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Products of ratios of

consecutive integers
Régis de la Bretèche, Carl Pomerance & Gérald Tenenbaum

For Jean-Louis Nicolas, on his sixtieth birthday

1. Introduction

Let {εn}1�n<N be a finite sequence with each εn ∈ {0, ±1}, and write
a

b
=

∏
1�n<N

( n

n + 1

)εn

,

where the fraction is in its smallest terms. Now, define A(N) as the maximal value
of a as {εn}1�n<N runs through all possible 3N−1 sequences of 0,±1, and let B(N)
denote the corresponding value of b. (Note that maximizing b instead of a would
lead to B(N)/A(N).) We obviously have A(N) � N !, hence log A(N) � N log N
for all N . In [7], it is shown by an elegant “near-tiling” of the integers in [1, N ]
with triples n, 2n, 2n + 1 that

log A(N) �
{

2
3 + o(1)

}
N log N.

Further, a brief argument of M. Langevin is presented that

log A(N) � {log 4 + o(1)}N.

Our aim in this article is to establish the true order of magnitude for log A(N).
Put

k(c) := 1 + 2 log(1 − 2c) − 2
c

log
(
1 +

2c2

1 − 3c

)
,

K(c) := 2
∫ c

0

k(u) du, K := max
0<c<1/5

K(c) ≈ 0.107005.

Theorem 1.1. For large N , we have

(1·1) log A(N) � {K + o(1)}N log N.

Let P (n) denote the largest prime factor of a positive integer n with the
convention that P (1) = 1. The lower bound (1·1) is an easy consequence of the
estimate stated in the following result.

Theorem 1.2. For c ∈ [0, 1], x � 1, let S(x, c) denote the number of those
integers n not exceeding x such that min{P (n), P (n + 1)} > x1−c. Then, for any
fixed c0 ∈]0, 1

5 [ and uniformly for c ∈ [0, c0], x → ∞, we have

(1·2) S(x, c) � 2x

∫ c

0

log
( 1 − v

1 − v − 2c

) dv

1 − v
+ o(x).
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Remark. Under a suitably strong form of the Elliott–Halberstam hypothesis, we
get the better bound

(1·3) S(x, c) � x
{

log (1 − c)
}2 + o(x)

for 0 � c � 1
2 . This would yield the value K = 4/

√
e−2 ≈ 0.426123 in Theorem 1.1.

See Section 3 for further methodological remarks.
The bound (1·3) is probably optimal, in fact it is likely to be the case that

S(x, c) = x
{
1 − �

(
1/{1 − c}

)}2 + o(x) for 0 � c < 1, where � is the Dickman–de
Bruijn function. An even stronger statement is suggested in [3].

Note that (1·1) follows from (1·2) by selecting εn = 1 if P (n) > N1−c and
P (n) > P (n + 1), εn = −1 if P (n + 1) > N1−c and P (n + 1) > P (n) and εn = 0
in all other cases. Indeed, with these choices for εn, we obtain that for each prime
p > N1−c � N1/2, the exponent on p in the prime factorization of the rational
number A(N)/B(N) is∑

n<N
P (n)=p

2 −
∑
n<N

P (n+1)>P (n)=p

2 −
∑
n<N

P (n)>P (n+1)=p

2.

Thus,

log A(N) �
∑
n<N

P (n)>N1−c

2 log P (n) −
∑
n<N

P (n),P (n+1)>N1−c

2 log min{P (n), P (n + 1)}.

We have∑
n�N

P (n),P (n+1)>N1−c

2 log min{P (n),P (n + 1)} =
∫ c

0

(1 − u) log N dS(N, u)

= (log N)
{

(1 − c)S(N, c) +
∫ c

0

S(N, u) du
}

,

and, since the number of n < N with P (n) > N1−c is N log{1/(1 − c)} + o(N)
uniformly for 0 � c � 1/2,∑

n<N
P (n)>N1−c

log P (n) = cN log N + o(N).

We thus obtain

log A(N) � 2(log N)
{

cN − (1 − c)S(N, c) −
∫ c

0

S(N, u) du + o(N)
}

� 2N(log N)
{
g(c) + o(1)

}
,

where we have set

g(c) := c− (1− c)f(c)−
∫ c

0

f(u) du, with f(u) := 2
∫ u

0

log
( 1 − v

1 − v − 2u

) dv

1 − v
.

We check by computation that g′(c) = k(c). This implies the desired estimate.
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2. Proof of Theorem 1.2

We employ the Rosser–Iwaniec sieve. A slightly better numerical bound could
be obtained from a more sophisticated sieve method. We do not pursue such an
improvement here but provide precise indications in Section 3. We refer to [5], [6]
for a complete reference of the Rosser-Iwaniec coefficients and merely recall the
property we shall use. We denote by γ the Euler constant, and we let p run over
primes.

