−1, cj−1) + D(ck, ck))w

by using Proposition 5.1. It is further w, since a = 2 for type I domains.
Thus

∑

vα∈Vk,j−1
k<j−1

[Eβ , vα]v∗
α ≡

∑

vα∈Vk,j−1
k<j−1

(ζvβ+α
+ζ ′

vβ+α
)(ηv̄α+η′

v̄α
)+(j−2)ηw̄+(j−2)η′

w̄

Now consider vα ∈ Vk,j−1 with k = j − 1, namely vα = cj−1. Corre-
spondingly

[Eβ, vα] = [D(cj, w̄), cj−1] = Q(cj + cj−1)w̄ = Q(e)w̄ = τ(w)
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with w → τ(w) = Q(e)w̄ the involution on V2. Modulo U(gC)kC

[Eβ, vα]v̄α = τ(w)c̄j−1 = (ζτ(w) + ζ ′
τ(w) − D(τ(w), cj))c̄j−1

≡ (ζτ(w) + ζ ′
τ(w))(−

1

2
ξj−1 −

i

2
ζj−1) − D(τ(w), cj)c̄j−1

≡ (ζτ(w) + ζ ′
τ(w))(−

1

2
ξj−1 −

i

2
ζj−1) + D(cj, τ(w))cj−1

≡ (ζτ(w) + ζ ′
τ(w))(−

1

2
ξj−1 −

i

2
ζj−1) + w

≡ (ζτ(w) + ζ ′
τ(w))(−

1

2
ξj−1 −

i

2
ζj−1) + ηw̄ + η′

w̄.

• Case II : α ∈ Ψ2, with α|t−
C

= 1
2
(γj−1 + γk), k ≥ j. Consider k > j

first. Similar to the previous case we have, modulo U(gC)kC,

[Eβ, vα]v̄α ≡ (ζ{cjw̄vα} + ζ ′
{cjw̄vα})(ηv̄α + η′

v̄α
) + D(ck, D(cj, w̄)vα)vα

≡ (ζ{cjw̄vα} + ζ ′
{cjw̄vα})(ηv̄α + η′

v̄α
)

since D(ck, D(cj, w̄)vα)vα = 0 by the Peirce rule {VkkV̄kjVk,j−1} = {0}
and D(cj, w̄)vα ∈ Vjk.

Now let k = j, then [Eβ, vα] = D(cj , w̄)vα = D(vα, w̄)cj = 〈vα, w〉cj,
which vanishes except when vα = w and in that case,

[Eβ, vα]v̄α = cj v̄α = (
1

2
ξj −

1

2
ζj − D(cj, c̄j))w̄,

and

[Eβ, vα]v̄α ≡ (
1

2
ξj −

1

2
ζj)(ηw̄ + η′

w̄) + ηw̄ + η′
w̄.

• Case III : α ∈ Ψ3, with α|t−
C

= 1
2
γj−1, and the root vector vα ∈

Vj−1,0. In this case, we have,

[Eβ , vα]v̄α = D(cj, w̄)vαv̄α ≡ (ζD(cj ,w̄)vα − D(D(cj, w̄)vα, cj))ηv̄α

≡ ζD(cj ,w̄)vαηv̄α + D(cj, D(cj, w)vα)vα.

However by the commutator relation (JP15) in [11] we have

[D(w, v̄α), D(cj, c̄j)] = D(D(w, v̄α)cj , c̄j)−D(cj , D(vα, w̄)cj) = −D(cj , D(vα, w̄)cj)

since D(w, v̄α)cj = 0 by the Peirce rule that D(w, v̄α)cj ∈ {Vj,j−1V̄j−1,0Vjj} =
{0}, thus

D(cj, D(cj, w̄)vα)vα = [D(cj, cj), D(w, v̄α)]vα = D(cj , cj)D(w, v̄α)vα = D(vα, v̄α)w

since D(cj, cj)vα = 0.
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It is easy to see, by direct matrix computation, that,

∑

vα∈Vj−1,0

D(vα, v̄α)w =

{

bw̄ if w = ej−1,j

0 if w = ej,j−1.

