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Abstract

Methods for the robust and automatic estimation of scene
structure and camera motion from image sequences ac-
quired by a catadioptric camera are described. A first esti-
mate of the complete geometry is obtained robustly from a
rough knowledge of the two angles which defines the field of
view. This approach is in contrast to previous work, which
required mirror parameterization and only calculated (until
now) the geometry of image pairs. Second, the additional
knowledge of the mirror shape is enforced in the estimation.
Both steps have become tractable thanks to the introduction
of bundle adjustments for central and non-central cameras.

Finally, the system is presented as a whole, and many
long image sequences are automatically reconstructed to
show the qualities of the approach.

1. Introduction

The automatic estimation of scene Structure and camera
Motion from image sequence (“Structure from Motion”, or
SfM) acquired by a perspective camera (whether calibrated
or not) taken by hand has been a very active topic [12, 5]
during the last decade, and many successful systems now
exist [2, 21, 19]. On the other hand, during the same period,
a large amount of works has been conducted on the geomet-
ric study of omnidirectional cameras/systems, although real
omnidirectional and automatic SfM results for long image
sequences have not yet been published. These cameras have
awide field of view, like dioptric (respectively, catadioptric)
systems composed of a fish-eye (respectively, a mirror) in
front of a perspective camera [9]. This paper focuses on
SfM using a catadioptric system.

Central and Non-Central Cameras An important role
is played by central omnidirectional cameras, i.e. cameras
such that all back-projected rays intersect a single point in
space (left of Figure 1). These cameras are, up to an image
distortion, equivalent to a perspective camera, and are the
most studied and used. The central cameras inherit many
properties [7] from the perspective cameras, and should also
inherit SfM algorithms once they are calibrated [10, 20].
The other systems are non-central (right of Figure 1).

Figure 1: Examples of omnidirectional systems using aligned
perspective cameras (with projection center O) and mirrors. Left:
a central system is obtained, since all extended rays go through a
single point F. Right: a non-central system.

Previous Work Closest works about central cameras are
[13, 3, 8, 15]. In [13], calibration and successive essential
matrices are estimated for a parabolic catadioptric camera
(i.e. a parabolic mirror in front of an orthographic cam-
era) from tracked points in the image sequence. Calibration
initialization is given by the approximate field of view an-
gle. Another work on the same sensor [8] introduces the
parabolic fundamental matrix, which defines a bilinear con-
straint between two matched points represented in an ade-
quate space, and shows that calibration and essential matrix
recovery are possible from this matrix. [3] estimate the mo-
tion of a calibrated omnidirectional camera using the essen-
tial matrix, and show that the results are better than the per-
spective camera motion when we look at objects far away,
by taking advantage of the larger view field. The estimation
of a more general central camera model is also proposed
by [15], using direct modelization of the projection func-
tion and generalization of the simultaneous estimation of
the usual fundamental matrix and one radial lens distortion
coefficient [6]. Calibration parameters and successive es-
sential matrices are estimated automatically using robust 9
and 15 points RANSAC algorithms and adequate bucketing
technique [16].

Closest works about non-central catadioptric cameras
are [1, 17]. Given a parameterization of the mirror [17], the
non-central catadioptric camera is approximated by a cen-
tral camera: the center is selected as that which minimizes
the sum of squares of angular differences between real 3D
rays reflected by the mirror surface to the scene point and
the approximating rays emanating from the fictive center.



Once the model is simplified, the automatic method [15] is
applied to obtain a first estimate of the image pair geom-
etry. Finally, a Levenberg-Marquardt procedure is applied
to refine the parameters of the two non-central catadioptric
cameras. The error in the 3D space is minimized (instead
of the usual re-projection errors in images) since the projec-
tion function of the non-central camera is not explicit. This
is not ideal, since a such 3D error has no statistical foun-
dation and 3D magnitude orders vary considerably between
close and far away points. In a different context [1], the
real-time pose estimation of a parabolic catadioptric system
is achieved for planar motions in a room-size environment,
using a few known 3D beacons. Pose accuracy is improved
by replacing the ideal orthographic camera by a perspective
one from the calibration step.

