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Abstract— Many methods exist for the automatic and optimal
3D reconstruction of camera motion and scene structure from
image sequence (’Structure from Motion‘ or SfM). The solution
to this problem is not unique: we obtain an other solution
by changing the coordinate system where points and cameras
are defined. On the other hand, existing methods provide some
measure of confidence or uncertainty for the estimation when
the ground truth is not available, using a gauge constraint which
settle the reconstruction coordinate system. Here we justify and
describe a method which estimate the uncertainty ellipsoids,
when previous methods are not straightforward to use due to
a huge number of parameters to fit. Many examples are given
and discussed for big reconstructions.

I. INTRODUCTION

After a short description of the automatic 3D reconstruction,
we present previous works about the uncertainty estimation.

Automatic and ”optimal” 3D reconstruction: Robust and
automatic estimation, from image sequence, of a calibrated (or
not) camera and points of the scene has been an active research
topic during the last decade [5], [6]. Several successful systems
now exist [1], [8], [11], [12], [14].

First, image points are selected and matched between suc-
cessive images. Then, geometry of sub-sequence of 2 or 3
images is computed using robust methods based on random
process of these matched points.

Finally these geometries are joined and then the reprojection
errors are minimized. These errors are the differences between
images points mij and the projections ”CiXj” of the n 3D
points Xj by the m cameras Ci.

So, the score minimized by all ”optimal” 3D reconstruction
algorithms looks like:

E(C1, · · · , Cm, X1, · · · , Xn) =
∑

i,j

||CiXj − mij ||
2,

with ||.|| the Euclidean norm in the images. A 3D reconstruc-
tion which minimizes a such score is optimal in the statistical
sense, as described in more details in section II.

The camera parameters to estimate are the extrinsic ones (a
rotation matrix Ri representing the orientation and a vector
for the center ti) and sometimes few intrinsic parameters.

This problem has many solutions because a change of the
3D coordinate system has not effect on the cost function E.

So we have an over-parameterization which defines both
the 3D reconstruction and its coordinate system (defined by
7 parameters: 3 for translation, 3 for rotation and 1 for scale
factor).

Uncertainty ellipsoids: Although methods exist to evaluate
uncertainty of ”optimal” 3D reconstruction [6], [15], few
publications in Robotic and Computer Vision really use it.

In a different context, the Kalman Filter applied to 3D
reconstruction provides the uncertainty for an acceptable es-
timation of cameras and points. Although not optimal, this
tool is so efficient to allow the simultaneous localization
and mapping from a video sequence [16]. Our focus is the
uncertainty calculation in the context of an optimal estimation,
provided by bundle adjustment.

This paragraph refers to covariance matrices and confidence
ellipsoids, which are described in detail in section II.

The covariance matrix may be computed as the inverse of
the Hessian H of the final score E given by the minimization
[13]. For this method, the Hessian must be invertible and
the inverse must be computable even if the dimension of the
Hessian is large.

In our case, H is not invertible because of over-
parameterization. As suggested in [11] it is possible to make
H be invertible by taking out 7 parameters to estimate, for
example R1, t1 and (tm)z. In this case, a method is reported
in [6] to compute some blocks of H−1, taking advantage of the
sparse block structure [2] of H . From diagonal block of H−1,
we compute confidence ellipsoids (for example for 3D point
Xj and camera center ti) corresponding to a given probability.
A similar method is proposed by [7] to compute camera
uncertainties. But in reality, [11] computes point uncertainties
assuming that the result when several parameters are fixed is
the same as in the case where all camera uncertainties are
zero (with this assumption, the uncertainties are given by the
inversion of the 3 × 3 diagonal blocks of H).

In the methods reported in [15] and [10], the coordinate
system of the 3D reconstruction is fixed thanks to a constraint
called ”gauge constraint”, so that the covariance matrix of
the estimated parameters may be computed. This constraint is
implicitly defined as c(x) = 0 with x the vector of parameters
to estimate. This expression provides more global constraints
in relation to the trivial ones suggested in [11]. The camera-
based constraints (i.e. only based on camera parameters) are
useful to evaluate camera uncertainties, especially for local-
ization applications. The point-based constraints are useful to
compute point uncertainties, suitable for scene reconstruction.
The principles are summarized in [10], [15] and experimented
on small 3D reconstructions in [10]. All covariance matrices
given by this method (i.e. covariance matrices for different



gauge constraints) are linked together by multiplying on left
and on right by linear projectors which depend on c and
H : for small problem, it is easy to compute all covariance
matrices from only one. Thus [10], [15] suggest methods to
compute a covariance matrix for non trivial constraints from
one covariance matrix which is easier to compute.

However there is a lack in the methods described in [10],
[15], and they can’t be applied directly to the real world high
dimensional problems as those proposed in this paper.