Hence, modulo U(gC)kC

∑

vα∈Vj−1,0

D(vα, v̄α)w ≡

{

b(ηw̄ + η′
w̄) if w = ej−1,j

0 if w = ej,j−1

Consequently,

∑

vα∈Vj−1,0

[Eβ, vα]v∗
α ≡

∑

vα

ζD(cj ,w̄)vαηv̄α +

{

b(ηw̄ + η′
w̄) if w = ej−1,j

0 if w = ej,j−1

and this finishes the proof. �

6.3.2. The induced equations. We apply now the theory of boundary
values of eigenfunctions of D(Ω)G on symmetric spaces, see [9], [12],
[13], [16].

We identify the space G/K with NA and A with (R+)r. It fol-

lows from Proposition 6.10 that the operator t−
1
2
(βj−βj−1)R[π(Hβ)] has

analytic coefficients near t = 0, then the induced equation for the dif-
ferential equation t−

1
2
(βj−βj−1)R[π(Hβ)]f = 0 is

lim
t→0

tλ−ρt−
1
2
(βj−βj−1)R[π(Hβ)]tρ−λ(Bλf), = 0

where t = (t1, t2, · · · , tr) ∈ A = (R+)r, and

tµ = t
µ(ξ1)
1 · · · tµ(ξr)

r

for µ ∈ a∗
C
. Here Bλf is the boundary value of f .

Proposition 6.11. The boundary value Bλf of f satisfies the following
induced equation

(22) R[ζτ(w)](Bλf) = 0.

Observe, using (21), that the induced equation (22) is equivalent to
the following one

R[ηw̄](Bλf) = 0.

Proof. Let us compute the limit of the differential operator

tλ−ρt−
1
2
(βj−βj−1)R[π(Hβ)]tρ−λ

when t → 0. We will consider each term in the projection π(Hβ).



28 KHALID KOUFANY AND GENKAI ZHANG

• The differential operator corresponding to j(ηw̄ + η′
w̄) is

tλ−ρt−
1
2
(βj−βj−1)j

[

t
1
2
(βj−βj−1)R(ηw̄) + t

1
2
(βj+βj−1)R(η′

w̄)
]

tρ−λ,

and its limit when t 7→ 0 is

(23) jR(ηw̄).

• Consider the quadratic term (ζτw + ζ ′
τw)(−1

2
ξj−1 −

i
2
ζj−1). The

corresponding differential operator is

tλ−ρt−
1
2
(βj−βj−1)

[(

t
1
2
(βj−βj−1)R(ζτ(w) + t

1
2
(βj+βj−1)R(η′

τ(w))
)

×
(

−1
2
tj−1

∂
∂tj−1

− i
2
tβj−1R(ζj−1)

)]

tρ−λ

(

R(ζτ(w)) + tβj−1R(ζ ′
τ(w))

)(

−1
2
(ρ − λ)(ξj−1) −

i
2
tβj−1R(ζj−1)

)

.

Its limit when t → 0 is

−
1

2
(ρ − λ)(ξj−1)R(ζτ(w)).

• For the quadratic term (1
2
ξj −

1
2
ζj)(ηw̄ − η′

w̄), the corresponding
differential operator is

tλ−ρt−
βj−βj−1

2

[(

1
2
tj

∂
∂tj

− 1
2
tβjR(ζj)

)(

t
βj−βj−1

2 R(ηw̄) + t
βj+βj−1

2 R(η′
w̄)

)]

tρ−λ.

Its limit is

limt→0 tλ−ρt−
βj−βj−1

2

[

1
2

∂
∂tj

(

t
βj−βj−1

2 tρ−λR(ηw̄) + t
βj+βj−1

2 tρ−λR(η′
w̄)

)]

= limt→0 tλ−ρt−
βj−βj−1

2

[

1
2

(βj−βj−1

2
(ξj) + (ρ − λ)(ξj)

)

t
βj−βj−1

2 tρ−λR(ηw̄)

+1
2

(βj+βj−1

2
(ξj) + (ρ − λ)(ξj)

)

t
βj+βj−1

2 tρ−λR(η′
w̄)

]

,

which is
1

2
[1 + (ρ − λ)(ξj)]R(ηw̄).

• The induced equation corresponding to the last term of the
projection π(Hβ) is

(24)

{

bR(ηw̄)

0

• Now, it is easy to see, using the same computations, that the
induced equation of the remaining terms of π(Hβ) is zero.

