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Abstract

We present new proofs of two theorems of E.B. Davies and B. Simon
(Thm. 2.2.4 and Cor. 2.2.8 in [D]) about ultracontractivity property (Ult for
short) of semigroups of operators and logarithmic Sobolev inequalities with
parameter (LSIWP for short) satisfied by the generator of the semigroup.
In our proof, we use neither the Lp version of the LSIWP (Theorem 2.3)
nor Stein’s interpolation. Our tool is Nash type inequality (NTI for short)
as an intermediate step between Ult and LSIWP . We also present new
results. First, a new formulation about the implication LSIWP ⇒ Ult using
a result of T.Coulhon ([C]). Second, we show that LSIWP and NTI are
equivalent. We discuss different approaches to get Nash type inequalities from
an ultracontractivity property. We give some examples of one-exponential and
double-exponential ultracontractivity and also discuss the general theory for
the second case.
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1 Introduction

In this paper, we give new proofs of theorems due to E.B.Davies and B.Simon (see [D]
Thm. 2.2.4 and Cor. 2.2.8 (see also [DS]). They proved that an ultracontractivity
property (Ult for short),

||Ttf ||∞ ≤ eM(t)||f ||1, ∀t > 0 (Ult)M (1.1)

of a semigroup Tt = e−tA (under some additional assumptions) implies a logarithmic
Sobolev inequality with parameter (LSIWP for short),

∫

f 2 log(f/||f ||2) dµ ≤ t(Af, f) + β(t)||f ||22, ∀t > 0 (LSIWP )β (1.2)

satisfied by the generator A with β = M . They also proved some converse results
with some additional assumptions on the function β. Indeed, it is not always true
that a (LSIWP )β satisfied by a generator A implies an ultracontractivity property
(Ult)M of the corresponding semigroup Tt = e−tA. In [DS] (see Rmk 1 p.359), the
authors give an example of generator A satisfying (LSIWP )β with β(t) = ce1/t but
with no ultracontractivity. So the converse implication doesn’t hold in general. But
under some conditions on the function β, it can be proved that (LSIWP )β implies
(Ult)M̃ with some function M̃ (which may differ of the function M in (1.1)). An
interesting situation is when M̃(t) = c1M(c2t)+c3. In that case, the two statements
(LSIWP )β and (Ult)M are equivalent in the sense that M and M̃ behave in the
same way. For example, eM(t) = Ce−λtt−dec/tγ i.e M(t) = k1 −λt− d ln t+ c/tγ with
k1 = lnC, λ, d, c, γ > 0. But we are unable to prove this relation between M̃(t) and
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M(t) in the general situation. For instance, if β(t) = ec/tγ with 0 < γ < 1, we are

only able to prove that M̃(t) = ec/tγ
′

with γ′ = γ
1−γ

as far as the author knows. It
could be conjectured that γ′ = γ

1−γ
is optimal. In particular, the singularity of the

behavior of γ′ clearly appears when γ goes to 1.

Let us recall briefly the interest of LSIWP and ultracontractivity property. The
ultracontractivity property is equivalent for (symmetric) semigroup to the following
on-diagonal estimate of the heat kernel:

sup
x
ht(x, x) = sup

x,y
ht(x, y) ≤ eM(t), ∀t > 0 (1.3)

with
Ttf(x) =

∫

ht(x, y) dµ(y) (1.4)

(ht(x, y) is the so-called heat kernel).

So, when we are able to prove a LSWIP and we have at hand a theorem saying
that LSIWP implies an ultracontractivity property with an explicite bound, we
immediately deduce the same bound on the heat kernel. Note that, if we replace
LSIWP by a Nash type inequality, the same remark holds true (see [C]). Recall
that a Nash type inequality (NTI for short) is the control by a function Θ of the
L2-norm by the quadratic form associated to the generator of the semigroup when
the L1-norm is bounded. More precisely,

Θ
(

||f ||22
)

≤ (Af, f), ∀f ∈ D(A), ||f ||1 ≤ 1. (1.5)

Since LSIWP and Nash type inequality have the main goal (To prove ultracon-
tractivity), we may ask for relations between these two inequalities. In that paper,
we show that LSIWP and Nash type inequality are equivalent. Moreover, we use
Nash type inequality to give a new proof of the statement (LSIWP ) ⇒ (Ult). We
use again Nash type inequality for the converse implication. This sheds new lights
on relationships between these three inequalities.

We now describe the contents of this paper.

In Section 2, we describe well-known results about the relationship between ul-
tracontractivity property and logarithmique Sobolev inequalities with parameter
following [DS]. We also recall part of the proofs for the convenience of the reader
and also to be compared with the new methods developed in that paper.

In Section 3, we prove the implication (LSIWP )β ⇒ (Ult)M under the usual
additional assumptions on the function β. We use a new approach for the proof:
we introduce an intermediate step with Nash type inequality. In fact, we give two
different results. The first result is a new proof of a corollary of a general result
of Davies and Simon (see [DS]). The second proof gives another ultracontractive
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bound using a result of T.Coulhon [C]. This last result has more general applications.

In Section 4, we study the converse: (Ult)M ⇒ (LSIWP )β. The new proof has
two steps. We deduce a Nash type inequality from the ultracontractivity property
by using again a result of ([C]). This Nash type inequality is equivalent to a Nash
type inequality with parameter already close to (LSIWP )β. The second step con-
sists in applying a method of truncation for Dirichlet forms developed in [BCLS] to
obtain (LSIWP )β.

In Section 5, we prove the equivalence between LSIWP and Nash type inequality
using ideas developed in the preceding sections.

In Section 6, we discuss different well-known approaches to prove Nash type in-
equalities. Such discussion arises naturally since Nash type inequality is the main
tool of our proofs.

In Section 7, we focus on the polynomial ultracontractivity property i.e eM(t) =
ct−ν , ν > 0 in (1.1) which is equivalent to the usual L2-Sobolev inequality. We show
how this ultracontractivity property can be expressed in terms of different functional
inequalities. In particular, we recall the weak-Sobolev inequality introduced earlier
by D. Bakry (see [B]). This section essentially collects these information.

Section 8. To show how this general theory can be applied outside of the poly-
nomial ultracontractivity property setting, we mention two families of examples of
heat kernels on the infinite dimensional torus T

∞ coming from [B2]. The generator
of the semigroup is an infinite dimensional Laplacian with constant coefficients. The
sequence of these coefficients has to go to infinity. Depending on the speed of this
sequence, the corresponding heat kernel bound has a different behavior. The first
family of examples is the one-exponential ultracontractivity behavior i.e

eM(t) = c1e
c2/tγ , (γ > 0).

in (1.1). In this situation, (Ult)M and the corresponding (LSWIP )β are equivalent
(for the abstract theory) in the sense thatM(t) = c/tγ and β(t) = c/tγ with possibly
different constants c.

The second familly of examples is the double-exponential ultracontractivity be-
havior i.e

eM(t) = c1e
ec2/tγ

, (γ > 0).

in (1.1). In this case, the general theory doesn’t give equivalence between (Ult)M

and the corresponding (LSWIP )β. More examples of heat kernel behaviors (i.e
ultracontractivity ) can be found in [B2].

In Section 9, we discuss in the general frame work the relationship between
double-exponential ultracontractivity property and the corresponding (LSWIP )β

(or the corresponding Nash type inequality).
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2 Relations between ultracontractivity and LSIWP

Let (e−At)t≥0 = (Tt)t≥0 be a symmetric Markov semigroup on L2(X, dµ) with gen-
erator A defined on a σ-finite measure space (X, dµ). We say that (Tt)t≥0 is ultra-
contractive if for any t > 0, there exists a finite positive number a(t) such that, for
all f ∈ L1 :

‖Ttf‖∞ ≤ a(t)‖f‖1. (2.1)

An equivalent formulation (by interpolation) of ultracontractivity is as follows:
For any t > 0, there exists a finite positive number c(t) such that, for all f ∈ L2,

‖Ttf‖∞ ≤ c(t)‖f‖2 (2.2)

Also by duality, the inequality (2.2) is equivalent to

‖Ttf‖2 ≤ c(t)‖f‖1 (2.3)

It is known that, under the assumptions on the semigroup (Tt)t≥0, (2.2) implies (2.1)

with a(t) ≤ c2(t/2) and (2.1) implies (2.2) with c(t) ≤
√

a(t).