Contributions: There are several contributions in this arti-
cle. The section II is a survey about the covariance matrices
and confidence ellipsoids. It is all-encompassing and nearly
self-contained, and should be easier to understand than papers
it is based on [6], [10], [15]. We choose to use here the
perturbation analysis instead of a more rigorous presentation
based on the Implicit Function Theorem as those of [4] and [3]
in the case of invertible Hessian. The section III describes our
method to compute the diagonal blocks of a covariance matrix
(and thus the confidence ellipsoids) for any non-trivial global
constraint as c(x) = 0 with x the set of estimated parameters.
Its interest is to rigorously justify a method to deal with high
dimensional problems (out of reach for the method used by
[10]). At last, in the section IV we experiment our method
with high 3D reconstructions and several constraints before
concluding.

II. CONFIDENCE ELLIPSOIDS (SURVEY)

This section presents the confidence ellipsoids for an op-
timal estimation of the parameters of an image sequence
geometry (i.e. the cameras and 3D points parameters). We
hope it will be easier to understand than other papers it is
based on [6], [10], [15]. It may refer to some properties of the
pseudo-inverse, given in the Appendix.

A. Notations and statistical modeling

2D Projections: mij represents the coordinate of the match-
ing point in the image i which corresponds to the 3D point
j. In other word, the 3D point j has been reconstructed by
triangulation from matched 2D points mij detected in several
images.

These 2D points are noisy measurements of their true
unknown positions (denoted m̄ij) and are considered as ran-
dom variables subject to Gaussian noise with mean m̄ij and
covariance matrix σ̄2I2 (the variance σ̄2 is unknown too).

3D points and cameras: From a set of mij , an automatic
method has estimated the camera i parameters (denoted Ci)
and those of the 3D point j, denoted Xj , such as the mij fits
the projection of Xj by Ci at best. We note these projections
as a matrix product ”CiXj”. More precisely, we used bundle
adjustment to find the parameters minimizing a sum of square
Euclidean norm

∑

(i,j)∈M ||CiXj − mij ||
2. M is the set of

possible pairs (i, j).
We assume that a true solution exists C̄i, X̄j , in the sense

that m̄ij = C̄iX̄j . There are many solutions because we get
an other solution from the first one by changing the Euclidean
coordinate system and the scale factor.

Statistical model: The unknown parameters of the model
are: σ̄, C̄1, · · · , C̄m, X̄1, · · · , X̄n. The probability density func-
tions of measurements mij are

f(mij , σ̄, C̄iX̄j) =
1

2πσ̄2
e−

1

2σ̄2 ||C̄iX̄j−mij ||
2

One deduces the probability density function of our model
thanks to the independence hypothesis:

f(mij , (i, j) ∈ M) =
1

(2πσ̄2)|M |
e
− 1

2σ̄2

∑

(i,j)∈M
||C̄iX̄j−mij ||

2

where |M | is the size of M .
Maximum likelihood estimation: The maximum likelihood

estimation of the parameters σ̄, C̄1, · · · , X̄1, · · · implies to
find σ̂, Ĉ1, · · · , X̂1, · · · that maximize the probability den-
sity function of the model. That’s why Ĉi, X̂j minimize
∑

(i,j)∈M ||CiXj −mij ||
2 and σ̂2 = 1

2|M |

∑

(i,j)∈M ||ĈiX̂j −

mij ||
2. As we explain before, such Ĉi, X̂j are the result of the

bundle adjustment method and many solutions exist as with
C̄i, X̄j .

B. Error propagation

The aim of this paragraph is to answer the question: how
is perturbed the value of the estimated parameters Ĉi, X̂i

compared to true values C̄i, X̄i, when we perturb the true
value of measurements m̄ij to mij ? It is important because
the best confidence of an estimation result will be obtained for
the lowest perturbation on parameters. After introducing nota-
tions and summarizing the principle, the description becomes
deductive.

Notations: rk(A), tr(A), Ker(A), Im(A), A+ , dim(B)
are the rank, the trace, the kernel, the image, the pseudo-
inverse of matrix A, the dimension of vector space B.

Let x (respectively, y) be the vector concatenating the
vectors C1, · · · , X1, · · · (respectively, the vectors mij). The
true values x̄, ȳ are defined by a similar way and x̂ represents
the estimation of x.

Let f be the function that computes 2D points from 3D
points and cameras, so: f(x̄) = ȳ and x̂ minimizes x 7→
||y − f(x)||2. Then we define dx = x − x̄ and dy = y − ȳ.
With the chosen model, the mean of the perturbation dy is 0
and its covariance is Cdy = σ̄2I2|M |.

Summary: A summary of the problem is given by figures
1 and 2. The figure 1 shows the parameter space X and the
measurement space Y .