Our Work Section 2 describes our contributions for au-
tomatic SfM using a central catadioptric camera: geometry
initialization and bundle adjustments. The geometry is es-
timated robustly from a rough knowledge of the two angles
which define the field of view. Only 5 points RANSAC
are needed in the geometry initialization of image pairs
[18], without special bucketing techniques. This simple,
very practical approach contrasts with the current, most ad-
vanced work [15, 17]. Section 3 describes our contributions
to the non-central catadioptric camera: initialization from
a first estimate with the central model, and bundle adjust-
ments taking account of the mirror shape. In both cases,
bundle adjustments minimize angle-based or image-based
errors, and provide maximum likelihood estimate with the
common (gaussian) noise assumption. Real bundle adjust-
ments have not been previously designed and applied for
catadioptric cameras, although it is well known [12] that
they are the keystone for SfM, improving both the accu-
racy and robustness simultaneously. Experiments and con-
clusions are proposed in Section 4 and 5. We complete
the system presentation in the Appendix with our match-
ing method, and efficient calculations for non-central image
projection and differentiation.

2. Central Catadioptric Camera

Figure 2: Left: two concentric circles of radii r.,p, Tdown (Short-
ened ru, rd) in the retina plane. Right: angles cup, @down , @(X)
(shortened au, ad, a) from the z—axis define the field of view for a
point X by awp < a(X) < agown. The circle “up” (respectively,
“down”) of rays on the right is projected by the central model on
the big (respectively, small) circle on the left.

2.1. Camera Model and Notations

The central catadioptric model is defined by its orientation
R (a rotation), the center ¢t € 2 (R is the real numbers),
both expressed in the world coordinate system, and a “cali-
bration” function C : #3 — %2. If X is the homogeneous
world coordinates of a 3D point such that the last coordinate
is positive, the direction of the ray from ¢ to X in the cam-
era coordinate system is given by d = RT (I; —t) X.
The sign constraint for X is necessary to choose a ray (half
line) among the opposite rays defined by directions d and
—d, which are projected on two different points in the om-
nidirectional image. The projection p(X) of X in the retina
plane is finally obtained by p(X) = C(d). If X isin the
infinite plane, there are two projections: C(d) and C'(—d).

Our central model also has a symmetry around the z-axis
of the camera coordinate system: the omnidirectional image
is between two concentric circles, and C' is such that there
is a positive function r such that

0oy =rloto )t (7).

We introduce the notations r,, and rqoqy, for the radii
of both circles, the angle @ = a(z,y,2) = a(X) be-
tween the z-axis and the ray direction, and the two angles
Oy aNd @ gown Which define the field of view. We have
Tdown < T < 1ryp and ayp < @ < @gown @S shown in
Figure 2. Angles au,p, agoun are approximately known and
given by the mirror manufacturer, although they depend on
the unknown focal length of the perspective camera and the
relative positions between camera and mirror. The function
r will be described later.

This model requires the knowledge of the mapping from
the image to the retina, which maps the frontiers (ellipses)
of the omnidirectional image to the two concentric circles.
The mapping is pre-calculated for each image from an auto-
matic ellipse detection (contour detection, polygonization,
RANSAC, Levenberg-Marquardt), and is applied implic-
itly throughout Section 2 by proceeding as if the omnidi-
rectional images frontiers are the two concentric circles. A
similar model was previously used for fisheye cameras [15].

2.2. Geometry Initialization

Once the frontier circles and point matching (described in
the Appendix) between image pairs have been obtained, the
full geometry of the sequence can be estimated. We cal-
culate pair geometries given an approximate calibration to
take advantage of the usual perspective SfM tools.

The calibration function r is defined by the linear func-
tion of the angle a such that 7(a,p) = rup aNd 7(Qdown) =
Tdown. The circle radii r4oun, Ty are already estimated,
and the approximate field of view angles agouwn, Cyp are
given by the mirror manufacturer. Such a choice assumes a
similar image (radial) resolution for all displayed ray direc-
tions, which is not uncommon in practice.



Once the approximate calibration C is given, a ray di-
rection for each image point is computable by the (explicit)
reciprocal function C—. Now, known methods [4, 18] are
applied to obtain a first estimate of the essential matrices,
camera motions and 3D reconstructed points between all
consecutive image pairs, and the geometry of all consecu-
tive image triples by the pose calculation of the third camera
once matches in 3 views have been reconstructed by the two
others. The geometry refinement by bundle adjustment for
omnidirectional cameras is described in Section 2.3.

The geometry of a sequence is estimated using a hierar-
chical approach [12]: once the geometries of the two cam-
erasub-sequences1--- 2, % 4+1and §, % +1,---n are es-
timated, the latter is mapped in the coordinate system of the
former thanks to the two common cameras %, 5 +1, and the
resulting sequence 1 - - - n is refined by a bundle adjustment.

2.3. Bundle Adjustments

Bundle adjustment improves the estimations of the centers
t;, the orientations R; of cameras ¢ and the positions X
of points j by the minimization of a score: the sum of re-
projection errors with known matched points m;;.