We say that the generator A satisfies LSIWP (logarithmic Sobolev inequality
with parameter) if there exist a monotonically decreasing continuous function β :
(0,+∞) → (0,+∞) such that

∫

f 2 log f dµ ≤ ǫQ(f) + β(ǫ)‖f‖2
2 + ‖f‖2

2 log ‖f‖2 (2.4)

for all ǫ > 0 and 0 ≤ f ∈ Quad(A) ∩ L1 ∩ L∞ where Quad(A) is the domain of
√
A

in L2 and Q(f) = (
√
Af,

√
Af).

This inequality is modeled on the celebrated Gross inequality [G].

In [DS],[D], the authors show that LSIWP implies ultracontractivity property
under an integrablity condition on β. This condition can be enlarged and be stated
as follows:

Theorem 2.1 (Cor. 2.2.8 [D] ). Let β(ǫ) be a monotonically decreasing continuous
function of ǫ such that

∫

f 2 log f dµ ≤ ǫQ(f) + β(ǫ) ‖f‖2
2 + ‖f‖2

2 log ‖f‖2 (2.5)

for all ǫ > 0 and 0 ≤ f ∈ Quad(A) ∩ L1 ∩ L∞. Suppose that for one η > −1,

Mη(t) = (η + 1)t−(η+1))
∫ t

0
sηβ

(

s

η + 1

)

ds (2.6)

is finite for all t > 0. Then e−At is ultracontractive and

‖e−At‖∞,2 ≤ eMη(t) (2.7)

for all 0 < t <∞.
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Before recalling the proof of Davies and Simon, we make some comments.

Corollary 2.2.8 of [D] is Theorem 2.1 with η = 0. In the literature, Corollary
2.2.8 of [D] is used, for instance, to deal with β(t) = ct−α for 0 < α < 1 and we
had to go back to Theorem 2.2.7 to deal with the case α ≥ 1 (see [FL] for such
an instance of application). Theorem 2.1 unify these two cases in one case just by
an appropriate choice of η. Indeed it is easy to obtain the bound of ultracontrac-
tivity in the theorem above with the parameter η by the same argument used to
treat the example 2.3.4 p.72 of [D]. The proof will be recalled below. Note that, in
general for our applications, β is non-increasing so that for any η > −1, we have
β( t

η+1
) ≤Mη(t), t > 0.

So the interest of such result relies on the fact that we can choose the parameter
η. Indeed for some parameter η the integral (2.6) may not converge at the origin
but it may converge for some other parameters η. For instance when β(t) = c/tα

(α > 0), we obtain Mη(t) = c′/tα with the same index α but we have to choose
η > α − 1. The weight sη is used to remove the singularity of the integral at the
origine. So for this example of class of functions, with an appropriate choice of η,
the integral (2.6) converges and we recover the function β (up to a multiplicative
constant).

It may also happened that, for some function β, the integral doesn’t converge
for any choice of η. For instance, β(t) = exp(c/tα), α > 0.

The aim of this paper is to give a different proof of this result (see Section 3).

We now recall the main steps of the proof of Theorem 2.1 for the case η = 0 and
give the proof of the general case η > −1 (which can be deduce from Example 2.3.4
p.72 of [D]).

The first step is the following lemma. This lemma says that if an L2-version of
LSIWP is satisfied then an Lp-version is also satisfied for any p ∈ (2,+∞).

Lemma 2.2 (Lemma 2.2.6 [D]) Assume that the LSIWP (2.4) is satisfied. Then
∫

gp log g dµ ≤ ǫ(Ag, gp−1) + 2β(ǫ)p−1 ‖g‖p
p + ‖g‖p

p log ‖g‖p (2.8)

for all 2 < p <∞, all ǫ > 0 and all g ∈ D+ =
⋃

t>0 e
−At(L1 ∩ L∞)+.

For the next step, the parameter ǫ can be chosen as a function of p in the Lp-
inequality (2.8). Then we can deduce the ultracontractivity property from this
family of Lp-inequalities.

Theorem 2.3 (Thm 2.2.7 [D]) Let ǫ(p) > 0 and Γ(p) be two continuous functions
defined for 2 < p <∞ such that

∫

f p log f dµ ≤ ǫ(p) < Af, f p−1 > + Γ(p) ‖f‖p
p + ‖f‖p

p log ‖f‖p (2.9)
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for all 2 < p <∞ and all f ∈ D+ =
⋃

t>0 e
−At(L1 ∩ L∞)+. If

t =
∫ ∞

2
p−1ǫ(p) dp, M =

∫ ∞

2
p−1Γ(p) dp (2.10)

are both finite then e−At maps L2 into L∞ and

‖e−At‖∞,2 ≤ eM (2.11)

Proof of Theorem 2.1: Let η > −1 and set ν−1 = η+1 > 0. We apply Lemma
2.2 and Theorem 2.3 with

ǫ(p) = tν2νp−ν , Γ(p) = 2β(ǫ(p))p−1,

then M(t) =
∫ +∞
2 2β(ǫ(p))p−2 dp = Mη(t) as defined above. This completes the

proof.

Now we consider the converse statement. We recall the following result due to
Davies and Simon. In this statement, we note that there is no restriction as the
integrability condition of Theorem 2.1. Thus an ultracontractivity property always
implies LSIWP.

Theorem 2.4 (Thm 2.2.3 [D]) Assume that e−Atis ultracontractive i.e.

‖e−At‖∞,2 ≤ eM(t) (2.12)

for all t > 0, where M(t) is a monotonically decreasing continuous function of t.
Then 0 ≤ f ∈ Quad(A) ∩ L1 ∩ L∞ implies f 2 log f ∈ L1, and the logarithmic

Sobolev inequality

∫

f 2 log f dµ ≤ ǫQ(f) +M(ǫ)‖f‖2
2 + ‖f‖2

2 log ‖f‖2 (2.13)

for all ǫ > 0.

Proof : We just recall the main arguments. We consider Qz = e−tzA for 0 ≤ ℜz ≤ 1
for a fixed t. For any y ∈ R, we have

||Qiyf ||2 ≤ ||f ||2

and
||Q1+iy||∞ ≤ eM(t)||f ||2.

By Stein’s complex interpolation Theorem, for any 0 < s < t, with θ = s/t, we have

||Qθ||p(s) ≤ eθM(t)||f ||2 = esM(t)/t||f ||2
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with p(s) = 2t/(t− s). Note that at this stage, the dependance of the bound in s is
very simple and have the value 1 at s = 0.

The second idea is to obtain the expression under the integral with ln f by
deriving at s = 0 the Lp(s)-norm of fs = Tsf (here we skip the details). Let

φ(s) = ||fs||p(s)
p(s),

φ′(s) = p(s) < −Afs, f
p(s)−1
s > + p′(s)

∫

f p(s)
s ln fs dµ.

Let ψ(s) = esM(t)/t and assume ||f ||2 = 1 thus φ(0) = ψ(0) = 1! Consequently,

φ′(0) ≤ ψ′(0)

that is

−2 < Af, f > +
2

t

∫

f 2 ln f dµ ≤ 2M(t)/t.

The proof is completed.

Our new proof in Section 4 avoid the interpolation argument .

The main applications we have in mind for Theorem 2.1 is with

β(ǫ) = ln(a(ǫ)) = ln c1 − λǫ− d ln ǫ+ c2/ǫ
γ

with c1, c2 > 0 and λ, d, γ ≥ 0 (i.e. a(t) = c1e
−λtt−d exp(c2/t

γ)). For a suitable choice
of η in Theorem 2.1, we obtain for Mη a function of the same type as β. More pre-
cisely Mη(t) = ln c′1 − λ′t − d ln t + c′2/t

γ. So eMη(t) = c′1 exp(−λ′t)t−d exp(c′2/t
γ) is

of the same type as a(t) above (that is up to constants c1, λ, c2). Note that the
exponents d and γ are preserved in this transformation. For this class of function,
Theorem 2.1 and Theorem 2.4 are converse of each other.