The space X is too big to have uniqueness of the solution
of the estimation problem because the value of f(x) is the
same for all euclidean basis and scale factor changes for
x. Therefore we introduce a variety defined by a constraint
c(x) = 0 (called ”gauge constraint” [10], [15]), such that onto
this variety, only one solution exists.

The figure 2 shows the approximations made in X and Y .
In X , the variety defined by c is approximated by its affine
tangent space in x̄. The varieties where f is constant (called
”gauge orbits” [10], [15]) are linearized too. In Y , the variety
f(X) is approximated by its affine tangent space in f(x̄) = ȳ.
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Fig. 1. Left: two points x and x′ in the parameter space X . Each
dotted “curve” represents a set of points where the function f is
constant. Each one is a variety of dimension 7 and is parameterized
by the group of similarities in R3. In order to obtain uniqueness of
the solution, we cut back the parameter space X on a shorter space
implicitly defined by {x ∈ X, c(x) = 0}, and so each “curve” cuts
it just in one point. Right: a point y in the measurement space Y ,
the image of X by f and of its points x and x′ (f(X), f(x) and
f(x′)). f is one to one between {x ∈ X, c(x) = 0} and f(X).

Thanks to these approximations, the relation between dx and
dy becomes linear, and so one deducts the distribution for dx,
knowing these for dy.
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Fig. 2. Left: Approximation around x in X . The variety {x ∈
X, c(x) = 0} is approximated by x+Ker(Jc) with Jc the Jacobian
matrix of c in x. The curves passing by x and x+dx are approximated
by x+Ker(Jf ) and x+dx+Ker(Jf) with Jf the Jacobian matrix of
f in x. The projection of a given dx on Ker(Jc) parallel to Ker(Jf )
is dx′. Right: Approximation around f(x) in Y . The variety f(X)
is approximated by f(x)+Im(Jf ). Given a dy, dx is such as ||dy−
Jfdx|| is minimum, therefore dy−Jfdx and Im(Jf ) are orthogonal.

Approximation of the projection function: One approxi-
mates f in a neighborhood of a possible x̄, and assumes dx
is small:

f(x) = f(x̄ + dx) ≈ f(x̄) + Jfdx = ȳ + Jfdx

Jf is the Jacobian matrix of f in x̄. So a dx solution (i.e. a
dx that minimizes x 7→ ||y − f(x)||2) should minimize

dx 7→ ||ȳ + dy − f(x̄ + dx)||2 ≈ ||dy − Jfdx||2,

and so dx ∈ (J>
f Jf )+J>

f dy + Ker(Jf ).
Non uniqueness: We know that many exact parameters x̄

and estimated ones x̂ are possible, and they are linked by
changing the coordinate system or the scale factor. More
precisely, those coordinate system and scale factor changes
can be written as parameterization x̄(θ) and x̂(θ) of class C1

with θ of dimension 7 (6 for euclidean coordinate system and
1 for scale factor).

We deduct that f(x̄(θ)) is constant, and then (by composed
differentiations) that the dimension of Ker(Jf ) is at least 7
on any evaluating point. We suppose that dim(Ker(Jf )) = 7.

The choice problem: Without additional constraints on dx,
we only know that

dx ∈ (J>
f Jf )+J>

f dy + Ker(Jf ), dim(Ker(Jf )) = 7.

With a well-defined dx, we could model dx by a random
variable as dy.

A first possible choice is dx that minimizes ||dx||. In this
case, dx = (J>

f Jf )+J>
f dy.

An other choice is given by a constraint on the parameters
x expressed as a function c(x) = c(x̄) = 0: the resulting
constraint on dx by differentiation is:

0 = c(x̄ + dx) ≈ c(x̄) + Jcdx = Jcdx

with Jc the Jacobian matrix of c in x̄. So we can define
dx if Ker(Jc) is suitable: we suppose that Ker(Jc) and
Ker(Jf ) are supplementary in the parameter space, and so
we have dx = P c

f (J>
f Jf )+J>

f dy with P c
f the linear projector

on Ker(Jc) parallel to Ker(Jf ).
To get a suitable constraint [15], we must choose 7 scalar

equations that fix a unique choice for x̄ and x̂ (i.e. a unique
choice of euclidean coordinate system and scale factor).

Covariance matrix: As the perturbation dx is linearly de-
fined by dy and knowing that dy obeys a zero-mean Gaussian
distribution of covariance Cdy = σ̄2I2|M |, we deduct that dx
obeys a zero-mean Gaussian distribution of covariance Cdx.
We introduce:

C⊥
dx = (J>

f Jf )+J>
f CdyJf (J>

f Jf )+ = σ̄2(J>
f Jf )+

Cc
dx = σ̄2P c

f (J>
f Jf )+(P c

f )>.

In the case where ‖dx‖ is minimal, we have Cdx = C⊥
dx, and

when dx is defined with the constraint c, we have Cdx = Cc
dx.

