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AN OBSTRUCTION FOR THE MEAN CURVATURE OF A CONFORMAL

IMMERSION Sn → R
n+1

BERND AMMANN, EMMANUEL HUMBERT, MOHAMEDEN OULD AHMEDOU

Abstract. We prove a Pohozaev type identity for non-linear eigenvalue equations of the Dirac operator
on Riemannian spin manifolds with boundary. As an application, we obtain that the mean curvature
H of a conformal immersion Sn

→ R
n+1 satisfies

∫
∂XH = 0 where X is a conformal vector field on

Sn and where the integration is carried out with respect to the Euclidean volume measure of the image.
This identity is analogous to the Kazdan-Warner obstruction that appears in the problem of prescribing
the scalar curvature on Sn inside the standard conformal class.

MSC 2000: 53A27, 53A30, 35J60

Let (M, g) be a compact Riemannian manifold with a conformal vector field X . Given a function s on M ,
then it is a classical question to ask whether s is the scalar curvature of a metric g̃ conformal to g. The
determination of the set of all such functions s is still open, although several partial results are known,
in particular there are necessary conditions that s has to satisfy in order to be a scalar curvature.

On the one hand there are topological obstructions. If for example M is spin and has non-vanishing Â
genus, then the scalar curvature of any metric on M has either to be negative somewhere or the Ricci
curvature vanishes everywhere on M .

However, if one fixes the conformal class [g] as described above, there are further obstructions that arise
from conformal vector fields. For example if M is Sn with the standard conformal structure, Kazdan
and Warner [KW75] derived a famous obstruction. A slightly stronger version of this obstruction due to
Bourguignon and Ezin [BE87] is described in the following theorem.

Theorem 1. Let X be a conformal vector field on the compact manifold (M, g). If s is the scalar
curvature of a metric g̃ = u4/(n−2)g, then

∫

M

∂Xs dvg̃ = 0

where dvg̃ = u
2n

n−2 dvg is the volume measure associated to g̃.

Tightly related to the Kazdan-Warner obstruction is the Pohozaev identity. Let Ω be a star-shaped open
set of R

n (n ∈ N) with smooth boundary. We denote by ∆ = −
∑n

i=1 ∂ii the Laplacian on R
n. Let

u ∈ C2(Ω̄) be a positive solution of ∆u = up−1 on Ω with u|∂Ω ≡ 0. The vector field X =
∑n
i=1 x

i∂i
is conformal. If one uses similar methods as in the proof of the Kazdan-Warner obstruction, then one
obtains the Pohozaev identity ([Po65]) which asserts that:

(

1 −
n

2
+
n

p

) ∫

Ω

up =
1

2

∫

∂Ω

〈ν,X〉(∂νu)
2 (1)

where ν resp. ∂ν is the outer normal vector resp. the outer normal derivative on ∂Ω. One among many
important consequences of this inequality is that no non-trivial solutions exist if p ≥ 2n

n−2 . Another

application is an alternative proof of the Kazdan-Warner obstructions in the case that (M, g) is the
sphere with the standard conformal structure [DR99].

In the present short article, we establish a similar identity for the classical Dirac operator D. We derive
this identity on manifolds with boundary in order to admit future Pohozaev type applications. Then,
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we will specialize to compact manifolds without boundary, where we will derive a Kazdan-Warner type
obstruction for the mean curvature of a conformal immersion S2 → R

3.

Our main theorem is:

Theorem 2. Let (M, g, χ) be a compact Riemannian spin manifold of dimension n with boundary ∂M
(possibly equal to ∅) and with Dirac operator D. We assume that there exists a smooth spinor field ψ
which satisfies for some p > 1,

Dψ = H |ψ|p−2ψ, H ∈ C∞(M). (2)

Furthermore, we assume that X is a conformal vector field on M . Then, we have the following Pohozaev
type identity:

∫

∂M

〈ν · LXψ, ψ〉 =
p− 2

p

∫

∂M

H |ψ|pg(X, ν) +

(
1

n
−
p− 2

p

) ∫

M

H divX |ψ|p +
2

p

∫

M

(∂XH) |ψ|p,

where ν denotes the outward pointing normal vector along ∂M , and where 〈 , 〉 denotes the real scalar
product on spinors.

Proof: The flow associated to the conformal vector field X will be denoted as αt. If p is in the interior
of M , then αt(p) exists for times t close to 0. For any t ∈ R let f t be the conformal scaling function
of αt, i.e. (dαt)p is f t(p) times an isometry from TpM to Tαt(p)M . Let αt∗ : ΣpM → Σαt(p)M be the
spinor identification map as constructed in [Ht74, Hi86, BG92]. In particular, this map has the pointwise
properties that

|αt∗(ψ)| = |ψ|

and the following transformation formula for conformal changes of the metric. Let ϕ ∈ Γ(ΣM) be a

spinor field. For t close to 0, we then define the map αt# : Γ(ΣM) → Γ(ΣM̃), αt#(ϕ) := αt∗ ◦ ϕ ◦ α−t,

where M̃ is M without an open neighborhood of the boundary.

Then

Dαt#

(

(f t)−
n−1

2 ψ
)

= αt#((f t)−
n+1

2 Dψ).

Now we assume that ψ satisfies (2), and we obtain

Dαt#

(

(f t)−
n−1

2 ψ
)

= αt#

(

(f t)−
n+1

2 H |ψ|p−2ψ
)

.