Of course, other classes of functions β can be considered but we are not always
able to pass from LSIWP to ultracontractivity. Indeed, it is worth noting that there
exists also a semigroup which is not ultracontractive but satisfies LSIWP (2.5) with
β(ǫ) = c1 exp(c2/ǫ) (see p.359 and also Section 4 p.355 and section 5 p.357 in [DS]).
At the end of this paper, we give an alternative proof for an explicit bound for
ultracontractivity when β(ǫ) = c1 exp(c2/ǫ

γ), γ ∈]0, 1[.

To finish this section, we mention the following result. If we only suppose 0 ≤
f ∈ Quad(A) then it is not obvious that f 2 log f ∈ L1 (at least when µ is not finite)
and we have a slight variation of Theorem 2.4.

Theorem 2.5 (Thm 2.2.4 [D]). Let e−At be ultracontractive with

‖e−At‖∞,2 ≤ eM(t) (2.14)
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for all t > 0, where M(t) is a monotonically decreasing continuous function of t.
Then 0 ≤ f ∈ Quad(A) implies

∫

f 2 log+ f dµ ≤ ǫQ(f) + β(ǫ)‖f‖2
2 + ‖f‖2

2 log ‖f‖2 (2.15)

for all ǫ > 0 where β(ǫ) = M(ǫ/4) + 2.

In the next section, we give a new proof of the theorem 2.1 in the form of Theorem
2.5.

3 LSWIP implies ultracontractivity

3.1 Davies-Simon result

Assuming LSIWP is satisfied by the generator, we give a new proof of ultracontrac-
tivity property of the associated semigroup (under some integrability conditions).
We do not use Lp version of LSWIP as in [DS]. We only use of the L2 inequalities.
There are three steps in our proof. First step: from LSIWP we deduce a (relaxed)
Nash type inequality for the generator using a convexity argument (Lemma 3.1).
Second step: we derive a differential inequality satisfied by the associated semi-
group. Third step: we prove a universal bound on all solutions of this differential
inequality (Lemma 3.3) and, as a consequence, we deduce the ultracontractivity
property .

The first lemma depends on a convexity argument (Jensen inequality). This
lemma will also be used in section 4 and 6. This lemma comes from [BiMa].

Lemma 3.1 If f ∈ L1 ∩ L∞ with f ≥ 0 and ‖f‖1 = 1 then

‖f‖2
2 log ‖f‖2 ≤

∫

f 2 log(f/‖f‖2) dµ (3.1)

and, more generally, if f ∈ L1 ∩ L∞ with f ≥ 0,

‖f‖2
2 log ‖f‖2 ≤

∫

f 2 log f dµ− ‖f‖2
2 log ‖f‖2 + ‖f‖2

2 log ‖f‖1 (3.2)

In particular, if ‖f‖1 ≤ 1 then (3.1) holds true.

Proof : If f ∈ L1 ∩ L2 with f ≥ 0 and ‖f‖1 = 1 then dν = fdµ is a probability
measure. For every convex function Ψ : R

+ −→ R
+, the Jensen inequality yields

Ψ
(
∫

f dν
)

≤
∫

Ψ(f) dν (3.3)

We apply this to the convex function Ψ(x) = x log x. Therefore,
∫

f dν = ‖f‖2
2 and

2‖f‖2
2 log ‖f‖2 ≤

∫

f 2 log f dµ (3.4)

9



We conclude (3.1) with ‖f‖1 = 1. To obtain the general case (3.2), we put f‖f‖−1
1

instead of f in (3.1) then the inequality follows. When ‖f‖1 ≤ 1, (3.2) implies (3.1).
The lemma is proved.

Remark 3.2 We can prove an analogue to the inequality (3.1) with log+ instead of
log.

The following lemma gives a universal bound for all the solutions of the differen-
tial inequality with parameter (3.6). We shall note that this bound doesn’t depend
on the initial condition. We also discuss the optimality of the result.

We need to introduce some notations and definitions. For any η, λ ∈ R and for
any continuous real-valued function b defined on (0,+∞), we define the following
function:

Hη,λ,b(t) =
2λ

tη+1

∫ t

0
sηb(s/λ) ds (3.5)

(assuming this integral converges). This function plays the role of the function Mη

of Section 1. We shall denote by Hη,b the function Hη,(η+1)/2,b.

Lemma 3.3 Let t0 ∈ (0,+∞]. Assume that Φ ∈ C1((0,+∞),R) is a function
satisfying the following differential inequality

Φ(s) ≤ (−t/2)Φ′(s) + b(t) (3.6)

for all s > 0 and all 0 < t < t0, with b a continuous real-valued function defined on
(0, t0).

1. For any η > −1, let λ = η+1
2

. Assume that Hη,b(t) converges for all t ∈
(0, inf(t0, s0/λ)). Then for all t ∈ (0, inf(t0, s0/λ)):

Φ(t) ≤ Hη,b(t). (3.7)

2. Assume that Φ is a non-negative function. For any η > −1 and λ ≥ η+1
2

, we
have for all 0 < t < inf(t0, s0/λ):

Φ(t) ≤ Hη,λ,b(t) (3.8)

Moreover, if b is non-increasing and non-negative, the function λ → Hη,λ,b(t)
is increasing for fixed t and fixed η. Hence, in that case, inequality (3.8) with
λ = η+1

2
implies the others.

3. For η > −1 and λ = η+1
2

. ThenHη,λ,b(s) satisfies (3.6) for all s ∈ (0, inf(t0, s0/λ))
with t = s/λ. In fact in that case, the inequality (3.6) is an equality.

10



Proof of Lemma 3.3: Let η > −1 and λ > 0. For s > 0 choose t = s/λ in (3.6).
We multiply (3.6) by sη and integrate over the interval (0, t]. Then

∫ t

0
sηΦ(s) ds ≤ (−1/2λ)

∫ t

0
sη+1Φ′(s) ds+

∫ t

0
sηb(s/λ) ds. (3.9)

The second integral is integrated by parts, so we get

1

2λ
tη+1Φ(t) ≤

[

η + 1

2λ
− 1

]
∫ t

0
sηΦ(s) ds +

∫ t

0
sηb(s/λ) ds.

Let λ = (η + 1)/2 if Φ is real-valued and let λ ≥ (η + 1)/2 if Φ ≥ 0. The second
term above is negative. Then

1

2λ
tη+1Φ(t) ≤

∫ t

0
sηb(s/λ) ds.

This proves 1 and 2 of the lemma. The statement 3 is easy to check by a direct
computation.

Now, we can restate Theorem 2.1 with a slight modification of the expression of
the bound (2.7). The proof depends upon Lemmas 3.3 and 3.1 and it is short. This
proof is also simpler than the original proof of Theorem 2.1 because it doesn’t use
Theorem 2.3. But as already mentioned, an important disadvantage of Theorem 2.1
or Corollary 2.2.8 of [D] is that it doesn’t enable us to treat the case β(ǫ) = e

c1
ǫα , α >

0. By a modification of Lemma 3.3 we shall provide in Section 9 an explicit bound
of ultracontractivity property under the assumption β(ǫ) = e

c1
ǫα with 0 < α < 1 .

Theorem 3.4 Suppose that the following logarithmic Sobolev inequality is valid for
all ǫ > 0 and all 0 ≤ f ∈ Quad(A) ∩ L1 ∩ L∞,

∫

f 2 log f dµ ≤ ǫQ(f) + β(ǫ)‖f‖2
2 + ‖f‖2

2 log ‖f‖2 (3.10)

with β a continuous function. Then for all η > −1

‖e−At‖∞,2 ≤ eMη(t) (3.11)

for all 0 < t <∞ where Mη(t) is defined in (2.6).