Covariance matrix approximation: Theses covariance ma-
trices have been defined according to σ̄, P c

f and Jf at
an unknown point x̄. So we should estimate Cdx by
σ̂2(J>

f (x̂)Jf (x̂))+ or P c
f (x̂)σ̂2(J>

f (x̂)Jf (x̂))+(P c
f (x̂))> ac-

cording to the constraint choice, using the fact that the pseudo-
inverse is a continuous function on the set of symmetric
positive matrices of fixed rank (it is not continuous anywhere).

The aim of the following paragraph is to improve the
maximum likelihood estimator σ̂2 = 1

2|M | ||y − f(x̂)||2 of σ̄2

in the expressions of Cdx.
Improving the estimation of σ̂2: We have seen that the

function that maps dy to dx = x̂ − x̄ and that minimizes
dx 7→ ||dy − Jfdx||2 is linear for all cases. We deduce that
the application P that maps dy to dy − Jf (x̂ − x̄) is linear
too. P is an orthogonal projector onto Im(Jf )⊥ parallel to
Im(Jf ) because Jf (x̂ − x̄) is the nearest point of dy onto
Im(Jf ): we have tr(P ) = rk(P ) and P> = P = P 2.

So y − f(x̂) ≈ dy − Jfdx obeys a centered Gaussian
distribution of covariance P (σ̄2I2|M |)P

> = σ̄2P , and we
have tr(P ) = rk(P ) = 2|M |−rk(Jf ) = 2|M |−(|x|−7) with
|x| the number of parameters to estimate and 7 the dimension
of Ker(Jf ). Denoting E the expected value of a random



vector, we get:

E(||y − f(x̂)||2) ≈ E(||dy − Jfdx||2)

≈ tr(E((dy − Jfdx)(dy − Jfdx)>))

≈ tr(σ̄2P )

≈ (2|M | − (|x| − 7))σ̄2,

and so that σ̃2 = 1
2|M |−(|x|−7) ||y−f(x̂)||2 is a approximation

of a non-biased estimator of σ̄2 (contrary to the maximum
likelihood estimator σ̂2 which is biased). So we replace σ̂2

with σ̃2 in the expressions of Cdx.

C. Confidence ellipsoids

With the choice of the perturbation dx and the approxima-
tions to estimate the resulting covariance, we can say that x̂
obeys a Gaussian distribution of mean x̄ and covariance Cdx.
Now, the covariance matrix of a subset of parameters of x̂ (for
example, the 3 coordinates of a camera center or a 3D point)
is easy to calculate.

Let x̄i, x̂i, Ci be the exact value (unknown), the estimation
(known) and the covariance matrix (a diagonal sub-block of
Cdx, known) for a center of a camera i or a point i.

So (x̂i−x̄i)
>C−1

i (x̂i−x̄i) satisfies a X2 distribution with 3
degrees of freedom. Let Ei(x, p) be the ellipsoid of R3 defined
by: Ei(x, p) = {x̃ ∈ R3, (x̃−x)>C−1

i (x̃−x) ≤ F3(p)} with
Fn the X2 cumulative distribution with n degrees of freedom.

That means that x̂i ∈ Ei(x̄i, p) with a probability of p, and
so x̄i ∈ Ei(x̂i, p) with a probability of p.

Finally, we obtain an ellipsoid centered on x̂i in which the
exact unknown value x̄i belongs with a probability of p, for
a point i or a camera center i.

III. COMPUTATION FOR BIG DIMENSIONS

The previous section explains what is required to compute
uncertainty ellipsoids, without providing a practical method.
The aim of this section is to present and to justify a method
that works even if it is impossible to compute (neither to
stock) the pseudo-inverse of J>

f (x̂)Jf (x̂) by SVD because
the estimated vector x̂ has a too large dimension.

A. Particular case

Assume that the constraint c is trivial: we fix 7 parameters
as the pose of the camera 1 and an other parameter of a camera
n. These 7 parameters are known, so one may take away them
to the vectors x̄, dx and x̂. This constraint fixes the euclidean
coordinate system and the scale factor, what greatly simplifies
the presentation of the previous part.

In that case, we have only one x̄ possible and Ker(Jf ) =
0. Moreover, dx minimizing dx 7→ ||dy − Jf dx||2 is well
defined: it is dx = (J>

f Jf )−1J>
f dy. One deduces that x̂

obeys a Gaussian distribution of mean x̄ and of covariance
Cdx = σ̄2(J>

f Jf )−1, and the confidence ellipsoids for points
and cameras from diagonal blocks of Cdx.

A method [6] exists to compute only diagonal blocks of
the inverse of matrix like J>

f Jf , so that the computation and
the storage are possible for high dimension. The following

method explain how to compute only the diagonal blocks of
the pseudo-inverse of a matrix like J>

f Jf for a minimal norm
dx and for the general case of the constraint c, in the practical
case of a very high dimension of x.

