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Abstract

This paper proposes a quasi-dense approach to 3D surface model acquisition from uncali-

brated images. Firstly, correspondence information and geometry are computed based on new

quasi-dense point features that are re-sampled sub-pixel points from a disparity map. The quasi-

dense approach gives more robust and accurate geometry estimations than the standard sparse

approach. The robustness is measured as the success rate of full automatic geometry estimation

with all involved parameters fixed. The accuracy is measured by a fast gauge-free uncertainty

estimation algorithm. The quasi-dense approach also works for more largely separated images

than the sparse approach, therefore requires fewer images for modeling. More importantly, the

quasi-dense approach delivers a high density of reconstructed 3D points on which a surface rep-

resentation can be reconstructed. This fills the gap of insufficiency of the sparse approach for

surface reconstruction, essential for modeling and visualization applications. Secondly, surface

reconstruction methods from the given quasi-dense geometry are also developed. The algorithm

optimizes new unified functionals integrating both 3D quasi-dense points and 2D image infor-

mation including silhouettes. Combining both 3D data and 2D images is more robust than the

existing methods using only 2D information or only 3D data. An efficient bounded regularization

method is proposed to implement the surface evolution by level-set methods. Its properties are

discussed and proved for some cases. As a whole, a complete automatic and practical system of

3D modeling from raw images captured by hand-held cameras to surface representation is pro-

posed. Extensive experiments demonstrate the superior performance of the quasi-dense approach

with respect to the standard sparse approach in robustness, accuracy, and applicability.

Keywords: 3D reconstruction, surface reconstruction, structure from motion, 3D modeling, match-

ing, uncertainty, variational calculus, level-set method.
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1 Introduction

Passive vs. active methods: Three-dimensional model acquisition has always been one of the funda-

mental research topics in computer vision. Active 3D scanners are currently the dominant technology

for capturing digital object models for applications. Their geometric accuracy has continually im-

proved. But they remain expensive, and, more importantly, they suffer from a number of technical

limitations. They are invasive and some materials such as hair can not be scanned. They are also

not “scalable” to objects of different sizes, especially large ones and outdoor scenes. In comparison,

passive image-based modeling from collections of images captured by handheld cameras offers sev-

eral advantages. It needs only low-cost hardware, it can be applied to objects of any size, and also it

preserves the appearance information from original photographs while maintaining perfect geometric

alignment.

Sparse and dense approaches: There are two approaches for reconstruction from images. For un-

calibrated images, the standard is based on the sparse points of interest developed in the last decade

[10, 20, 37, 12, 41, 2, 26, 21]. This sparse approach is sufficient for computing or tracking cam-

era positions, but not for representing the scene or the objects in the scene as it merely reconstructs

sparsely distributed 3D points. For calibrated images (the sparse approach can be used for calibra-

tion purpose to start a dense method), dense stereo methods including the traditional direct stereo

matching and more recent volumetric approaches of simultaneously reconstructing the object and

computing the dense correspondence [46, 25, 9, 24] are the usual approaches to reconstruction. The

main disadvantages of the best dense stereo methods are that they only reconstruct smoothed layers

of disparities, special configurations in handling multiple views (often in one half-space looking at

the other half-space, and for images of small baselines), and they are very expensive in terms of time

and memory [24]. In practice, to handle uncalibrated images, a combination of these two methods

is a natural choice [37, 41]. For instance, from a sparse geometry, dense stereo matching algorithms

are run for some selected pairs in [40] and all in [38]. The dense reconstruction is triangulated and

texture-mapped to obtain the final models. The surface models obtained are often partial and the sur-

face triangulation is simply inherited from a 2D triangulation in one image plane, which means that

the surface topology can not be properly handled.

Quasi-dense approach: Motivated by the insufficiency of the existing sparse and dense approaches,

we develop in this paper a quasi-dense approach to surface reconstruction from a sequence of uncal-

ibrated images. This gives a more robust and accurate geometry estimation, a quasi-dense geometry,

using fewer images. It fills the gap of insufficiency of the sparse approach by delivering a high density

of 3D points from uncalibrated images that makes a surface reconstruction tractable.

In addition to presenting a complete system of 3D modeling from raw images captured from

hand-held cameras, the main contributions of this paper are threefold:
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� The introduction of point features as the re-sampled sub-pixel points from the quasi-dense dis-

parity map to densify the feature points, thereby overcoming the sparseness of the points of

interest method.

� An automatic quasi-dense geometry computation from uncalibrated images. Compared with

the standard sparse approach, the quasi-dense approach not only gives more robust and accurate

reconstruction results, but it works for largely separated images. More importantly, it produces

a high density of points that can be used for direct surface reconstruction. A fast gauge-free

estimation algorithm is also developed for an efficient evaluation of the reconstruction accuracy.

� New surface reconstruction algorithms integrating both 3D data points and 2D image informa-

tions. This is possible because of a unified functional based on a minimal surface formulation.

We believe that the new functional has far fewer local minima than those derived from 2D

data alone and that this will result in more stable and more efficient algorithms. For the effi-

cient evolution of surfaces, we also propose a bounded regularization method based on level-set

methods. Its stability is also proved.