Image Error At first glance, the score in the omnidirec-
tional image space might be

SICERT (Is —t:) X;) — my |
,J

with ||.|| the Euclidean norm. However, practical problems
occur for points X; near the infinite plane with this score:
some of them might go across the infinite plane during cer-
tain Levenberg-Marquardt iterations (when the sign of X
fourth coordinate is modified), and this severely degrades
the score. In fact, the projection in the omnidirectional im-
age of a point lying exactly in the infinite plane is not one
point, but two points C'(X) and C'(—X) (aligned and sepa-
rated by the concentric circle center), and only one of these
two reprojected points is very close to the detected point.
If no care is taken when a point in a fixed ray goes across
the infinite plane, its projections changes dramatically from
C(X) to C(—X), and the global score follows. For this
reason, we choose a continuous score in the infinite plane:

> mine—s1[|C(eR] (s —t;) X;) — my;][>.

]
Angular Error Another possible score is the sum of
squared angles between the full line defined by points X ;
and ¢;, and the full line defined by point ¢; and direction
C~'(mi;). Theses angles are those between C~* (m;;) and
R! (I; —t;)X; in the i-th camera coordinate system.
Let R;; be a rotation which maps C ' (m;;) to (0 0 1),
and m(z,y,2) = (x/z y/z). These angles are those be-
tween R;;R] (I —t;) Xjand (0 0 1).Ourscoreis

> liw(RijR (I —ti) X))
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by approximating the angles by their tangents. This approx-
imation is acceptable since the angles are small for the inlier
points near the solution. We also note that

o this angular score is independent of the R;; choice

e the infinite plane problem mentioned for the image
score does not occur here because 7(—z) = 7 (x)

o both scores are valid without the X ; sign constraint.

3. Non-Central Catadioptric Camera

Figure 3: The ray which goes across point X and pinhole
camera center t, is reflected on the mirror at point M (t,, X)
and projected by the pinhole camera to p*(X). We also de-
fine the point M~ (t,, X) on the mirror projected by the pin-
hole camera to p~(X), such that X is aligned with the re-
flected ray starting at M ~ (¢,, X) without being contained inside
it. Points M T (t,, X), pT(X), M~ (tp, X),p  (X) are shortened
M+,p+,M-,p- in this figure. Note that X,M-,M+ are not aligned.

3.1. Camera Model and Notations

The non-central catadioptric model is defined by the orien-
tation R (a rotation) and the location ¢ € %3 of the mirror
coordinate system, both expressed in the world coordinate
system, the intrinsic parameters K7, orientation R? and lo-
cation ¢? of the pinhole camera C? expressed in the mirror
coordinate system, and the (known) mirror surface.

The mirror surface contains the origin and has a symme-
try around the z-axis of the mirror coordinate system. Let
M (A, B) be the function which gives the reflection point
on the mirror (if any) for the ray which goes across points
Aand B. We have A, B, M* (A, B) € %3, all expressed in
the mirror coordinate system. This function does not have
a closed-form, and its calculation from the mirror surface is
presented in the Appendix.

Let X be the non-homogeneous world coordinates
of a finite 3D point X. Since RT(X — t) and
KPRPT (I; —t?) are respectively the X coordinates and
the CP matrix in the mirror coordinate system, we deduce
that the homogeneous coordinates of the projection by the
non-central camera of X are

pH(X) = KPRPT(M*(t*,R" (X — t)) — t7).
Figure 3 shows a cross section of the mirror and pinhole
camera, the points t?, X, p*(X), M+ (#?, X).
Although this model does not directly define the pro-
jection for a point X, in the infinite plane, we can de-
fine it by limit considerations. Let X be a finite point



which converges to X, such that its homogeneous coor-
dinates z,y, z are fixed and ¢ converges to 0. Two limits
of projections p*(X) are obtained by the relation X =
(z/t y/t =z/t),oneforeach possible sign of ¢.

We also note that the parametrization (RP?,t?, R) is not
minimal because of the mirror symmetry around the z-
axis: the expression of p*(X) is unchanged by replacing
(RP,t?, R) by (R,RP,R.t*, RR]) and applying the mir-
ror symmetry relation R,M+(A,B) = M*(R,A,R,B)
for any rotation R, around the z-axis.

4 z

P

/ =l
) _ tp 4+

Figure 4: Left: useful (shortened) notations for z? and f? estima-
tions. Right: ¢ is located in a circle in the plane z = —2zP given
2P and the angle between directions from ¢? toward the centers of
large and small border circles.