B. Factorization of covariance matrices

The two following lemmas lead to compute a simpler
pseudo-inverse than that of J>

f Jf (proofs in the Appendix).
Lemma 1: Let H be a symmetric positive matrix, G

invertible and same dimension, and P the linear projector on
Im(H) = Ker(H)⊥ parallel to Ker(H). So

H+ = PG(G>HG)+G>P>.

Lemma 2: Let P1 and P2 be two linear projectors such as
Ker(P1) = Ker(P2). So P1P2 = P1.

Consequences: We apply the lemma 1 with H = J>
f Jf

and G invertible, then the lemma 2 with P⊥
f the projector

on Ker(Jf )⊥ parallel to Ker(Jf ) and P c
f the projector on

Ker(Jc) parallel to Ker(Jf ). We obtain

C⊥
dx = σ̄2P⊥

f G(G>J>
f Jf G)+G>(P⊥

f )>

Cc
dx = σ̄2P c

f G(G>J>
f JfG)+G>(P c

f )>.

The following paragraph shows that these factorizations lead
to an individual computation of diagonal blocks of covariance
if G is well chosen and we use the sparse structure of J>

f Jf .

C. Block computation of covariance matrix

The two following lemmas are useful to choose G and to
explicit P c

f and P>
f (proofs in the Appendix).

Lemma 3: If H =

(

U W
W> V

)

with V invertible, then

G>HG =

(

Z 0
0 V

)

with G =

(

I 0
−V −1W> I

)

and

Z = U − WV −1W>. Also we have the kernel relationship

Ker(H) =

(

I
−V −1W>

)

Ker(Z).

Lemma 4: Let Kf be a matrix whose columns define a
vectorial basis of Ker(J>

f Jf ). We have

P⊥
f = I − Kf (K>

f Kf )−1K>
f

P c
f = I − Kf (JcKf )−1Jc.

Sparse structure and consequences: One assumes that the
m first parameters of x are those of cameras, and the n
last ones, those of 3D points. We have the following block-

structure [6]: J>
f Jf =

(

U W
W> V

)

with U a m×m matrix,

W a rectangular one and V a n×n one which is diagonal by
3× 3 invertible blocks. We assume that there are really more
points than cameras, therefore m � n (see Figure 3).

We consider the case where the computation of SVD is
possible for a m×m matrix but not for a (m + n)× (m + n)
one (due to a time or storage problem)



PSfrag replacements U

V

W

W T

m

n

Fig. 3. Sparse structure of J>

f Jf with m � n. Non-zeros entries in
the matrix are shown in gray. All the diagonal blocks of V are 3×3.

Using the Lemma 3 on H = J>
f Jf involves

C⊥
dx = σ̃2P⊥

f G

(

Z+ 0
0 V −1

)

G>(P⊥
f )>

Cc
dx = σ̃2P c

f G

(

Z+ 0
0 V −1

)

G>(P c
f )>

with Z = U − WV −1W> and G =

(

I 0
−V −1W> I

)

. We

obtain Z+ and a basis of Ker(Z) thanks to a SVD on Z
which is a “small” m × m matrix. The inverse of V is the
diagonal matrix of inverted 3 × 3 diagonal blocks of V . We
also deduce from this lemma a basis of Ker(H) = Ker(Jf )
that we store in a matrix Kf , thanks to the relation between
Ker(H) and Ker(Z).

According to the lemma 4, C⊥
dx and Cc

dx may be written as:

C = (I − AB>)H̃(I − BA>)

= H̃ − A(H̃B)> − (H̃B)A> + A(B>H̃B)A>

with Y = WV −1, H̃/σ̃2 =

G

(

Z+ 0
0 V −1

)

G> =

(

Z+ −Z+Y
−Y >Z+ Y >Z+Y + V −1

)

,

and with A and B two known (m + n) × 7 matrices.
Computation of diagonal blocks: A diagonal block of H̃

is obtained like this [6]: we pick up it in Z+ for a camera,
or we compute it with Y >Z+Y + V −1 for a point. Then
we compute H̃B = H̃ ( B>

c B>
p )

> without fully computing
either storing H̃ thanks to the expression

1

σ̃2
H̃B =

(

0
V −1Bp

)

+

(

I
−Y >

)

(Z+ ( Bc −Y Bp )).

So it is easy to get the diagonal blocks of C (see Figure 4).

D. Time and storage complexities

We evaluate the time and storage complexities of the com-
putation of 6× 6 and 3× 3 diagonal-blocks of the covariance
matrix. These blocks correspond to the parameters of each
camera and each 3D point.