Proof : Assume that 0 ≤ f ∈ Quad(A) ∩ L1 ∩ L∞. We set fs = e−Asf = Tsf
for s > 0. Suppose ‖f‖1 = 1 then, by contraction property on L1 of the semigroup,
‖fs‖1 ≤ ‖f‖1 = 1. We check that 0 ≤ fs ∈ Quad(A)∩L1 ∩L∞. We put fs in (3.10),

∫

f 2
s log fs dµ− ‖fs‖2

2 log ‖fs‖2 ≤ tQ(fs) + β(t)‖fs‖2
2 (3.12)

for all s, t > 0. We apply Lemma 3.1 with fs, we deduce

‖fs‖2
2 log ‖fs‖2 ≤ tQ(fs) + β(t)‖fs‖2

2 (3.13)
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Let Ψ(s) = ‖fs‖2
2. Then Ψ′(s) = −2Q(fs). Therefore, Ψ(s) satisfies

1

2
Ψ(s) log Ψ(s) ≤ (−t/2)Ψ′(s) + β(t)Ψ(s) (3.14)

Let Φ(s) = log Ψ(s) and changing t by t/2, then

Φ(s) ≤ (−t/2)Φ′(s) + b(t) (3.15)

for all s, t > 0 with b(t) = 2β(t/2). We apply Lemma 3.3 with t0 = +∞, for all
η > −1

Φ(t) = log ‖Ttf‖2
2 ≤ Hη,b(t) = 2Mη(t) (3.16)

Hence,
‖Ttf‖2 ≤ exp (Mη(t)) ‖f‖1 (3.17)

By duality,
‖Ttf‖∞ ≤ exp (Mη(t)) ‖f‖2. (3.18)

The proof of the theorem is completed.

We can localize this result in the sense that, if we assume (3.10) holds true for
all 0 < ε < ε0 then (3.11) holds true for t ∈ (0, 2ε0).

3.2 Another ultracontractive bound

Now, we prove another ultracontractive bound for the semigroup under the assump-
tion that the generator satisfies LSIWP. We use a result due to T. Coulhon (see
Prop. II.1 of [C]) and the lemma (3.1) of this article.

Theorem 3.5 Let A be a generator of a submarkovian semigroup and β be a func-
tion such that:

∫

f 2 log(f/||f ||2) dµ ≤ t(Af, f) + β(t)||f ||22, t > 0. (3.19)

We define B(y) = supt>0(ty/2 − tβ(1/t)), y ∈ R and M(t) the inverse function of
q(s) =

∫ +∞
s

dy
B(y)

, s ∈ R (We assume that
∫∞ dy

B(y)
<∞ ). Then

‖Ttf‖∞ ≤ eM(t)‖f‖1 (3.20)

for any t > 0.

Proof : We assume that (3.19) is satisfied. The first setp is to obtain a Nash type
inequality. For that purpose, we apply lemma (3.1):

||f ||22 ln ||f ||2 ≤ t(Af, f) + β(t)||f ||22, ∀t > 0, ∀f ∈ D(A), ||f ||1 ≤ 1. (3.21)
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Hence

||f ||22
[

1

2t
ln ||f ||22 −

1

t
β(t)||f ||22

]2

≤ (Af, f). (3.22)

By optimisation over t > 0 and by definition of B,

||f ||22 B
(

ln ||f ||22
)

≤ (Af, f), ∀f ∈ D(A), ||f ||1 ≤ 1. (3.23)

SinceB is convex, it follows thatB is continuous. Let’s denote by Θ(x) = xB(ln x), x >
0 (here we use notations of [C]). For the second step, we apply Prop.II.1 of [C] which
says that

‖Ttf‖2 ≤ m(t)‖f‖1

with m(t) the inverse function of p(t) =
∫+∞
t

dx
Θ(x)

, t > 0. By a change of variable,
we get

p(t) =
∫ +∞

ln t

dy

B(y)
, t > 0.

Setting q(s) =
∫+∞
s

dy
B(y)

, s ∈ R, we obtain p(t) = q(ln t), t > 0. Thus m(t) =

exp(q−1(t)) = eM(t) with M(t) defined as in this theorem. This completes the proof.

4 Ultracontractivity implies LSIWP

In [D] and [DS], the authors show how we can deduce LSIWP from ultracontractiv-
ity using the complex interpolation of Stein. In this section, we give another way
to deduce logarithmic Sobolev inequality with parameter from ultracontractivity.
Nash type inequality is involved in the proof.

We first recall a result due to T.Coulhon which is one step to prove LSIWP
from ultracontractivity property. We give a slightly different presentation of the
statement of this theorem and we recall the proof for the convenience of the reader.

Theorem 4.1 [C] Let (Tt) be a symmetric semigroup on L2. Suppose that

||Ttf ||22 ≤ m(t)||f ||21, ∀t > 0. (4.1)

Then the following Nash type inequality is satisfied

||f ||22 Λ(ln ||f ||22) ≤ (Af, f), ∀f ∈ D(A), ||f ||1 ≤ 1, (4.2)

where Λ(s) = supt>0(st− t lnm(1/2t) ), s ∈ R.

The function Λ is the conjugate function (or so-called Legendre transform)
of t → t lnm(1/2t). The function x → xΛ(ln x) is nothing but the function
Θ̃(x) = supt>0(x/2t) log(x/m(t)) of Proposition II.2 of [C]. The interest of the
formulation (4.2) is that it expresses Θ̃ in terms of the Legendre transform Λ and
is well-appropriate to deal with fractional powers of A. Indeed, in [BeMa] it is
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proved that if A satisfies a Nash type inequality with Θ̃(x) = xΛ(ln x) then Aα

(0 < α < 1) satisfies a Nash type inequality with (roughly) Θ̃α(x) = xΛα(lnx)
where Λα = exp(α ln Λ).

Proof : Nash type inequality (4.2) is proved by using a convexity argument and
optimization over the time parameter. By Jensen’s inequality,

e−2t(Af,f)/||f ||2
2 ≤

∫ +∞

0
e−2tλdµ(λ) = ||Ttf ||22/||f ||22

where dµ(λ) = d(Eλf, f)/||f ||22 and (Eλ) is the spectral decomposition of A. By
assumption (4.1) and ||f ||1 ≤ 1, we deduce

e−2t(Af,f)/||f ||2
2 ≤ m(t)/||f ||22.

This can be written as

−2t(Af, f) ≤ ||f ||22
(

lnm(t) − ln ||f ||22
)

or equivalently by changing t by 1/2t

||f ||22
(

t ln ||f ||22 − t lnm(1/2t)
)

≤ (Af, f).

We finishes the proof by optimizing over t > 0.

It is easily proved that Nash type inequality (4.2) is equivalent to what we shall
call the relaxed Nash type inequality below

||f ||22 log(||f ||2) ≤ t(Af, f) + log(
√

m(t))||f ||22, ∀t > 0, ||f ||1 ≤ 1. (4.3)

We compare this inequality with the one we can deduce from Davies-Simon
Theorem recalled in (2.4). Under the assumption of ultracontractivity property of
Davies-Simon Theorem and with Lemma 3.1, we get the following relaxed Nash type
inequality :

||f ||22 log(||f ||2) ≤ t(Af, f) + M(t)||f ||22, ∀t > 0, ||f ||1 ≤ 1, (4.4)

and the two functions M(t) and log(
√

m(t)) from (2.12) and (4.1) are the same

i.e M(t) = log(
√

m(t)) (We assume that (2.12) and (4.1) are equalities). So the

inequalities (4.3) and (4.4) are the same.

We now state the equivalence of relaxed Nash type inequality and LSIWP when
Q(f) = (Af, f) is a Dirichlet form (see [FU]). We apply truncation method as
developped in [BCLS]. This result is essentially contained in [BiMa]. We give the
sketch of the proof for completness.
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Theorem 4.2 1. Assume that Q is a Dirichlet form and that the following in-
equality is satisfied

||f ||22 log(||f ||2) ≤ tQ(f) + M(t)||f ||22, ∀t > 0, ||f ||1 ≤ 1. (4.5)

Then ∫

f 2 log+(f/||f ||22) dµ ≤ tQ(f) + M̃(t)||f ||22, ∀t > 0 (4.6)

with M̃(t) = 1
c1
M(t/c1) + c2 (The constants c1, c2 > 0 do not depend on f and

Q).