3.2. Geometry Initialization

Pinhole parameters The non-central parameters
KP, RP tP are initialized from the two bounding ellipses
detected in images and the mirror knowledge. These
ellipses are the images of the known mirror border circles
in z-planes z = z,;, and z = zgown iN the mirror coordinate
system, With 2gown < Zup.

The following realistic assumptions are made: the pin-
hole camera is pointing toward the mirror with ¢? in the
immediate neighborhood of mirror symmetry axis such
that R? ~ I3, t? = (b e —2P),0 < 2%,|}| <
2P, |el| < zP, and the image ellipses are approximated by
circles of radii 7, 7% ., and centers ¢}, ¢ .. Further-
more, we assume that K? is the diagonal matrix with focal
length fP, focus point at image center and square pixels.

First, f, and z, may be estimated assuming RP = I3 and
b = b = 0 by Thales relations 1%,/ f? = rup /(2 + Zup)
and riy /P = Paown/ (2P + Zaown) (left of Figure 4).
The 2P estimation may also be obtained from the reflection
law and knowledge of 7y, 2yp, Qtup, OF directly from the
distance measurement between mirror and camera pinhole.

Second, €%, €} are estimated. Since the angle between di-
rections pointing toward the centers of mirror border circles
is those between vectors (K?)~"ci, and (K?)~ ‘¢l . we
know the radius of the circle in the plane z = —2zP where
t? is located (right of Figure 4). Any t? in this circle is pos-
sible by the over-parametrization (R?,t?, R). The hypoth-

esis RP =~ I3 settles t? as follow: from projection relations

Mi(—€ —eb 2PHz,) = RP(d, f7)" and
Mi(=€h —eb 2+ zaoun) = RP (i f7)', We
have A, ~ L= < —I—— ~ A, and by subtraction
(cf;—cg";wn 0) = (A — Au) (€ € *). Thus we

can find A > Osuch that (ef €)= Aci, — Choun)
from the circle radius in the plane z = —z?. Finally, R? is

estimated from the two projections relations.

Mirror Poseand Scene Structure A first possibility is to
identify notations ¢;, R;, X; of both central and non central
models, as soon as a complete and central geometry approx-
imation is given by methods of Section 2. The scale factor,
in fact, is not a free parameter as in the central case since it
is fixed by the mirror size. We choose the initial scale factor
for ¢; and X; such that the distances between consecutive
mirrors are physically plausible compared with the mirror.

3.3. Bundle Adjustments

Bundle adjustment improves the estimations of the i-th mir-
ror locations t; and orientations R;, the homogeneous coor-
dinates X; = (X§ X7 X} X7) of points j, by the
minimization of a score: the sum of re-projection errors
with known matched points m;;. The explanations in this
paragraph are very similar to those in Section 2.3.

Image Error At first glance, the score in the omnidirec-
tional image space might be

>l (BPRYT (M (82, R (X — 1)) — 7)) — mg|®

2,
with X; = (X?/X! XY/X! X7/X!),thei-th pinhole
parameters K, R? ¢, and 7r(2,y,2) = (z/z y/z). As
in the central case, the image projection of a point X ; which
goes across the infinite plane by a Levenberg-Marquardt it-
eration changes dramatically, and the resulting score ceases
to be meaningful. The solution to this problem is the same
for the non-central case: we redefine a score which is con-
tinuous for X ; in the neighborhood of the infinite plane.

In Figure 3 we introduce a kind of antipodal point for

M by a function M ~ and minimize the score

S minge gy l|m (KPR (ME(80, R] (X j—t3)) ) —my ||

2,

In contrast to the simple choice of M~ such that
M- (t?,X) = M*(t*,—X), our choice is independent
of the origin of mirror coordinates thanks to the relation
M—(tP,X) = M*(t?,2M~(t?, X) — X). Both choices
have same limits near the infinite plane and have very differ-
ent image projection to that of M T elsewhere, as required.

Angular Error  Lett;; and n;; be the i-th mirror point and
the direction of the reflected ray defined by the image point
m;; and the i-th pinhole camera. A possible score is the
sum of squared angles between the full line defined by the



points ¢;; and X, and the full line defined by the point #;;
and the direction n;;. These angles are those between n;;
and Rz.T (I3 —ti)Xj—t,-jX; in the i-th mirror coordinate
system. By introducing a rotation R;; such that R;;n;; =
(0 0 1) as in the central case, we obtain the score

Z llm(Ri; (R (Is  —t;) X; — t;; X1))|I.
i,j
The three last remarks in Section 2.3 are still correct.