Notations: Let c, p and i be the number of cameras, of 3D
points and of 2D reprojections, respectively. We assume that
a 3D points has been reconstructed from a maximum of r
images. We note that

• c � p < i < pr ≤ pc
• U and Z are Θ(c) × Θ(c) matrices.

C= -−

PSfrag replacements
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Fig. 4. The aim is to compute a diagonal block of the covariance
matrix C from the expression C = H̃ − A(H̃B)> − (H̃B)A> +
A(B>H̃B)A>. We get it from the computation of a block from H̃
(on the left) according to the method described in [6], and from a
corrective term (on the right) due to the projectors P c

f or P⊥

f where
only the gray part is useful during the computation.

• V is a Θ(p) × Θ(p) diagonal matrix of 3 × 3 invertible
blocks.

• W and Y are Θ(c) × Θ(p) matrices and contain i non-
zero 6 × 3 blocks at the same places.

• A, B and H̃B are Θ(p) × 7 matrices.

Calculations: We compute successively U, W, V, V −1, Y, Z
then Z+, Ker(H), A, B, H̃B, and at last the diagonal-blocks
of the covariance matrix without computing neither storing
the zero blocks of W, Y and V . First of all we can note that
complexity in term of available space is the one of theses
matrices, that is to say Θ(c2 + i). Now we present the time
complexity.

The time complexity of U, W, V, V −1, Y is Θ(i), that of Z
is Θ(ic) (each non-zero 6× 3 block of Y is used one time in
the computation of each of c columns of blocks of Z), that
of Z+ is Θ(c3) [6], that of Ker(H) is Θ(i), those of A and
B are Θ(p), and that of H̃B are Θ(i). For all computations
above, the time complexity is Θ(ic + c3).

As the individual computation of one coefficient of
Y >Z+Y is in O(r2), once Z+ and Y are computed, we
deduce that the additional time complexity for the computation
of all diagonal blocks of H̃ is in O(pr2). The final time
complexity is O(ic + pr2 + c3).

Discussions and comparisons: The time complexity O(pc2)
is also correct, but cruder because we often have r � c in
practice.

Even if we use the sparse structure of H and the compact
expressions (A, B) of projectors, the complexities would in-
crease if we start to compute and store the whole H̃ , and then
applying projectors: the space complexity would be Θ(p2), and
the time one Θ(ip + c3) because the computation of product
Y >(Z+Y ) is in Θ(ip) once Y and Z+Y are computed. We
find again here the complexity O(cp2+c3) of [10] with i < pc.

Without using the sparse structure of H , we would com-
pute the pseudo-inverse of H by SVD, and then apply the
projectors. In this case the time complexity would be Θ(p3).

IV. EXPERIMENTATION

The images sequences we used are described in Figure 5.
First two non-trivial gauge constraints are presented, which
will be experimented latter.



x × y c p i |H| t

Bust1 480 × 640 26 885 3129 2811 2 s
Bust2 480 × 640 26 26497 80764 79647 45 s
Man 480 × 640 38 53406 159174 160446 86 s

Campus 512 × 384 198 22726 103607 69366 448 s

Fig. 5. Top: several images of our 3 sequences. Middle: top view
of the reconstructed Campus sequence (a camera is represented by a
square and a 3D point by a black point). Bottom: informations about
the 3D reconstructions (Bust1 and Bust2 are two reconstructions of
the bust sequence). We denote x × y, c, p, i and t the dimension
of images, the number of cameras, of 3D points, of matches that
satisfies the geometry and the computation time (with a Pentium 4
2,4 GHz and 1024 Mb of RAM), respectively. So, the dimension |H|
of the Hessian is 6c + 3p. The 3D reconstructions of Bust1, Bust2
and Man have been computed with the methods described in [8], and
the Campus with the method explained in [14].

A. Two non-trivial gauge constraints

These constraints are referenced by [11]. Let Ai be the
3 parameters Xi, Yi, Zi of a 3D point or a camera center.
Given the estimation A0

i provided by the bundle adjustment,
we define the following constraints on the parameters Ai:

∑

Ai = 0 (1)
∑

||Ai||
2 = constant (2)

∑

A0
i ∧ Ai = 0. (3)

A camera-based (respectively, a point-based) gauge constraint
is obtained if we chose Ai as the center of the ith camera (re-
spectively, the ith 3D point). Equation (1) fixes the translation
of the coordinate center, equation (2) fixes the scale factor,

and equation (3) fixes the rotation.
We note that those constraints take advantage of being more

symmetrical according to the parameters than the trivial ones,
that make chosen points or cameras play a particular role. So
we call a such gauge constraint ”non-trivial symmetric gauge”.

B. Gauge comparisons

Here we compare different gauges for a medium dimen-
sional 3D reconstruction: Bust1. For these sequences, the
”diameter” of cameras center is 1 (the camera centers are
almost on a circle around the bust).