2. Conversely (without any assumptions on the quadratic form Q), if (4.6) is
satisfied then (4.5) is also satisfied with M(t) = M̃(t) for all t > 0.

Proof :

1. The arguments are taken from [BiMa] and [BCLS]. We give the ingredients
of the proof. Let f such that 0 ≤ f and ||f ||2 = 1. Let k ∈ Z, we define
fk = (f − 2k) ∧ 2k. Fix t > 0. By assumption,

||fk||22 log(||fk||2/||fk||1) ≤ tQ(fk) + M(t)||fk||22.

We have 2k−1 ≤ ||fk||2/||fk||1 and 22kµ(2k ≤ f) ≤ ||fk||22. We set W (g) =
tQ(g) +M(t)||g||22 (note that W is also a Dirichlet form). Then we deduce for
any k ∈ Z,

22kµ(2k ≤ f) log 2k−1 ≤W (fk).

By discretisation of the integral,

∫

f 2 log+ f dµ ≤
∞
∑

k=0

22(k+1) log 2k+1µ(2k ≤ f ≤ 2k+1).

Hence, altogether, we get for some c, c′ > 0,

∫

f 2 log+ f dµ ≤ c
∞
∑

k=0

W (fk−1) + c′||f ||22

We conclude by the fact that W is a Dirichlet form then

∞
∑

k=0

W (fk−1) ≤
∑

k∈Z

W (fk) ≤W (f)

For a demonstration of the last statement see [BiMa]. This finishes the proof
of the first statement.

2. We apply Lemma 3.1.
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This finishes the proof of this theorem.

Combining Theorem 4.1 and Theorem 4.2, we obtain a new proof of LSIWP
from ultracontractivity property. Indeed, we first apply Coulhon’s result 4.1 then
we get the so-called relaxed Nash type inequality (4.3). We now apply Theorem 4.2
to conclude. Note that in [D], they get M̃(t) = M(t) for all t > 0.

5 Relations between Nash type inequality and LSIWP

We now prove that Nash type inequality and LSIWP are (essentially) equivalent.
We obtain this result by putting together arguments of Section 4 and using the fact
that the function Λ in (5.1) is a Legendre transform. The natural assumption on Λ
comes from the following remark: we have proved that ultracontractivity property
(see (4.2)) or LSIWP (see (3.19) and (3.21)) implies a Nash type inequality of the
form

‖f‖2
2 Λ(ln ‖f‖2

2) ≤ (Af, f), ‖f‖1 ≤ 1, f ∈ D(A). (5.1)

where Λ is given by the Legendre transformation (i.e the so-called conjugate func-
tion) of the function ψ,

Λ(y) = sup
t>0

(ty/2 − ψ(t))

with ψ(t) = tβ(1/t) (see (4.2)). It implies for any t > and any y ∈ R,

ty/2 − Λ(y) ≤ ψ(t) (5.2)

which says in particular that the function y → ty/2−Λ(y) is bounded for any t > 0.
Note also, in the theory of Orlicz spaces, the functions ψ and Λ are N -functions in
the sense of [A] and ψ is obtained by the duality formula, for any t > 0,

sup
y∈R

(ty/2 − Λ(y)) = ψ(t)

Here, ψ and Λ are not necessarily N -functions. In our case, it is not a problem
because we only need the inequality (5.2) in our applications. So as we can see,
Legendre transform (or more generally convexity) plays again an important role in
our theory.

We are now in a position to give the natural condition on Λ to formulate our
first statement: Nash type inequality ⇒ LSIWP.

Theorem 5.1 Assume that (5.1) holds true for some function Λ with (Af, f) a
Dirichlet form and that Λ satisfies the following hypothesis: for any fixed t > 0, the
function y ∈ R → ty/2 − Λ(y) is bounded above. Set

N(t) = sup
y∈R

(ty/2 − Λ(y)), t > 0
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and
β(t) = tN(1/t).

Then, there exists c1, c2 > 0 such that, for all f ∈ D(A),
∫

f 2 log+(f/||f ||2) dµ ≤ t(Af, f) + β̃(t)||f ||22, ∀t > 0 (5.3)

with β̃(t) = 1
2c1
β( 2t

c1
) + c2.

In fact, the main point of Theorem 5.1 is the existence of the function N . For
instance, the second hypothesis of this theorem is satisfied if the following conditions
(A1) and (A2) below holds true.

(A1): For any s > 0 and any y0 ∈ R, the function y → sy − Λ(y) is bounded
above on the interval (−∞, y0).

(A2): limy→+∞
Λ(y)

y
= +∞.

For example, the assumption (A1) is satisfied if Λ is non-negative or if there exists
y1 ∈ R such that Λ(y) = 0 for all y ≤ y1 and Λ continuous or limy→−∞ Λ(y) = 0
and Λ continuous.

As we have already mentioned, if Λ is given by the Legendre transformation of
some function i.e Λ(y) = supt>0(ty/2−ψ(t)) (finite at any point y ∈ R) then Λ sat-
isfies immediately the hypothesis of our theorem. Also note that the transformation

t→ β(t) = tN(1/t).

is idempotent. So N(t) = tβ(1/t).

Proof : By Theorem 4.2, it is enough to prove (4.5). As a consequence of the
definition of N(t), we have for any t > 0 and any y ∈ R,

yt/2 − Λ(y) ≤ N(t)

or equivalently,
yt/2 −N(t) ≤ Λ(y).

Let y = ln ||f ||22 in the inequality just above and multiply it by ||f ||22. Hence, by our
assumption (5.1), we deduce

t||f ||22 ln ||f ||22 −N(t)||f ||22 ≤ (Af, f).

We set t = 1/s, s > 0. This yields

||f ||22 ln ||f ||22 ≤ s(Af, f) + sN(1/s)||f ||22
and by definition of β,

||f ||22 ln ||f ||22 ≤ s(Af, f) + β(s)||f ||22.
So, (4.5) is proved with M(t) = 1

2
β(2t). Now, we apply Theorem 4.2. This finishes

the proof.

We now state the converse of Theorem 5.1. Note that we do not need any
assumption on the quadratic form (Af, f) for this converse.
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Theorem 5.2 Assume that, for all f ∈ D(A),
∫

f 2 log+(f/||f ||2) dµ ≤ t(Af, f) + β(t)||f ||22, ∀t > 0 (5.4)

is satisfied. Set
Λ(y) = sup

t>0
(ty/2 −N(t)), y ∈ R

with
N(t) = tβ(1/t).

Then, for all f ∈ D(A),

‖f‖2
2 Λ(ln ‖f‖2

2) ≤ (Af, f), ‖f‖1 ≤ 1. (5.5)

The function Λ is automatically defined as can be seen in the course of the proof.

Proof : The assumption (5.4) implies obviously LSIWP. We now repeat the ar-
gument of the beginning of the proof of Theorem 3.5. We apply Lemma 3.1 to get
(3.23) with B = Λ. This completes the proof.

We have shown that Nash type inequality are equivalent to LSIWP in the sense
of Theorem 5.1 and Theorem 5.2.

6 Nash type inequality

In this section, we study some aspects of the relationship between ultracontractivity
and Nash type inequality (see [C], [T] ) of the form :

B(‖f‖2
2) ≤ Q(f) (6.1)

for all f ∈ Quad(A) ∩ L1 with ‖f‖1 ≤ 1. The classical Nash inequality corresponds
to B(t) = ct1+2/n (see [CKS]) i.e.

c‖f‖2+4/n
2 ≤ Q(f)‖f‖4/n

1 (6.2)

Let V,W be two continuous functions on [0,+∞[ and b1 a continuous function
on ]0,+∞[. We begin by the following easy but important proposition :

Proposition 6.1 The two following inequalities are equivalent : for all t > 0 and
all f ∈ Quad(A) ∩ L1 with ‖f‖1 ≤ 1,

V (‖f‖2
2) ≤ tQ(f) + b1(t)W (‖f‖2

2) (6.3)

and

B(‖f‖2
2) ≤ Q(f) (6.4)

where is defined by B(x) = sups>0(sV (x) − b(s)W (x)), x > 0 with b(s) = sb1(1/s).
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The inequality (6.3) will be called relaxed Nash type inequality. We shall apply
this proposition in two important cases :

case (A) :
V (x) = x, W (x) = 1. (6.5)

case (B) :

V (x) =
x

2
log x, W (x) = x. (6.6)

Remark 6.2 The assumptions on V,W, b1 and (6.3) implies that B(‖f‖2
2) is finite.