4. Experiments

i ne
Figure 5: From left to right: the Kaidan “360 One VR” mirror
with the Nikkon Coolpix 8700 camera (mounted on a monopod),
a panoramic image (the view field is 36(° horizontally and about
50° above and below the horizontal plane), the mirror shadow for
profile estimation, and the mirror caustic for 22 = 50cm.

4.1. Our Context

Cheap Catadioptric Camera The user moves along a
trajectory on the ground with the omnidirectional system
mounted on a monopod, alternating a step forward and a
shot. We use a cheap system designed for panoramic pic-
ture generation and image-based rendering from a single
view point, given a single shot of the scene (see Figure 5).
The symmetry axes of camera and mirror are not exactly the
same (the axes alignment is manually adjusted and visually
checked). According to the manufacturer (and the caustic
size compared with the mirror), the system is not central.

Usual CameraMotions The camera motion described in
the previous paragraph is close to a translation motion, for
which the pinhole camera is pointing in a fixed direction
(the sky). Such a motion is a critical motion for our central
catadioptric model, as for the pinhole camera model (very
similar proofs). Since many calibrations are possible for a
given critical motion of the catadioptric camera, the full es-
timation of scene points and cameras is impossible. On the
other hand, it would be easier to choose a prior calibration
and help the SfM algorithms. The situation is not clear for
our camera motions close to critical motions, and it should
be examined experimentally for central/non central models.

4.2. Central Modd

Panoramic images from omnidirectional images and top
views of resulting reconstructions are shown in Figure 6.

Fountain The Fountain sequence is composed of 38 im-
ages of background city and a close-up fountain at the cen-
ter of a traffic circle. We have found that about 50% of
recovered essential matrices are obviously incorrect for this
sequence, since the epipoles are roughly orthogonal to the
camera movement. However, the systematic use of ge-
ometry refinement by bundle adjustment after each sub-
sequence merging corrects all pair blunders, and the recov-
ered camera motion is a smooth and circular motion around
the fountain as expected.

Both unclosed and closed versions of this sequence are
reconstructed. The unclosed one is obtained by duplication
at the sequence end of the first image. The gap between
both ends of the unclosed sequence is small: the distance
between camera centers is 0.01 times the trajectory diame-
ter, and the angle of relative orientation R38R0_1 is 0.639.

Road The Road sequence is composed of 54 images taken
along a little road on a flat ground, with background build-
ings, parking and fir trees. All recovered essential matrices
seem to be correct according to the epipoles positions.

House The House sequence is composed of 112 images
taken in a cosy house, starting in the living room, crossing
the lobby, having a loop in the kitchen, re-crossing the lobby
and entering a bedroom.

Robustness and estimation stability for aup, @gown  All
central results above are obtained with a linear calibration
function r(a) defined by the field of view angles o, =
40°, agown = 140° given by the mirror manufacturer.

Two properties of the SfM method by the central model
are explored in this paragraph: the robustness of initializa-
tion with very rough values of oy, @gown, and the ability
to refine these two angles using a cubic polynomial for r(«)
(the four coefficients are new unknowns of the image bun-
dle adjustment). Since the true camera motions are close
but not exactly critical motions, both neither of the results
for these two properties is certain.

Figure 7 shows good robustness of the hierarchical re-
construction: big inaccuracies of +20° (respectively, +10°)
degrees are usually (respectively, always) tolerated for
Qup, Qdown- FUrthermore, the recovered du,, = 71 (ryyp)
and Ggown = T (Taown) are reasonably stable for each
sequence and physically plausible.

Some technical Details Computation times for 1632 x
1224-images with a P4 2.8GHz/800MHz are about 10s for
each single image calculation (points and edge detections,
circles), 20s for each image pair calculation (matching, es-
sential matrix), and 5 min for the hierarchical reconstruc-
tion method applied to the House sequence (total time: 1
hour). About 700-1100 point matches satisfy the epipolar
constraint between two consecutive images.



Figure 6: Top: panoramic images for image sequences. Bottom: top views of the recovered reconstructions with camera locations (little

squares) and 3D points (black points). Left: Fountain (38 views, 5857 points). Middle: Road (54 views, 10178 points). Right: House (112
views, 15504 points). Some of these points are difficult to reconstruct when they are far distant or roughly aligned with the cameras from
which they are reconstructed. These results are similar for central (with linear and cubic r(«) functions) and non-central models.