Lemma 2.1. Let Q denote a set of primes, let z � 2 and write Q(z) :=
∏

p�z, p∈Q p.
There exists a sequence {λd}∞d=1 of real numbers, vanishing for d > z or µ(d) = 0,
satisfying λ1 = 1, |λd| � 1, µ ∗ 1 � λ ∗ 1, and such that for any number α > 0,

∑
d|Q(z)

λdw(d)
d

�
∏
p�z
p∈Q

(
1 − w(p)

p

){
2eγ + Oα

( 1
(log z)1/3

)}
,

uniformly for all multiplicative functions w satisfying

0 < w(p) < p (p ∈ Q),(i)
∏

u<p�v, p∈Q

(
1 − w(p)

p

)−1

� log v

log u

(
1 +

α

log u

)
(2 � u � v � z).(ii)

If n is counted by S(x, c), then n = ap1 = bp2 − 1, where p1 and p2 are primes
greater than x1−c. Then a and b are obviously coprime, and moreover 2|ab. We need
an upper bound for the number Z(a, b) of admissible pairs (p1, p2) for given a, b.
Let C be a sufficiently large constant and set z := (x/a)1/2b−1(log x)−C . If Q is the
set of all primes not dividing a and with {λd}∞d=1 the sequence from Lemma 2.1,
we plainly have

(2·1)

Z(a, b) �
∑

p1�x/a
ap1≡−1 (mod b)

µ ∗ 1
(
(ap1 + 1)/b, Q(z)

)

�
∑

d|Q(z)

λd

∑
p1�x/a

ap1≡−1 (mod bd)

1.

Let us put, for real y � 2 and integers q, r with q � 1,

π(y; q, r) :=
∑
p�y

p≡r (mod q)

1, E(y; q) := max
(r,q)=1

|π(y; q, r) − li(y)/ϕ(q)|.

We apply Lemma 2.1 to the multiplicative function d �→ dϕ(b)/ϕ(bd). Using the
fact that (a, bd) = 1 for each d | Q(z), and noticing that c bounded below 1/5
ensures that z � b when x is large enough, we deduce that

(2·2) Z(a, b) � M(a, b) + R(a, b)
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with
R(a, b) :=

∑
d�z

E(x/a; bd)

and

M(a, b) :=
∑

d|Q(z)

λd li(x/a)
ϕ(bd)

� {2eγ + o(1)} li(x/a)
ϕ(b)

∏
p�z
p � ab

(
1 − 1

p − 1

) ∏
p�z
p|b

(
1 − 1

p

)

= {2eγ + o(1)} li(x/a)
b

∏
p�z
p � ab

(p − 2
p − 1

)
.

Now we observe that, uniformly as x tends to ∞ and a, b vary in the specified
ranges, ∏

p�z
p>2

(p − 2
p − 1

)
= 2

∏
p�z
p>2

p(p − 2)
(p − 1)2

∏
p�z

(
1 − 1

p

)
∼ 2e−γ

A log z

where

A :=
∏
p>2

(
1 +

1
p(p − 2)

)
.

Therefore, writing

h(n) :=
∏
p|n
p>2

(p − 1
p − 2

)
,

we obtain that the estimate

(2·3) M(a, b) � {8 + o(1)}h(ab)x
Aab log(x/a) log(x/ab2)

holds uniformly for a � xc, b � xc, (a, b) = 1, as x → ∞.
Let τ(m) denote the number of divisors of m. By the Bombieri–Vinogradov

theorem, we have, with Xa := (x/a)1/2(log x)−C ,

∑
b�xc

R(a, b) �
∑

m�Xa

τ(m)E(x/a;m)

	
{ ∑

m�Xa

E(x/a;m)
∑

m�Xa

τ(m)2E(x/a;m)
}1/2

	 x

a(log x)2
,
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where we have used the trivial estimate E(x/a;m) 	 x/am and the well-known
fact that

∑
m�x τ(m)2/m 	 (log x)4. Therefore, we obtain from (2·2) and (2·3)

(2·4)

S(x, c) �
∑

a�xc, b�xc

(a,b)=1, 2|ab

Z(a, b)

� 8 + o(1)
A

x
∑
a�xc

h(a)
a log(x/a)

∑
b�xc

2|ab
(b,a)=1

h(b)
b log(x/ab2)

+ O
( x

log x

)
.