With V (x) = x, W (x) = 1 then B(x) = sups>0(sx − b(s)) is the complementary
function (or Legendre transform) of b. In applications, we often recover b(s) by the
same formula b(s) = supx>0(xs−B(x)) (see [A] p.229).

With the choice V (x) = x
2
ln x and W (x) = x, B(x) = x sups>0(

s
2
ln x − b(s)) is

similar to the function Θ̃ introduced in section 4.

Proof : The proof is easy and left to the reader.

By the remark just above, the problem of obtaining the Nash type inequality
(6.4) is equivalent to show the inequality (6.3). But some difference may arise from
the choice of the functions V and W as we shall see below. Under an ultracontrac-
tivity assumption on the semigroup, we apply the proposition 6.1 in case (A) and
(B) respectively.

Case A
We start with this simple case.

Theorem 6.3 Let Tt be an ultracontractive semigroup such that

‖Ttf‖∞ ≤ a(t)‖f‖1 (6.7)

then
‖f‖2

2 ≤ tQ(f) + a(t) (6.8)

for all t > 0 and f ∈ Quad(A) ∩ L1, with ‖f‖1 ≤ 1.

and
B(‖f‖2

2) ≤ Q(f) (6.9)

for all t > 0 and f ∈ Quad(A) ∩ L1, with ‖f‖1 ≤ 1, where we set b(s) = sa(1/s)
and B(x) = sups>0(sx− b(s)).

The inequality (6.8) is called super-Poincaré inequality in [W] (see (1.2) of [W]).
See also Sec.5 of [W] for related results to the ultracontractivity property.
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Proof : Let f ∈ L1 ∩Quad(A) with ‖f‖1 ≤ 1. Set fs = Tsf , then for all t > 0 :

f = ft +
∫ t

0
Afs ds

Hence,

‖f‖2
2 = (ft, f) +

∫ t

0
(Afs, f) ds

and

‖f‖2
2 ≤ ‖ft‖∞‖f‖1 +

∫ t

0
Q(fs/2) ds

The function s 7→ Q(fs) = (Afs, fs) is non-increasing, thus

‖f‖2
2 ≤ a(t) + tQ(f)

We conclude the proof by applying Proposition 6.1 with V (x) = x,W (x) = 1 and
b1(t) = a(t).

In particular, if a(t) = ct−
n
2 then we obtain the classical Nash inequality (6.2).

This result is well-known (see [VSC]). In fact, (6.7) and (6.2) are equivalent (see[CKS])
and are also equivalent to Sobolev inequality (when n > 2) :

‖f‖2
2n

n−2

≤ cQ(f) (6.10)

This last result is due to Varopoulos (see [V]).

For applications, an important family of functions is

a(t) = c1t
−α exp(

c2
tγ

), α ≥ 0, γ ∈ R. (6.11)

This kind of function motivates our study. Of course, when t is small the main term
is the exponential for which the computation of B just above is rather complicated.
Indeed, with γ 6= 0 and α 6= 0 the function B doesn’t seem to be known explicitely.
We can certainly estimate B(x) when x is large. But we shall see below that a bet-
ter approach of Nash type inequality is to use the logarithmic Sobolev inequality.
In that case a(t) is replaced by ln a(t) with a change of the couple (V,W ) and the
corresponding function B(t) can be computed exactly (see case B).

Case B :
We have at least two possibilities to prove Nash type inequality from an ultra-

contractivity property for the case V (x) = x
2
ln x and W (x) = x. One way is to use

the LSIWP and the convexity Lemma 3.1. An alternative proof is to use Coulhon’s
result recalled in Theorem 4.1.

Theorem 6.4 Let Tt be an ultracontractive semigroup such that

‖Ttf‖∞ ≤ a(t)‖f‖1 (6.12)
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or
‖Ttf‖∞ ≤

√

a(t) ‖f‖2. (6.13)

Then, for all t > 0 and f ∈ Quad(A) ∩ L1, with ‖f‖1 ≤ 1 :

‖f‖2
2 log ‖f‖2 ≤ tQ(f) +

1

2
log a(t)‖f‖2

2 (6.14)

Or equivalently the following Nash type inequality

B(‖f‖2
2) ≤ Q(f) (6.15)

with B(x) = x sups>0(
s
2
log x− b(s)) and b(s) = s

2
log a(1/s).

Proof : By applying Theorem 2.4 with M(t) = 1
2
log a(t), the following LSIWP is

satisfied: for all t > 0,
∫

f 2 log(f/‖f‖2) dµ ≤ tQ(f) +M(t)‖f‖2
2 (6.16)

From the lemma 3.1, we deduce (6.14). We conclude by applying Proposition
6.1 with V (x) = x

2
log x,W (x) = x and b1(t) = 1

2
log a(t). This completes the proof.

The alternative proof using Coulhon’s result is left to the reader (see Theorem
4.1).

We now give an example. When α = 0 in (6.11), we are able to explicit function
B in Nash type inequality.

Theorem 6.5 If the following inequality is satisfied for some γ > 0,

‖Ttf‖∞ ≤ c1 exp(
c2
tγ

)‖f‖1 (6.17)

Then there exist k, β > 0 such that for all f ∈ Quad(A) ∩ L1, with ‖f‖1 ≤ 1,

k‖f‖2
2

[(

log
‖f‖2

β

)

+

]1+ 1

γ

≤ Q(f) (6.18)

Conversely (6.18) implies (6.17) with different constants c1 and c2.

Proof : We apply Theorem 6.4. Since B(t) = tD(log
√
t), we have just to compute

D(x) = sups>0(sx−b(s)) with b(s) = log c1
2
s+ c2

2
s1+γ . For x ∈ R, we easily study the

extrema of h(s) = sx− b(s) and obtain D(x) = k [(x− k1)+]1+
1

γ , x ∈ R with k > 0.

Let β = ek1 then B(t) = kt
[

(

log
√

t
β

)

+

]1+ 1

γ

. The converse is proved by applying

Proposition 6.1 and Theorem 2.1. The proof is completed.
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Remark 6.6 We denote that b(s) may not an N-function in the sense of [A] p.228
since lims→0 b(s)/s is not necessarily zero. But for all t, s > 0, the functions B and
b satisfy

t(s log
√
t− b(s)) ≤ B(t)

Let v = log
√
t, then

sv −H(v) ≤ b(s)

with H(v) = e−2vB(e2v). Hence,

H̃(s) = sup
v∈R

(sv −H(v)) ≤ b(s)

It is easily seen that H̃(s) = b(s) when B(t) = kt
[

(

log
√

t
β

)

+

]1+ 1

γ

.

We now show that an ultracontractive bound on the semigroup implies a gener-
alized Gross’ inequality (see (6.20 below). Such an equality is easily deduced from
LSIWP.

Theorem 6.7 Let Tt be an ultracontractive semigroup such that

‖Ttf‖∞ ≤ a(t)‖f‖1 (6.19)

then

D
(
∫

f 2 log f dµ
)

≤ Q(f) (6.20)

for all 0 ≤ f ∈ Quad(A)∩L1∩L∞ with ‖f‖2 = 1 and where D(t) = sups>0(st−b(s))
with b(s) = s

2
log a(1

s
). Equivalently,

‖f‖2

2 D
(

‖f‖−2
2

∫

f 2 log (f/‖f‖2) dµ
)

≤ Q(f) (6.21)

for all 0 ≤ f ∈ Quad(A) ∩ L1 ∩ L∞.