Qu Qg Qy a4 Qy Qg4 Qu a4 Qy a4
| 40 140 20 160 60 120 20 120 60 160
F 46 143 45 146 46 145 45 159 (46) (144)
R 43 138 43 138 54 131 35 139 42 131
H 45 143 (45) (143) 45 143 43 141 45 143

Figure 7: Each column pair o, aq shows the field of view angles
estimation for each of the 3 sequences Fountain, Road and House.
These estimates are obtained from a SfM by the central model with
initial angles defined in the row I. Brackets indicate a failure of the
experiment, because the initial angles are too different from their
exact values. The values given in brackets indicate the success of
other experiments obtained with initial angles two times closer to
the manufacturer angles than those in row I.

All bundle adjustments are implemented using analytical
derivatives (see Appendix for the image error in the non-
central case) and sparse calculations. The central angular
and image errors are respectively used for the hierarchical
reconstructions and &y, &down €Stimations.

4.3. Non-Central Modd

Non-central methods are also applied to enforce the mirror
knowledge in the geometry estimation. The mirror profile
function is a quartic, which is estimated from the rectifica-
tion of the shadow shown in Figure 5. Once the non-central
initialization is performed from the central results by mea-
suring 2P = 48c¢m, the angular-based bundle adjustment
is first applied because it is faster and more robust to ini-
tial conditions. Second, the image-based bundle adjustment
is applied (as in the central case) since it provides a maxi-
mum likelihood estimation assuming that the image points

are normally distributed around their true locations.

Real Images Non-central reconstructions for Fountain,
Road and House are qualitatively similar as the cen-
tral ones in Figure 6 (also see Figure 8). We also try
many pinhole refinements with some further parameters
in a final and image-error bundle adjustment, enforcing
constraints such as fixed, common or independent focal
length/orientation/position for all cameras. We found that
these parameters (and the 3D scale factor) are difficult to
estimate precisely: the convergence is slow starting from
many physically plausible values.

e " = Ij!i

Figure 8: A local view of Road non-central reconstruction with
a line of fire-trees (left), a building facade (right), and the ground.
Patch size is proportional to distance between patch and camera.

3D Scale factor Estimation Synthesis experiments con-
firms the difficulty to estimate the 3D scale factor, although



this estimation is theoretically possible with our non-central
catadioptric system. The ground truth reconstructions are
half turn of a Fountain-like scene with trajectory radius r;,
mirror orientations R; perturbed around I3, 20 cameras and
1000 points well distributed in 3D and 2D spaces. First, im-
age projections are corrupted by a noise of o = 1 pixel and
all camera locations ¢; and points X’j are multiplied by an
initial factor s;,;. Second, angular and image-based non-
central bundle adjustments are successively applied to these
perturbed reconstructions, with known pinhole parameters
(zp = 48cm) and taking into account outliers. Table 1
shows the resulting RMS error (in pixels) and ratio s,... be-
tween the recovered scale factor and its exact value. We
note that the RMS has no clear minimum, and that the scale
factor improvement are better for a small radius r;.

ry = 25cm ry = 2.5m

Sini 0.5 707 1 141 2 0.5 707 1 141 2

Spec 950 | 956 | 990 | .993 | 995 | .653 | 812 | 908 | 119 | 1.69

rms | 983 | 974 | 971 | 970 | 969 | .967 | 967 [ .967 | .969 | .970

Table 1: The ratio s,.. between the recovered scale factor and
its exact value is given by the non-central refinement of a recon-
struction perturbed by an initial homothety s;,;+ and image noise
o = 1 pixel. The best values of s,.. are obtained for the trajectory
with the smallest radius r; = 25¢m (the ideal result is syec = 1).

4.4. Comparisons Between Camera M odels

Quantitative comparisons between real 3D reconstructions
using the central and non-central models are given.

Consistency Table 2 shows consistencies between many
reconstructions and the multi-view matching for our se-
quences using many criterions. The four camera models
are: central models with linear and cubic calibration func-
tions r(c), non-central models without and with pinhole pa-
rameters optimized by bundle adjustment (same ¢? and f?
for all cameras, distinct R?). The non-central models have
the best consistencies: improvements about 5% (sometimes
12% for the Road) are obtained for the numbers of 3D and
2D inliers, with slightly slower RMS scores. The number
of parameters is the same for central and non-central mod-
els without calibration parameter refinements.