It follows now from (23) – (24) and (21), that the boundary value Bλf
of f satisfies

C1R(ζτ(w))(Bλf) = 0
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where C1 is given by

C1 =
1

2
(ρ − λ)(ξj − ξj−1) +

{

1
2

+ j + b
1
2

+ j

Now if C1 6= 0, then the induced equation is R(ζτ(w))(Bλf) = 0. On the

other hand, if C1 = 0, we may replace f by tκ(
βj−βj−1

2
)f for sufficiently

large κ > 0, consider the differential operator

t−
1
2
(βj−βj−1)tκ(

βj−βj−1
2

)R[π(Hβ)]t−κ(
βj−βj−1

2
),

and we still prove that R(ζτ(w))(Bλf) = 0, see also [15]. �

We continue the proof of the necessity condition of the Hua equation.
We now get R(ζτ(w))(Bλsf) = 0 for any root β such that β ≡ 1

2
(γj −

γj−1). Since {1
2
(γj − γj−1), 2 ≤ j ≤ r} is the set of simple roots of the

system {1
2
(γk − γj), 1 ≤ j < k ≤ r}, it follows that R(ζτ(w))(Bλsf) = 0

for any w ∈ Vj,k. However, by Lemma 6.9, span{ζτ(w) ; w ∈ Vj,k} is
n0

C
. Thus Bλsf ∈ B(S). This finishes the proof of Theorem 6.1.

7. General non-tube domains

7.1. Third-order Hua operators. We first construct two third-order
Hua operators using the covariant C-R operator D̄ and the covariant
connection ∇. Let again E be as in section 4 a homogeneous holomor-
phic vector bundle on Ω. On E there is a Hermitian structure defined
by using the Bergman operator b(z, z) as an element in KC and thus the
corresponding Hermitian connection ∇ : C∞(Ω, E) → C∞(Ω, T ′ ⊗ E),
where T ′ is the cotangent bundle. Under the decomposition T ′

z =

(T ′)
(1,0)
z + (T ′)

(0,1)
z we have ∇ = ∇(1,0) + ∂̄ with

∇(1,0) : C∞(Ω, E) → C∞(Ω, (T ′)(1,0) ⊗ E) = C∞(Ω, p− ⊗ E),

using our identification that (T ′)
(1,0)
z = p−. (The operator ∇(1,0) is

denoted by D in [23].) Note that on the space C∞(Ω) of sections of
the trivial bundle we have ∇(1,0) = ∂.

We now define the third-order Hua operators W and U on C∞(Ω, E)
by

Wf = Adp+⊗kC→p+

(

D̄(Adp+⊗p−→kC
(D̄∇(1,0)f))

)

,

and
Uf = AdkC⊗p+→p+

(

Adp−⊗p+→kC
(∇(1,0)D̄)D̄f

)

.

It follows from the covariant properties of the C-R operator D̄ and
∇(1,0) that we have

W(f(gz)) = Ad(dg(z)−1)Wf(gz).
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These operators can also be defined by using the enveloping algebra.
For our purpose we consider E to be the trivial representation and
the space C∞(Ω) of smooth functions identified as right K-invariant
functions on G. Let {vα} be a basis of p+ consisting of root vectors
and {v∗

α} be the dual basis of p−. Then we have

Wf =
∑

α,β,γ

v∗
αv∗

βvγ f̃ ⊗ [vα, [vβ, v∗
γ],

Uf =
∑

α,β,γ

vγv
∗
αv∗

β f̃ ⊗ [[v∗
γ , vα], vβ],

where f̃ is the lift of f to G.

Remark 7.1. The third-order Hua operator defined by Berline and
Vergne in [1] is, in terms of the above notation

V =
∑

α,β,γ

vαv∗
βvγ⊗[v∗

α, [vβ, v∗
γ ]] = Adp−⊗kC→p−

(

∇(1,0)Adp+⊗p−→kC
(D̄∇(1,0))

)

,

up to some non-zero constant. So it is different from our W and U . For
explicit computations the operators W and U are somewhat easier to
handle as the operator D̄ has a rather explicit formula (12) on different
holomophic bundles [3], whereas the formula for ∇(1,0) depends on the
metric on the bundles [23]. Note also that the first ∇(1,0) and the second
∇(1,0) in V are different as they are acting on different bundles.