We have for ν = 0 or 1

(2·5)
∑
b�1

(b,a)=1

h(2νb)
bs

= H(s)Ga(s)ζ(s) (
e s > 1)

where

H(s) :=
∏
p>2

(
1 +

1
ps(p − 2)

)
, Ga(s) :=

(
1 − ε(a)

2s

) ∏
p|a
p>2

(
1 − p−s

1 + p−s/(p − 2)

)
,

with ε(a) = 1 if a is even, ε(a) = 0 if a is odd. The functions H and Ga

can be analytically continued to the half-plane 
e s > 0. Note that H(1) = A,
Ga(1) = 2−ε(a)h(a)−1. By estimates of Selberg–Delange type (see [8], chap. II.5),
(2·5) yields in turn

∑
b�y

(b,a)=1

h(2νb) ∼ Ay

2ε(a)h(a)
(y → ∞),

and ∑
b�xc

(a,b)=1, 2|ab

h(b)
b log(x/ab2)

=
A

4h(a)
log

( 1 − va

1 − 2c − va

)
+ o(1) (x → ∞)

and va := (log a)/ log x. Substituting this back into (2·4), we arrive at

S(x, c) � {2 + o(1)}x
∑
a�xc

1
a log(x/a)

log
( 1 − va

1 − 2c − va

)

= {2 + o(1)}x
∫ c

0

log
( 1 − v

1 − 2c − v

) dv

1 − v
.

��
We remark that with a little more care, the bound 1/5 in the theorem may be

replaced with 1/3.
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3. Further remarks

In [3] it is shown that if N is large, then for at least 0.0099N values of n � N
we have P (n) > P (n + 1), and for at least 0.0099N values of n � N we have
P (n) < P (n + 1). It follows from Theorem 1.2 that each inequality occurs on a set
of integers n of lower asymptotic density

log
(

1
1 − c

)
− 2

∫ c

0

log
( 1 − v

1 − v − 2c

) dv

1 − v

for each value of c with 0 < c < 1/5. The maximum of this expression is greater
than 0.05544 so we have majorized the result from [3]. Presumably, the set E of
integers n with P (n) > P (n + 1) has asymptotic density 1/2. A general theorem
of Hildebrand [4] also implies that E has positive lower asymptotic density, but we
did not check the numerical value that can be derived from this result.

In [3] it is shown that P (n) < P (n + 1) < P (n + 2) holds infinitely often, and
it was conjectured that so too P (n) > P (n + 1) > P (n + 2) holds infinitely often.
This conjecture was recently proved by Balog in [1].

We observe that the maximal value A(N) corresponds to a sequence ε =
{εn}1�n<N where εn ∈ {−1, 1}.
Proposition 3.1. Let N � 1. There exists {εn}1�n<N ∈ {−1, 1}N−1 such that

A(N)
B(N)

=
∏

1�n<N

( n

n + 1

)εn

.

Remark. Let A0,1(N) (respectively A−1,1(N), A−1,0(N)) the maximum of numera-
tors where the exponents εn are restricted to {0, 1} (respectively {−1, 1}, {−1, 0}).
By the proposition, we have A−1,1(N) = A(N) and

log A0,1(N) = 1
2 log A(N) + O(log N) = log A−1,0(N) + O(log N).

For example, if {εn}1�n<N ∈ {0, 1}N−1, we have {2εn − 1}1�n<N ∈ {−1, 1}N−1.
Since the constant sequence −1 gives the numerator N , we deduce the result.

Proof. Take a sequence {εn}1�n<N ∈ {−1, 0, 1}N−1 where some εn = 0. Write the
associated product as A/B with (A, B) = 1. If we let εn = 1, the new numerator is

A

(A, n + 1)
× n

(B, n)
,

while if we let εn = −1, the new numerator is

A

(A, n)
× n + 1

(B, n + 1)
.



Products of ratios of consecutive integers 7

Assuming both of these expressions are smaller than A, we obtain

n < (A, n + 1)(B, n) and n + 1 < (A, n)(B, n + 1).

Multiplying these inequalities and using (A, B) = (n, n + 1) = 1 we obtain

n(n + 1) < (AB, n(n + 1)),

a contradiction. So we may choose εn ∈ {±1} without decreasing the associated
numerator. With this method we can replace each 0 value with ±1 and the value
of the associated numerator will not decrease. ��

As pointed out in Section 2, the result of Theorem 1.2 can be improved by using
more sophisticated sieve methods. Indeed, in the present treatment, we sift integers
of the form (ap1 +1)/b for fixed a and b, and then sum over a after having disposed
of the b-sum by the Bombieri–Vinogradov theorem, thus applying this result to a
sequence of length x/a and hence of distribution level roughly

√
x/a. We could,

alternatively, sift, for fixed b, the sequence comprising all (ap1 + 1)/b of a piece.
We could then restrict the study to, say, x/ log x < ap1 � x. This corresponds to
the Dirichlet convolution of two characteristic functions that are of Siegel–Walfisz
type, and thus has distribution level x1/2+o(1) — see, e.g., [2] theorem 0(b). Such
an approach yields, for any given c0, 0 < c0 < 1

4 , the upper bound

(3·1) S(x, c) � 2x log (1 − 2c) log (1 − c) + o(x)

uniformly for 0 � c � c0. In turn, this improvement allows the better value
K ≈ 0.112945 in Theorem 1.1, and ups the density in the first paragraph of this
section to 0.05866. We warmly thank Étienne Fouvry for these observations.
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École Normale Supérieure
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