Proof : By Davies-Simon Theorem 2.4, we have

∫

f 2 log f dµ ≤ tQ(f) +
1

2
log a(t)‖f‖2

2 + ‖f‖2
2 log ‖f‖2 (6.22)

for all t > 0. We now assume that ‖f‖2 = 1 then changing t by 1/s,

s
(
∫

f 2 log f dµ
)

− s

2
log a(1/s) ≤ Q(f) (6.23)

Thus, with D define as above, we conclude (6.20) and (6.21) by renormalisation.
This proves the theorem.
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We can see Theorem 6.4 as a corollary of Theorem 6.7 when D(t) is non de-
creasing in t. The proof is a simple application of the lemma 3.1 which can be also
formulated as follows, for all 0 ≤ f ∈ L1 ∩ L∞ with ‖f‖1 ≤ 1 :

log ‖f‖2 ≤ ‖f‖−2
2

∫

f 2 log (f/‖f‖2) dµ (6.24)

then from (6.21),
‖f‖2

2D(log ‖f‖2) ≤ Q(f) (6.25)

But the first term of this inequality is B(‖f‖2
2) in (6.15 ) because B(t) = tD(log

√
t).

We conclude Theorem 6.4.

7 Weak Sobolev inequalities and Nash Type in-

equalities.

We apply the results of the preceding section with a(t) = c1t
−n

2 and recall explicitely
some well-known results concerning semigroups with this polynomial ultracontrac-
tivity. Recall that, in our setting,

‖e−At‖∞,2 ≤ c1t
−n

4 (7.1)

is equivalent to
‖e−At‖∞,1 ≤ c′1t

−n
2 (7.2)

Let D be the domain of A.

Theorem 7.1 The following inequalities are equivalent
(i)

‖e−Atf‖∞ ≤ c1t
−n

4 ||f ||2 (7.3)

for all f ∈ L2 and for all t > 0.
(ii)

∫

f 2 log f dµ ≤ log
(

c3Q(f)
n
4

)

(7.4)

for all f ∈ D ∩ L1 ∩ L∞, f ≥ 0 and ‖f‖2 = 1.
(iii)

‖f‖2+ 4

n
2 ≤ c4Q(f)‖f‖

4

n
1 (7.5)

for all f ∈ L1 ∩ D.
(iv)

‖f‖2
2n

n−2

≤ c5Q(f) (7.6)

for all f ∈ D (when n > 2).
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Proof : The equivalences between (7.3) and (7.5) and (7.6) (when n > 2) are
well-known, see [VSC],[D].

In [B], D.Bakry gives the arguments to prove that (7.4) is equivalent to (7.3)
(see remark at the end of page 64 and Section 5 p.67 of [B])). Here, we focus on
the inequality (7.4). We first prove that (7.3) implies (7.4) by applying Theorem 6.7

with a(t) = c0 t
−n

2 . A simple computation gives us D(y) = ce
4y
n , y ∈ R. Then, we

deduce for all f ∈ D ∩ L1 ∩ L∞, f ≥ 0 and ‖f‖2 = 1 :

c exp
(

4

n

∫

f 2 log f dµ
)

≤ Q(f) (7.7)

because D is increasing and thus invertible, this inequality is equivalent to (7.4) i.e
∫

f 2 log f dµ ≤ log
(

c3Q(f)
n
4

)

(7.8)

with c3 = c−
n
4 .

We now prove that (7.4) implies (7.5) by applying Theorem 6.4. We get, for any
0 ≤ f ∈ D ∩ L1 ∩ L∞,

‖f‖1+ n
2

2 ≤ c3Q(f)
n
4 (7.9)

with ‖f‖1 ≤ 1. This proves (7.5).

The original proof of the implication (7.3) to (7.5) is obtained by using Theorem
(6.3). But, as we have seen above, the applications of Theorem 6.3 have some limi-
tations. So we shall prefer the approach with LSIWP given by Theorem 6.7.

The inequality (7.4) is called weak-Sobolev inequality of dimension n in [B].
In section 6, this inequality is generalized by inequality (6.20). Then (7.4) is a
particular case of (6.20) with the function D(y) = ce4y/n, y ∈ R which is invertible.
More generally when D is invertible, the inequality (6.20) is equivalent to

∫

f 2 log f dµ ≤ D−1 (Q(f)) (7.10)

for all f ∈ D ∩ L1 ∩ L∞, f ≥ 0 and ‖f‖2 = 1.

8 Examples on the infinite Torus

In this section, we give families of examples of semigroups with one-exponential and
double-exponential ultracontractivity property when the time is small (see defini-
tions below). In fact, a natural setting for having such behaviors is the infinite torus
T
∞. The reference for such examples is the paper by A.Bendikov [B2] (see also

[B1]). This paper also contains much more examples of classes of ultracontractivity.
In fact, much weaker behavior than polynomial ultracontractivity can be produced
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(see[B2]).

Let T
∞ be the infinite torus with its ordinary product structure. The group

T
∞ is a compact abelian group. The neutral element is denoted by 0 and dm the

normalised Haar measure. This measure is the countable product of the normalised
Haar measure of T which is identified with [−π, π]. Let µt the brownian semigroup
on T and A = {ak}∞k=1 a sequence of strictly positive numbers. For each t > 0, we
define the product measure:

µA
t = ⊗∞

k=1µtak

then (µA
t )t>0 defines a symmetric convolution semigroup on T

∞ denoted by (TA
t )t≥0

and
||TA

t ||1→∞ = µA
t (0).

One important aspect of such semigroups for Harmonic Analysis theory in infinite
dimensional spaces is that (µA

t ) is not necessarily absolutely continuous with respect
to the Haar measure dm. We have to impose conditions on the sequence A in order
to get a continuous density. To this purpose, we set for x > 0 :

NA(x) = ♯{k ≥ 1 : ak ≤ x}.

It is proved in [B2] (Thm 3.6 p.51) that if

logNA(x) = o(x) as x→ +∞

then µA
t has a continuous density. The converse is also true. We also denote by

µA
t the density when it exists. The infinitesimal generator is given formally as an

infinite Laplacian A =
∑∞

k=1 ak
∂2

∂2xk
. In the two following subsections, we focus on

two particular examples of ultracontractivity property.

8.1 One-exponential ultracontractivity

We shall say that a semigroup (Tt) satisfies a one-exponential ultracontractivity
property at zero if there exists α > 0 and t0 > 0 such that

||Tt||1→+∞ ≤ c′ exp
(

c

tα

)

, 0 < t < t0. (8.1)

for some constants c, c′ > 0. We shall say that a semigroup (Tt) has a strict one-
exponential ultracontractivity property if (8.1) is satisfied and moreover

c′ exp
(

c

tα

)

≤ ||Tt||1→+∞, 0 < t < t0. (8.2)

with the same index α but with possibly other constants c, c′.

Note that of (8.1) holds for some t < t0 then it holds for any t > 0. Indeed, the
function ||Tt||1→+∞, is non-increasing in t. We have the following family of examples
satisfying a strict one-exponential ultracontractivity property:
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Theorem 8.1 ( [B2] Thm 3.18 p. 54). Let α > 0. Assume that NA(x) ∼ xα as
x→ +∞. Then we have

logµA
t (0) ∼ k(α) t−α as t→ 0 (8.3)

In particular, there exists t0, c1(α), c2(α) such that : ∀t ∈]0, t0] ,

exp

(

c1(α)

tα

)

≤ ||Tt||1→+∞ ≤ exp

(

c2(α)

tα

)

(8.4)

Recall that ||Tt||1→+∞ = µA
t (0). The condition on the sequence A is satisfied,

for instance with ak = k1/α, k ≥ 1 with α > 0.

Now, we apply Theorem 6.5 with X = T
∞ and µ the Haar measure on X. We

have the following Nash type inequality.

Theorem 8.2 Under the assumptions of Theorem 8.1. There exists constants c1, c2 >
0 such that :

||f ||22
[

log+

(

||f ||2
c1||f ||1

)]1+ 1

α

≤ c2Q(f) (8.5)

for all 0 ≤ f ∈ D ∩ L1 ∩ L∞.

We deduce the folllowing result by using cut-off method developed as in [BCLS]
(see [BiMa] and also [W] for such inequalities).