Denote

(25) c = 2(n + 1) +
1

n
(a2 − 4) dim(P(1,1))

where dim(P(1,1)) is the dimension of the irreducible subspace of holo-
morphic polynomials on V with lowest weight −γ1−γ2. For any s ∈ C,
put σ = n

r
s. Our main result for non-tube domains is

Theorem 7.2. Let Ω be a general non-tube domain. If f = Ps(ϕ) is
the Poisson transform of a hyperfunction ϕ on S. Then

(26)
(

U −
−2σ2 + 2pσ + c

σ(2σ − p − b)
W

)

f = 0.

Conversely, suppose s satisfies the following condition

−4[b + 1 + j
a

2
+

n

r
(s − 1)] /∈ {1, 2, · · · }, for j = 0 and 1.

Let f be in M(λs) and suppose f satisfies (26). Then f = Ps(ϕ) is the
Poisson transform of a hyperfunction ϕ on S.
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7.2. The necessity of the Hua equation (26). Consider the oper-
ator

Y = U −
−2σ2 + 2pσ + c

σ(2σ − p − b)
W.

Proposition 7.3. Let s ∈ C. We have

WPs,u(z) = Ps,u(z)σ2(2σ − p − b)u

and

UPs,u(z) = Ps,u(z)σ(−2σ2 + 2pσ + c)u.

In particular, for σ 6= 0, p+b
2

YPs,u(z) = 0,

and the image f = Ps(ϕ) of the Poisson transform of a hyperfunction
ϕ on S satisfies

Yf = 0.

Proof. We compute first W on Ps(z, u). By the covariant property of
W and transformation property (10) of the kernel Ps(z, u) we need only
to prove that the formula is valid at z = 0. Proceeding as in the proof
of Theorem 5.3 using Lemma 5.2, we have

D̄∇(1,0)Ps(z, u) = σ2Ps,u(z)
[

b(z, z)(zz̄ − uz̄)
]

⊗
[

z̄z − ūz
]

− σPs,u(z)Id.

Its image under −AdV ⊗V̄ →kC
is,

−AdV ⊗V̄ →kC
D̄∇(1,0)Ps(z, u) = σ2Ps,u(z)D(b(z, z)(zz̄−uz̄), z̄z−ūz)−σPs,u(z)pZ0,

since

−AdV ⊗V̄ →kC
(u ⊗ v̄) = −[u, v̄] = D(u, v̄)

and

−AdV ⊗V̄ →kC
Id = pZ0.

To compute D̄AdV ⊗V̄ →kC
D̄∇(1,0)Ps(z, u) at z = 0 we observe that for

any function f , D̄f(0) = ∂̄f(0) and the later is the coefficient of z̄ in
the expansion of f near z = 0. By direct computation we find

−D̄AdV ⊗V̄ →kC
D̄∇(1,0)Ps(z, u)|z=0 = σ3u ⊗ D(u, ū) − pσ2u ⊗ Z0

+σ2
∑

j vj ⊗ [D(Q(u)v̄j , ū) − D(u, v̄j)].

where {vj} is an orthonormal basis of V . Now for v ∈ V, X ∈ kC,
AdV ⊗kC→(v ⊗ X) = [v, X] = −Xv, where Xv is the defining action of
kC on V . We get

AdV ⊗kC→V D̄AdV ⊗V̄ →kC
D̄∇(1,0)Ps(z, u)|z=0

= 2σ3u − pσ2u + σ2
∑

j[D(Q(u)v̄j, ū)vj − D(u, v̄j)vj ].
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The sum can further be evaluated by using the Peirce decomposition
with respect to u, and we obtain eventually

AdV ⊗kC→V D̄AdV ⊗V̄ →kC
D̄∇(1,0)Ps(z, u)|z=0 = σ2(2σ − p − b)u.

This proves the first formula.
For the second formula we have first

D̄Ps(z, u) = σPs(z, u)b(z, z)(zz̄ − uz̄)

and,

∇(1,0)D̄D̄Ps(z, u)(0)|z=0 = σ
∑

j,k

∂vk
∂̄vj

(Ps(z, u)b(z, z)(zz̄ − uz̄))|z=0 .