Camera-based gauge: The uncertainty ellipsoids of several
camera-based gauge are presented in Figure 6 for Bust1
sequence. We note that the uncertainties decrease when the
trivial constraints are applied on far cameras. On the other
hand, the non-trivial symmetric constraint on camera centers
gives the lowest uncertainties. Also it gives the better spread
for cameras and near the lowest for points.

cameras points
1th quartile mean 3th quartile 1th quartile median 3th quartile
1.73e-3 1.99e-3 2.19e-3 1.58e-3 2.01e-3 2.83e-3
2.78e-3 3.31e-3 3.98e-3 1.63e-3 2.02e-3 2.81e-3
4.72e-3 9.86e-3 1.48e-2 8.89e-3 9.67e-3 1.03e-2

Fig. 6. 90% ellipsoids (5 times zoomed) for Bust1 and table of
their big axis, for cameras based gauge. The large ellipsoid out
of the ”camera centers circle” corresponds to a 3D points of the
remote background. Top left: symmetric non-trivial gauge, Top right:
(respectively, Bottom) 2 distant cameras (respectively close cameras)
fixed: the first one is entirely fixed and the second one is partial fixed
by its center (the 2 picked out cameras are linked by a line).

Point-based gauge: The uncertainty ellipsoids of several
point-based gauges are presented on Figure 7 for Bust1
sequence. Let A be the set of 3D points, on which we apply the
symmetric non trivial constraint. We note that for a symmetric
non trivial constraint, the uncertainty is spread on A. So,
uncertainty on few background 3D points (we know it is large,
and we do not see all of them in the figures) affects the bust
points when A is the whole set of 3D points, and we obtain
uncertainty for 3D points of bust around 3 or 4 times larger
(top left) than in the case where A is reduced to the set of bust
points (top right). Moreover this large uncertainty affecting the
3D points of the bust affects cameras too (the size of ellipsoid



is multiplied by around 10), which observe the 3D points that
belong almost to the bust. At last we note that ellipsoids are
always larger for a trivial gauge on three remote points of
the bust (on the bottom), than for a symmetric gauge with A
reduced to the set of bust points.

cameras points
1th quartile mean 3th quartile 1th quartile median 3th quartile
2.36e-2 2.41e-2 2.44e-2 6.13e-3 7.08e-3 7.55e-3
2.08e-3 2.39e-3 2.58e-3 1.42e-3 1.87e-3 2.71e-3
6.13e-3 6.88e-3 7.21e-3 2.92e-3 3.31e-3 3.68e-2

Fig. 7. 90% ellipsoids (5 times zoomed) for Bust1 and table of their
big axis, for points based gauge. Top left: symmetric non trivial for
all points gauge, Top right: symmetric non trivial without remote
background points gauge, Bottom: three fixed points (two entirely
and one partially).

Particular gauges: The figure 8 shows the uncertainty
ellipsoids when the chosen covariance matrix is the pseudo-
inverse H+ of the Hessian H (left), and H̃ (right). For this
sequence and coordinate system, we observe that the ellipsoids
of H+ are similar to those obtained with the symmetric non-
trivial constraint on all 3D points, and that those of H̃ are
almost the same as those obtained with the symmetric non
trivial constraint on the center of all cameras.

cameras points
1th quartile mean 3th quartile 1th quartile median 3th quartile
2.12e-2 2.16e-2 2.19e-2 5.39e-3 6.36e-3 6.91e-3
1.74e-3 2.00e-3 2.20e-3 1.56e-3 2.00e-3 2.81e-3

Fig. 8. 90% ellipsoids for Bust1 (5 times zoomed) and table of their
big axis, for particular gauge. Left: pseudo-inverse, Right: H̃.

C. Two kind of reconstructions

We give here the ellipsoids for a 3D reconstruction Bust2
obtained from the same images sequence as Bust1 but com-

cameras points
1th quartile mean 3th quartile 1th quartile median 3th quartile
4.60e-4 5.25e-4 5.61e-4 1.83e-3 2.37e-3 2.95e-3
5.12e-4 6.15e-4 6.77e-4 1.82e-3 2.37e-3 2.94e-3

Fig. 9. Table for the big axis of the 90% ellipsoids for Bust2. Top:
symmetric non trivial based camera gauge. Bottom: symmetric non
trivial based points gauge, without background remote points.

puted with other 3D points: Bust1 is computed with 885 points
of interest and Bust2 is computed from 26497 points located
at corners of a regular grid in one image [8]. The ellipsoids
are given in the figure 9 for the symmetric non trivial camera
and 3D points without background based constraint, and we
compare them with those we obtain for the same constraints
with Bust1. We note that cameras uncertainty clearly decrease
(near a factor 4) when the number of 3D points is larger.
This result is intuitive. However, the magnitude of 3D points
uncertainties increase by a factor 1.08 to 1.3. This is probably
due to the fact that matching positions for regular grid points
are less accurate than those of interest points detected in
images.