K c-3d nc-3d c-2d nc-2d crms | nc-rms
F n 5857 6221 31028 | 33262 0.84 0.78
Fly 5940 6223 32058 | 33876 0.78 0.76
R n 10178 | 11312 | 50225 | 56862 0.87 0.82
R [y 10706 | 11313 | 54451 | 57148 0.78 0.79
H n 15504 | 16432 | 75100 | 80169 0.83 0.78
Hy 15777 | 16447 | 77595 | 80311 0.76 0.76

Table 2: Consistencies between estimated geometries and data
(matches in images) are given for both central and non-central
models, for each of the 3 sequences Fountain, Road and House.
Column K specifies experiments with (y) or without (n) calibra-
tion refinements. Each column proposes a consistency measure:
¢-3d, c-2d, c-rms are respectively the number of successfully re-
constructed 3d points, the number of 2d points which have an im-
age error less than 2 pixels, and the rms score. Similar notations
nc-3d, nc-2d, nc-rms are used for the non-central models.

Difference 3D differences are given between central
(t5, X¢) and non-central (¢7¢, X7) models. The location
and point differences are respectively E = 1 3. ||S(t¢) —
7|2 and B2 = 1 30 [|S(X5) — X2/ ||tz — Xpe|P?
with S the similarity transformation minimizing E;, I the
number of cameras, and J the number of 3D points. We
obtain E; = 0.79¢m, E, = 0.027 for the Fountain (respec-
tively, £y = 2.6ecm, E, = 0.017 and E; = 2.75¢m, E, =
0.054 for the Road and House). The approximate trajectory
lengths are 16, 42 and 22 meters, respectively.

Pose accuracy A real sequence (see Figure 9) is taken in
an indoor controlled environment: the motion of our system
is measured on a rail, in a room of dimensions 7m x 5m x
3m. The trajectory is a 1 meter long straight line by transla-
tion, with 6 equidistant and aligned poses. We estimate the
location error EZ = 1 3. ||S(t5) — t/||* with S the simi-
larity transformation minimizing E; and ¢/ the ground truth
for camera location, and obtain Ef = 1.1, Ef*¢ = 1.2 mil-
limeters. Both models provides similar and good accuracies
for the pose estimation in this context.

Figure 9: A panoramic image of the “controlled” sequence.

5. Summary and Conclusions

The first methods for the automatic estimation of scene
structure and camera motion from long image sequences us-
ing catadioptric cameras are described in this paper, by in-
troducing the adequate bundle adjustments (image and an-
gular errors) and geometry initialization schemes for both
central and non-central models. Many experiments about
initialization robustness, accuracy, and comparisons be-
tween models are given for our non-central catadioptric
camera. In many cases, the central model is a good ap-
proximation. Our system is also described as a whole. Al-
though the results are very promising for our future appli-
cations (view synthesis, localization ...), more information
is needed for an accurate estimation of pinhole parameters
and the 3D scale factor.

Appendix

Initial Point Matching The usual matching procedure of
interest points using correlation can not be directly applied
to the omnidirectional images for two reasons: the match-
ing ambiguity due to the repetitive patterns or textures in
one image, and the geometric distortions between matched
patches of two images taken from different view points.
To our knowledge, previously published matching methods
deal only with one of these problems.



In the context of the usual camera motions (roughly,
translation motions with the pinhole camera pointing to-
ward the sky), we observe that a high proportion of the dis-
tortions is compensated for by image rotation around the
circle center. The Harris point detector [11] is used because
it is invariant to such rotations and it has good detection
stability. We also compensate for the rotation in the neigh-
borhood of the detected points before comparing the lumi-
nance neighborhood of two points using the ZNCC score
(Zero Mean Normalized Cross Correlation). To avoid in-
correct matching due to repetitive patterns, the following
procedure is applied. First, we try to match the points of
interest of an image with themselves. The result is a “re-
duced” list of points which stores points which are not sim-
ilar to others according to ZNCC in their corresponding
search area. Second, the points of the reduced lists of two
different images are matched applying the same correlation
score, search areas and thresholds. Now the matching errors
due to repetitive patterns are greatly reduced, but the current
list of matches is very incomplete. Third, this list is com-
pleted thanks to a quasi-dense match propagation [14]: the
majority of image pixels are progressively matched using a
2D-disparity gradient limit, and two interest points roughly
satisfying the resulting correspondence mapping between
both images are added to the list. Such a list of matched
interest points is obtained without any epipolar constraint,
and is adequate for our geometry estimation methods.

Estimation and Derivation of M+(4,B) The non-
central image error minimization by Levenberg-Marquardt
in Section 3.3 requires efficient estimation and differentia-
tion of M+ (A, B). This function gives the reflection point
on the mirror surface for the ray which goes across points
A and B. Once these computations are done at (t7, X)
with pinhole center ¢? and scene point X, all derivatives of
the projection p*(X) are analytical according to the Chain
Rule. Calculations are very similar for p—(X).