Performing the differentiation we find then

∇(1,0)D̄D̄Ps(z, u)|z=0 = σ3ū ⊗ u ⊗ u

−σ2
∑

k(v̄k ⊗ (vk ⊗ u + u ⊗ vk)) − σ
∑

j,k v̄k ⊗ vj ⊗ D(vk, v̄j)u.

So that

UPs(z, u)|z=0 = −σ3D(u, ū)u

+σ2
∑

k

[

D(vk, v̄k)u + D(u, v̄k)vk

]

+ σ
∑

j,k D(vj , v̄k)D(vk, v̄j)u.

Again
∑

k D(vk, v̄k)v = pv for v ∈ V and
∑

j,k

D(vj, v̄k)D(vk, v̄j)u = cp

by [24, Lemma 2.5] with c given as in (25). �

In particular, if s = 1, WPs,u(z) = 0; the similar result, VPs,u(z) = 0
for the Hua operator V was proved by Berline and Vergne [1, Proposi-
tion 3.3].

7.3. The sufficiency of the Hua equation (26). The idea of the
proof is similar to that in section 6, and many technical computations
on the various decomposition involving the third-order Hua operators
W and U are parallel to those in [1] for the Berline-Vergne’s Hua op-
erator V, so we will not present all details.

Suppose hereafter that f ∈ M(λs) satisfies (26). We first observe
that the operator U can also be written as

U =
∑

α,β,γ

vγv
∗
αv∗

β ⊗ [vα, [vβ, v∗
γ]]
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since [[v∗
γ , vα], vβ] = [vα, [vβ, v∗

γ]] by the Jacobi identity and by [vα, vβ] =
0. Writing

U =
∑

U δ ⊗ vδ, W =
∑

Wδ ⊗ vδ,

with

(27) U δ⊗vδ =
∑

α+β−γ=δ

vγv
∗
αv∗

β⊗vδ, Wδ⊗vδ =
∑

α+β−γ=δ

v∗
αv∗

βvγ⊗vδ,

we have, modulo U(gC)kC,

U δ ⊗ vδ −Wδ ⊗ vδ = (
∑

α+β−γ=δ

|Cα,β,γ|
2)v∗

δ ⊗ vδ

where Cα,β,γ are given by [vα, [vβ, v∗
γ ]] = Cα,β,γvδ.

Writing Y =
∑

δ Y
δ ⊗ vδ as above with Yδ ∈ U(g). We have then,

modulo U(gC)kC

Yδ = C1v
∗
δ + C2W

δ

with

C1 :=
∑

α+β−γ=δ

|Cα,β,γ|
2, C2 := 1 −

−2σ2 + 2pσ + c

σ(2σ − p − b)
.

Thus

(28) Yδf = 0.

for any non-compact root δ ≡
γj+γj−1

2
modulo t−

C
, by our assumption on

f . We will henceforth fix one such δ, and study the induced equation
of (28).

Recall projection π from U(gC) onto U(aC + n−
C
). Here we will not

be able to find explicit formula for π(Yδ) as in Proposition 6.10. Nev-
ertheless we can compute the induced equation.

Consider the decomposition of U(aC + n−
C
) under aC,

(29) U(aC + n−
C
) =

∑

p∈Π−

U(aC + n−
C
)p

where

Π− = {p =
∑

β∈Σ−(g,a)

cββ, 0 ≤ cβ, cβ ∈ Z}

is root lattice of Σ−(g, a).
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Lemma 7.4. Let α + β − γ = δ ≡
γj+γj−1

2
be as in (27). Decomposing

π(v̄αv̄βvγ) ∈ U(aC + n−
C
) according to (29),

(30) π(v̄αv̄βvγ) =
∑

p∈Π−

π(v̄αv̄βvγ)p,

we have that p ≤ −
βj−βj−1

2
, for any p appearing in (30) so that π(v̄αv̄βvγ)p 6=

0.