D. Complex 3D reconstructions

At last the figure 10 gives the ellipsoids for Man and
Campus reconstructions that have high dimensions (in the
sense of the parameter number), with the symmetric non-trivial
camera-based constraint. The ”diameter” of camera centers
is set to 1 for Man, and the path of Campus measures 147
meters. The important number of remote points (that have high
uncertainty) for Campus gives the ellipsoids schema illegible.
So, only cameras ellipsoids are shown. It is clear that for
such dimensions, the computation method and the memory
management is important. For example, full storing W and Y
for Campus should fill 2∗198∗22726∗6∗3∗8 bytes (8 bytes
for a “double” real), that is to say 1236 Mb.

V. CONCLUSION

After a survey about covariance matrices and uncertainty
ellipsoids within the framework of 3D optimal reconstruction,
a method to compute them has been proposed, justified and
experimented on complex real world examples, for several
choices of constraints. The ellipsoids will be usefull for object
reconstruction [8] and localization [14] applications.

VI. APPENDIX

A. Pseudo-inverse properties

If A is a m × n matrix with n ≤ m, we could compute its
pseudo-inverse A+ with SVD [13]: if A = UDV > with U
orthogonal, V orthogonal and square matrix, and D a positive
diagonal matrix, then A+ = V D+U> with D+ the diagonal
matrix getting by inverting non zero entries of D.

If A is symmetric positive, then we could take U = V and
take out the null diagonal entries of D and the corresponding
column vectors of U , to get A = UDU>, A+ = UD−1U>.

Let y be a vector. The set of x that minimize ||Ax− y||2 is
(A>A)+A>y + Ker(A), denoting x + E = {x + y, y ∈ E}
with E a vector space and x a vector belong to a larger space.



cameras points
1th quartile mean 3th quartile 1th quartile median 3th quartile
8.65e-4 9.79e-4 1.06e-3 1.79e-3 2.03e-3 2.49e-3
0.156 0.220 0.272 0.348 1.059 12.43

Fig. 10. 90% ellipsoids (5 times zoomed) and table of their big
axis for the non-trivial symmetric camera-based gauge. Top: Man.
Bottom: Campus (values in meters).

B. Lemma proofs

Lemma 1 proof: Since H is symmetric (real) and positive,
it is orthogonally similar to a diagonal positive matrix. We de-
duce the existence of a rectangular matrix Q such as Q>Q = I
and D diagonal strictly positive such as H = QD2Q>. One
checks that H+ = QD−2Q> and P = QQ>. Moreover,
PG(G>HG)+G>P> is successively equal to:

QQ>G(G>QD2Q>G)+G>QQ>

QD−1A>(AA>)+AD−1Q> with A = G>QD.

Let A = UD̃V > be a SVD decomposition of A: we get
U>U = V >V = V V > = I . Moreover, D̃ is invertible
because Ker(A) = Ker(QD) = D−1Ker(Q) = 0. This
implies that (AA>)+ = (UD̃2U>)+ = UD̃−2U>. We obtain

A>(AA>)+A = V D̃U>(UD̃−2U>)UD̃V > = I,

and PG(G>HG)+G>P> = QD−1ID−1Q> = H+.
Lemma 2 proof: We get x = (x−P2x)+P2x with x−P2x ∈

Ker(P2) = Ker(P1) and thus P1x = P1P2x for any x.

Lemma 3 proof: We check that
(

I WV −1

0 I

)(

Z 0
0 V

) (

I 0
V −1W> I

)

=

(

U W
W> V

)

,

that is to say G−>

(

Z 0
0 V

)

G−1 = H . This implies that

Ker(H) = Ker

((

Z 0
0 V

)

G−1

)

= GKer

((

Z 0
0 V

))

and we deduce the expression of Ker(H) thanks to the
invertible V .

Lemma 4 proof: The width of Kf is the dimension of
Ker(J>

f Jf ) = Ker(Jf ), therefore 7. The constraint c is
defined by 7 real independent equations, so the height of
Jc is 7 too. Accordingly JcKf is a square matrix. Moreover
Ker(Jc) and Ker(Jf ) = Im(Kf ) are supplementary and so
their intersection is reduced to 0: JcKfx = 0 ⇒ Kfx = 0.
Thus Ker(JcKf ) = Ker(Kf ) = 0 and JcKf is invertible.

Finally, we verify that (I − Kf (JcKf )−1Jc)x = 0 if x ∈
Ker(Jf ) (i.e. x = Kfy) and (I − Kf (JcKf )−1Jc)x = x
if x ∈ Ker(Jc). This gives the P c

f expression, and the P⊥
f

expression with a similar proof.
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