The known mirror is defined by the cylindric parameter-
ization f(r,8) = (rcos(9) rsin(8) z(r)) € R3. Given
A, B € ®2, we are looking for (r,6) such that f(r,8) is the
reflection point M (A, B) in the mirror. Thus we have

f(r,0) — A f(r,6) —B
lf(r,0) = All * [If(r,0) — Bl|
by the reflection law, with 7(r, #) the mirror normal. Only

2 among these 3 equations are independent: we are looking
for (r,8) such that g(r,8, A, B) = 0 with g defined by

(0 1 0 )R(—H)( f(r,6)—A  f(r,6)—B
1.0 2(r) 1 (r,0) = All "~ [[f(r,60) — BI|
and R(—#) is the rotation of angle —@ around the z-axis.

We obtain (r,6) using the Gauss-Newton method by
minimizing ||g||?. The Implicit Function Theorem is also

7i(r,0) A (

)=0

)

applied to g and provides locally a C!-function which map
(A, B) to (r,0) and its derivation

dar dpr _
(djg die)) = _(d(r,e)g) 1d(A,B)g
using the notation dx Y for the Jacobian of function Y (X)
with respect to parameters X. The value and derivatives of
M+ (A, B) = f(r,0) are deduced by function composition
and Chain Rule.

References

[1] D.G. Aliaga. “Accurate Catadioptric Calibration for Real-
time pose estimation in Room-size Environments,” ICCV'01.

[2] “Boujou,” 2d3 Ltd, http://www.2d3.com, 2000.

[3] P.Changand M. Hebert, “Omnidirectional structure from mo-
tion,” OMNIVIS 00.

[4] O.D. Faugeras, “Three-Dimensional Computer Vision - A
Geometric Viewpoint,” MIT Press, 1993.

[5] O.D. Faugeras and Q.T. Luong, “The Geometry of Multiple
Images,” MIT Press, 2001.

[6] A.W. Fitzgibbon, “Simultaneous Linear Estimation of Multi-
ple View Geometry and Lens Distortion,” CVPR O1.

[7] C. Geyer and K. Daniilidis, “A unifying Theory for Central
Panoramic Systems and Practical Implications,” ECCV' 00.

[8] C. Geyer and K. Daniilidis, “Structure and Motion from Un-
calibrated Catadioptric Views,” CVPR 01

[9] C. Geyer, T. Pajdla and K. Daniilidis, “Courses on Omnidi-
rectional Vision,” ICCV'03.

[10] J. Gluckman and S.K. Nayar, “Ego-Motion and Omnidirec-
tional Cameras,” ICCV’' 98.

[11] C. Harris and M. Stephens, “A Combined Corner and Edge
Detector,” Alvey Vision Conf., pp. 147-151, 1988.

[12] R. Hartley and A. Zisserman, “Multiple View Geometry in
Computer Vision,” Cambridge University Press, 2000.

[13] S.B. Kang, “Catadioptric Self-Calibration,” CVPR' 00.

[14] M. Lhuillier and L. Quan, “Match Propagation for Image-
Based Modeling and Rendering,” PAMI, vol. 24, no. 8, pp.
1140-1146, 2002.

[15] B. Micusik and T. Pajdla, “Estimation of Omnidirectional
Camera Model from Epipolar Geometry,” CVPR 03.

[16] B. Micusik and T. Pajdla, “Omnidirectional Camera Model
and Epipolar Geometry Estimation by Ransac with Bucket-
ing,” SCIA'03.

[17] B. Micusik and T. Pajdla, “Autocalibration and 3D Recon-
struction with Non-Central Catadioptric Cameras,” CVPR 04.

[18] D. Nister. “An efficient solution to the five-point relative pose
problem,” CVPR 03.

[19] D. Nister, O. Naroditsky and J. Bergen, “Visual Odometry,”
CVPR 04.

[20] T. Pajdla, T. Svoboda and V. Hlavac, “Epipolar geometry of
central catadioptric cameras,” [JCV, vol. 49, no. 1, pp. 23-37.

[21] M. Pollefeys, R. Koch and L. Van Gool, “Self-Calibration
and Metric Reconstruction in spite of Varying and Unknown
Internal Camera Parameters,” ICCV’ 98.

[22] B. Triggs, P.F. McLauchlan, R.l. Hartley and A. Fitgib-
bon. “Bundle adjustment — a modern synthesis,” Vision Al-
gorithms: Theory and Practice, 2000.