Proof. The lemma can be proved by a case by case computation of
the projection by using Lemma 6.9, and is essentially contained in [1].
We sketch another somewhat more systematic method. We denote the
Iwasawa decomposition as v̄α = π(v̄α) + y with y ∈ kC. Thus

v̄αv̄βvγ = π(v̄α)v̄βvγ + yv̄βvγ .

The Iwasawa projection of the first term is

π(v̄α)π(v̄βvγ).

The projection of the second term is

π([y, v̄β]vγ) + π(v̄β[y, vγ]).

Observe by Lemma 6.9 that the element y is a positive compact root
vector, so that all these projections involved are of the form π(v̄δvε)
with vδ and vε being non-compact positive root vectors. Our lemma
reduces to the following claim, which can be proved easily by using
Lemma 6.9:

The weights p of π(v̄δvε) satisfy the inequality

p ≤ −
βj − βj−1

2
+

βk − βk′

2

if δ − ε =
γj+γj−1

2
−

γk+γk′

2
with k > k′,

p ≤ −
βj − βj−1

2

if δ − ε =
γj+γj−1

2
− γk, and

p ≤ −
βj − βj−1

2
+

βk

2

if δ − ε =
γj+γj−1

2
− γk

2
. �

From this it follows that the operator t−
1
2
(βj−βj−1)R[π(Yδ)] has ana-

lytic coefficients in t near t = 0 and thus the induced equation

(31) lim
t→0

tλ−ρt
1
2
(βj−βj−1)R[π(Yδ)]tρ−λ(Bλf) = 0

of the equation Yδf = 0 is well-defined.



HUA OPERATORS ON BOUNDED SYMMETRIC DOMAINS 35

Consider next the eigenspace decomposition of the space n−
C

under
the element 1

2
ξc = 1

2

∑r
j=1 ξj:

n−
C

= n−1
C

+ n
− 1

2
C

+ n0
C

with

n−1
C

=
∑

k≥j≥1

g
−

βk+βj
2

C
, n

− 1
2

C
=

∑

k≥1

g
−

βk
2

C
, n0

C
=

∑

k≥j

g
−

βk−βj
2

C
;

and correspondingly

(32) U(aC + n−
C
) = U(aC + n−

C
)(n−1

C
+ n

− 1
2

C
) + U(aC + n0

C).

Let
π(Yδ) = Y1 + Y0

be the decomposition of π(Yδ) according to (32). As the decompo-
sitions (29) and (32) are consistent, we see that the weights p that
appear in the decomposition of Y1 according to (29) satisfies p ≤ −δ,

and p ≤ µ for µ such that n
µ
C
⊂ n−1

C
+ n

− 1
2

C
. The first implies that

the induced equation is well-defined, and the second that the induced
equation (31) now reduces to

(33) lim
t→0

tλ−ρt−
1
2
(βj−βj−1)R[Y1]t

ρ−λ(Bλf) = 0.

The element Y0 can be found along the same lines as in [1], where
the constant term C1ζvδ

was found.

Lemma 7.5. The element Y0 is given by
(

C1 + C2

[

1

2
(−ξ2

j − ξ2
j−1 + ξjξj−1) + C ′

1ξ

])

ζvδ

where ξ ∈ aC, C ′
1 is some constants independent of λ.

In particular the induced equation (33) is of the form

(C1 + C2D(λ))R(ζvδ
)(Bλf) = 0.

where

D(λ) = 1
2
(−(ρ − λ)(ξj)

2 − (ρ − λ)(ξj−1)
2 + (ρ − λ)(ξj)(ρ − λ)(ξj−1))

+C ′
1(ρ − λ)(ξ).

Observe first that C1 > 0. If C2 = 0 it follows immediately that
R(ζvδ

)(Bλf) = 0, so we need only to consider the case C2 6= 0. If
C1 + C2D(λ) 6= 0 we get again R(ζvδ

)(BλF ) = 0. Finally if C1 +
C2D(λ) = 0 we may replace f by tκγj for sufficiently large κ and still
prove that R(ζvδ

)(Bλf) = 0; see [15]. This completes the proof.
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Poincaré (Nancy 1) B.P. 239, F-54506 Vandœuvre-lès-Nancy cedex,
France

E-mail address : khalid.koufany@iecn.u-nancy.fr

Genkai Zhang – Department of Mathematics, Chalmers University
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