Deriving with respect to t at t = 0 yields

−
n− 1

2
Dβψ +D

d

dt
|t=0α

t
#ψ = −

n+ 1

2
Hβ|ψ|p−2ψ +H |ψ|p−2 d

dt
|t=0α

t
#ψ (3)

+ (p− 2)H〈
d

dt
|t=0α

t
#ψ, ψ〉|ψ|

p−4ψ − (∂XH)|ψ|p−2ψ. (4)

where β := d
dt |t=0f

t. We reformulate using definition of the Lie derivative of spinor fields in the direction
X [BG92], i.e.

LX(ψ) = −
d

dt
|t=0α

t
#(ψ). (5)

Together with Dβψ = βDψ + ∇β · ψ and (2) one then concludes that

n− 1

2
∇β · ψ +DLXψ = Hβ|ψ|p−2ψ + H |ψ|p−2LXψ (6)

+ (p− 2)H〈LXψ, ψ〉|ψ|
p−4ψ + (∂XH)|ψ|p−2ψ. (7)

After multiplication with ψ, the ∇β · ψ-term vanishes, and we obtain

〈DLXψ, ψ〉 = (p− 1)H |ψ|p−2〈LXψ, ψ〉 +Hβ|ψ|p + (∂XH)|ψ|p.

The product rule for the Lie derivative tells us that

|ψ|p−2〈LXψ, ψ〉 =
1

2
|ψ|p−2∂X |ψ|2 = |ψ|p−1∂X |ψ| =

1

p
∂X |ψ|p.
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Hence, we obtain

〈DLXψ, ψ〉 =
p− 1

p
H ∂X |ψ|p +Hβ|ψ|p + (∂XH)|ψ|p.

Strictly speaking, this equation is valid in the interior, but it extends to the boundary by continuity.
Now, we integrate over M . With partial integration for the Dirac operator one obtains

∫

M

〈DLXψ, ψ〉 =

∫

M

〈LXψ,Dψ〉 +

∫

∂M

〈ν · LXψ, ψ〉 =

∫

M

H 〈LXψ, |ψ|
p−2ψ〉

︸ ︷︷ ︸

= 1
p
∂X |ψ|p

+

∫

∂M

〈ν · LXψ, ψ〉.

This yields
∫

∂M

〈ν · LXψ, ψ〉 =
p− 2

p

∫

M

H∂X |ψ|p +

∫

M

Hβ|ψ|p +

∫

M

(∂XH)|ψ|p.

Using div(H |ψ|pX) = (∂XH)|ψ|p +H∂X |ψ|p +H |ψ|pdivX and divX = nβ we obtain
∫

∂M

〈ν · LXψ, ψ〉 =
p− 2

p

∫

∂M

H |ψ|pg(X, ν) +

(
1

n
−
p− 2

p

) ∫

M

H divX |ψ|p +
2

p

∫

M

(∂XH) |ψ|p,

Examples 3.
1.) Let Ω be domain in R

n with smooth boundary, let X = r∂r =
∑
xi∂i, and we will assume that

H = λ is constant. Then β ≡ 1 and we obtain
∫

∂Ω

〈ν · LXψ, ψ〉 = λ
p− 2

p

∫

∂Ω

〈X, ν〉 |ψ|p + λ

(

1 −
p− 2

p
n

) ∫

Ω

|ψ|p.

This inequality bears many analogies to equation (1). In particular, the constant 1 − p−2
p before the

integral over Ω vanishes if p takes the value p = 2n/(n− 1). This value plays the same role in non-linear
Dirac equations as the value p = 2n/(n− 2) does for the Laplace operator.
2.) If M is a closed manifold and X is a conformal vector field, then for p = 2n/(n− 1) we obtain

∫

M

(∂XH)|ψ|p = 0.

Corollary 4. [Kazdan-Warner type obstructions] Let f : Sn → R
n+1, n ≥ 2, be a conformal

immersion (possibly with branching points of even order in the case n = 2). We denote by H : Sn → R

the mean curvature of this immersion. Then, for any conformal vector field X we have
∫

Sn

(∂XH)f∗(dµ) = 0

where dµ is the volume element on f(Sn) induced from the Euclidean metric on R
n+1. In particular,

∂XH changes sign.

The corollary is particularly interesting in dimension n = 2. If f : S2 → R
3 is any immersion, then after

possibly composing with a diffeomorphism S2 → S2, we can assume that f is conformal.

The corollary is analogous to results in [KW75], [BE87] and [DR99].

Proof: Let ψ be parallel spinor on R
n+1. Then, as proven in [KS96, Ba98, Fr98], the restriction of ψ

on Σ satisfies equation (2) with p = 2n/(n− 1), and |ψ|p dν = f∗(dµ) where dν is the standard volume
element on Sn. Since this equation is conformally invariant we obtain a solution of (2) on Sn equipped
with the standard metric. The corollary then immediately follows from example (2) above.

Example 5. Let x3 : S2 → R be the third component of the standard inclusion. One shows that
X := grad x3 is a conformal vector field on S2, where the gradient is taken with respect to the standard
metric on S2. Then for any ε ∈ R \ {0} one has ∂X(εx3 + 1) = εg(grad x3, grad x3) which is of constant
sign. Hence εx3 + 1 : S2 → R is not the mean curvature of a conformal immersion.
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Institut Élie Cartan BP 239
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