Theorem 8.3 There exists c3, c4 > 0 such that, for all 0 ≤ f ∈ D ∩ L1∩ ∈ L∞,

∫

T
∞
f 2

[

log

(

f

c3||f ||2
+ 1

)]1+ 1

α

d µ ≤ c4(Q(f) + ||f |22). (8.6)

Conversely, by a convexity argument similar to Lemma 3.1 (in the genral frame-
work), (8.6) implies (8.5) with Q(f) + ||f |22 instead of Q(f).

8.2 Double-exponential ultracontractivity

We shall say that a semigroup (Tt) satisfies a double-exponential ultracontractivity
property at zero if there exists γ > 0 and t0 > 0 such that

||Tt||1→+∞ ≤ c′ exp(exp
(

c

tγ

)

), 0 < t < t0, (8.7)

for some constants c, c′ > 0. We shall say that a semigroup (Tt) has a strict double-
exponential ultracontractivity property if (8.7) is satisfied and moreover

c′ exp(exp
(

c

tγ

)

) ≤ ||Tt||1→+∞, 0 < t < t0, (8.8)
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with the same index γ but with possibly other constants c, c′.

Note that if (8.7) holds for some t < t0 then it holds for any t > 0. We have the
following family of examples satisfying a strict double-exponential ultracontractivity
property:

Theorem 8.4 ( [B2] Thm 3.27 p. 59). Let γ > 0. Assume that logNA(x) ∼
xγ/γ+1 as x → +∞. Then we have

log log µA
t (0) ∼ c(γ) t−γ as t→ 0 (8.9)

In particular, there exists t0, c1(γ), c2(γ) > 0 such that : ∀t ∈]0, t0] ,

exp(exp

(

c1(γ)

tγ

)

) ≤ ||Tt||1→+∞ ≤ exp(exp

(

c2(γ)

tγ

)

) (8.10)

The condition on the sequence A is satisfied, for instance with ak = [ln(k + 2)]δ , k ≥
1 with δ = (γ + 1)/γ.

Now, we apply Theorem 6.5 with X = T
∞ and µ the Haar measure on X. We

have the following Nash type inequality,

Theorem 8.5 Under the assumptions of Theorem 8.4. There exists constants c1, c2 >
0 such that :

||f ||22 log

(

||f ||2
||f ||1

)[

log

(

c1 log+

||f ||2
||f ||1

)]
1

γ

+

≤ c2Q(f) (8.11)

for all 0 ≤ f ∈ D ∩ L1 ∩ L∞.

We deduce the folllowing result. We set Dγ(y) = y+

[

log+ y+

]1/γ

Theorem 8.6 There exists c3, c4 > 0 such that, for all 0 ≤ f ∈ D ∩ L1∩ ∈ L∞,

∫

T
∞
f 2Dγ

(

c3 log

(

f

8||f ||2

))

d µ ≤ c4Q(f) (8.12)

9 The double-exponential case

In this section, the assumptions are the same as in Section 2. In this general frame-
work, we consider the relationship between the double-exponential ultracontractivity
property and LSIWP. We recall that the semigroup satisfies the double-exponential
ultracontractivity property if:

||Ttf ||∞ ≤ a(t)||f ||1, t > 0 (9.1)
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with a(t) = exp(exp(/tγ)) with γ > 0 and c > 0 (see Subsection 8.2). Applying
Theorem 2.4, we get the following logarithmic Sobolev inequality with parameter :
for all t > 0 ,

∫

f 2 log f dµ ≤ tQ(f) + β(t)||f ||22 + ||f ||22 log ||f ||2 (9.2)

where β(t) = 1
2
log a(t) = 1

2
exp(c/tγ).

We now discuss about the converse result. Assume that (9.2) holds true. We
remark that by formula (2.6) of Theorem 2.1 gives Mη(t) = ∞ for all t > 0 and
all η > −1. So we get no information about ultracontractivity property of the
semigroup with this formula. It is not completely surprising. Indeed, there exists a
semigroup satisfying (9.2) with γ = 1 but which is not ultracontractive hence (9.3)
doesn’t not hold ([D]: example 2.3.5 p.73 and [DS]: (3) p.355 and p.359). So LSIWP
(9.2) may not imply the ultracontractivity property of the semigroup (at least in
that case when γ ≥ 1). In that section, we show that, if the condition (9.2) is
satisfied with γ < 1, then the semigroup is ultracontractive of double-exponential
type but with γ′ different from γ. Moreover γ′ tends to infinity as γ tends to 1.

This remark implies that Nash type inequality and ultracontractivity property
are not equivalent in general (see [C] and also [BeMa]).

By the converse Theorem of Davies-Simon 2.3, if we suppose that the condition
(9.2) is fulfilled with γ ∈]0, 1[, then the semigroup is ultracontractive. But Theorem
2.3 doesn’t seem to give easily and explicitely a function b(t) such that :

||Ttf ||∞ ≤ b(t)||f ||1 (9.3)

In this paragraph, we modify the argument of proof of Lemma 3.3 to deal with
the double-exponential case.

Proposition 9.1 If (9.2) is satisfied with β(t) = c1 exp( c2
tγ

), 0 < γ < 1 then (9.3)

holds with b(t) = k1 exp
(

exp( k2

tγ′
)
)

, γ′ = γ
1−γ

where k1, k2 are some positive con-
stants.

Remark 9.2 1. If we apply Theorem 2.4 and its (partial) converse proposition
9.1, we stay in the same class of functions of type double-exponential. But we
lose the exponent γ. The question to know if the expression of the exponent
γ′ = γ

1−γ
above is optimal is open.

2. We also note that γ′ is singular when γ tends to 1. By a preceding remark
γ = 1 is really a critical index.

Proof : The proof follows the same lines as the proof of Theorem 3.4 The
only change we need is a modification of the lemma 3.3 when the function b(t) =
c1 exp( c2

tγ
). This is done with the following lemma :
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Lemma 9.3 Suppose that Φ(s) ∈ C1([0,+∞[) satisfies ,

Φ(s) ≤ (−t/2)Φ′(s) + c1 exp(
c2
tγ

) (9.4)

for all s, t > 0 and for a fixed γ such that 0 < γ < 1. Then we have

Φ(t) ≤ k1 exp(
k2

tα
) (9.5)

for all t > 0, where α = γ
1−γ

, k1 = 2c1 and k2 = c
1

1−γ

2

(

γ
1−γ

)
γ

1−γ .

Proof of the lemma : Set t = sβ+1

λ
with λ > 0 and β > 0 choosen later. We

multiply (9.4) by exp(−2c3
sβ )s−β−1 with c3 = c2λ

γ . Then ,

s−β−1 exp(
−2c3
sβ

)Φ(s) ≤ −1

2λ
exp(

−2c3
sβ

)Φ′(s) (9.6)

+c1s
−β−1 exp(

c3
sγ(β+1)

− 2c3
sβ

).

We choose β such that γ(β + 1) = β then β = γ
1−γ

> 0. We integrate (9.6) over the

interval [0, t] for t > 0. Let I(t) =
∫ t
0 s

−β−1 exp(−2c3
sβ )Φ(s) ds. Thus

I(t) ≤ −1

2λ
A(t) +B(t) (9.7)

with

A(t) =
∫ t

0
exp(

−2c3
sβ

)Φ′(s) ds (9.8)

and

B(t) = c1

∫ t

0
s−β−1 exp(

−c3
sβ

) ds. (9.9)

These integrals converge because β > 0 and c3 > 0. The function B(t) can be
explicitely computed

B(t) =
c1
c3β

exp(
−c3
tβ

). (9.10)

A(t) is computed by integration by parts

A(t) = exp(
−2c3
tβ

)Φ(t) − 2βc3I(t). (9.11)

From (9.6) we get
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I(t) ≤ −1

2λ
exp(

−2c3
tβ

)Φ(t) +
βc3
λ
I(t) +

c1
c3β

exp(
−c3
tβ

) (9.12)

Now, we chose λ such that λ = βc3 then λ = (βc2)
1

1−γ . Finally,

1

2λ
exp(

−2c3
tβ

)Φ(t) ≤ c1
c3β

exp(
−c3
tβ

) (9.13)

We conclude the lemma with k1 = 2c1 and k2 = c
1

1−γ

2 ( γ
1−γ

)
γ

1−γ and then Proposition
9.1 is proved.
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