Paper organization: Section 2 introduces the quasi-dense sub-pixel point features and correspon-

dences and describes their computation. Section 3 describes the whole procedure of the estimation

of the quasi-dense geometry by stressing two-view analysis and fast gauge-free uncertainty estima-

tion. Section 4 presents the surface reconstruction by integrating the quasi-dense 3D information and

2D image information. Section 5 gives more implementation details and experimental results, and

Section 6 concludes the paper. Sections 3 and 4 are extensions to our previous conference papers

[28, 29].

2 Quasi-dense correspondences

In this section, we introduce and define the concept of quasi-dense point correspondences as our

“point” features. We also describe the computation procedures.

2.1 Quasi-dense pixel correspondences by match propagation

We start with the standard sparse matching algorithm between two images to detect the points of inter-

est [30, 18] in each image. Points of interest are naturally reliable point features sparsely distributed

in each image space. They are also tractable for widely separated images having larger disparities. A

ZNCC (Zero-Mean Normalized Cross Correlation) method, followed by cross validation, is used to

match these points of interest in two images. This gives a list of sparse point correspondences that

contains inevitable errors.
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(a) (b)

(c) (d)

(e)

(f).1 (f).2 (f).3

Figure 1: The goal to reach is (a) the reconstructed surface geometry (Gouraud shaded and textured mapped).

Also, key steps of the quasi-dense approach are given. (b) The initial sparse correspondence points of interest

for a pair of images. Correspondence outliers (still unknown at this stage) are marked in black. (c) The

quasi-dense disparity map by two propagations and the estimated epipolar geometry. (d) The re-sampled quasi-

dense correspondence points. (e) The refined quasi-dense correspondences in a triplet of images. Inliers (resp.

outliers removed by the three-view geometry) are marked in white (resp. gray). (f) The Euclidean quasi-dense

geometry: foreground object, background and the camera poses, each camera is displayed with a small black

pyramid. (f).1 a top view of the whole geometry. (f).2 a close-up view of the face in point cloud. (f).3 each 3D

quasi-dense point is displayed with a small patch of texture.
4



The standard sparse approach uses a robust statistical method to remove correspondence outliers

by fitting the underlying fundamental matrix [63, 54] to the list of sparse point correspondences

between the two images. Instead, we “densify” the correspondences by match propagation. We first

sort this list of point correspondences using the correlation score. These sorted point correspondences

are called seed points. At each step of the propagation, we choose the best corresponding pixels

scored by ZNCC from the current list of seed points. Then, in the immediate spatial neighborhood of

the seed points, we look for new potential matches and add the bests to the current list of seed points

according to a combination of local constraints such as correlation, gradient disparity, and confidence.

The matching uniqueness and the ending of the process are guaranteed by choosing only new matches

that have not yet been selected. A more detailed description of match propagation and its properties

can be found in [27]. In [3, 61, 56, 49], the matches of seed points are used as ground control points

to densify the disparity map for stereo matching algorithms.

It is important to note that ours is a very efficient algorithm both in time and space, and at each time

only the best match is selected. This drastically limits the possibility of bad matches. For instance,

the seed selection step seems very similar to many existing methods [63, 54] for matching points

of interest using correlation, but the crucial difference is that we need only take the most reliable

ones rather than trying to match a maximum number of them. In extreme cases, only one good seed

match is sufficient to provoke an avalanche of correspondences in the textured images. This makes

our algorithm much less vulnerable to bad seeds. The same is true for propagation. The risk of bad

propagation is considerably diminished by the best-first strategy over all matched boundary points.

This best-first match propagation approach produces denser, but not completely dense, pixel cor-

respondences that we call quasi-dense pixel correspondences. One example for a real pair of images

is illustrated in Figures 1.c and 3.a.

2.2 Quasi-dense (sub-pixel) point correspondences by homographic re-sampling

Quasi-dense pixel correspondences are not directly used as our “point” features in subsequent com-

putations. Instead, we re-sample these pixel correspondences into what we call quasi-dense point

correspondences.

On one hand, the re-sampling is motivated by the fact that the quasi-dense pixel correspondences

give an irregular distribution of clusters of pixels, which is not suitable for geometry computation.

Many clustered pixels do not create strong geometric constraints while making the estimation cost

high. Re-sampling produces not only a reduced set and more uniform distribution of matched points

in the images, but it also creates matching points with sub-pixel accuracy. On the other hand, the

re-sampling is equally motivated by the necessity of post-match regularization to improve match

reliability by integrating local geometric constraints, since the quasi-dense pixel correspondences
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may still be corrupted by wrong correspondences.

We assume that the scene or object surface is at least locally smooth. Therefore, instead of directly

using global geometric constraints encoded by a fundamental matrix, we first use local smoothness

constraints encoded by local planar homography : the quasi-dense pixel correspondences are regular-

ized by locally fitting local homographies to them.

The first image plane is initially divided into a regular square grid of
�����

pixels. This size is

a trade-off between the sampling resolution and regularization stability. For each square patch, all

pixel correspondences inside it from the quasi-dense pixel correspondences are used to tentatively fit

a plane transformation. The most general linear plane transformation is a homography represented

by a homogeneous � � � non singular matrix. Four matched pixels, no three of them collinear, are

sufficient to estimate a plane homography. In practice, an affine transformation encoded by 6 d.o.f.

using three matched pixels rather than a homography is preferred as the local perspective distortion is

often mild between images. Because of unavoidable matching errors and the points not lying on the

dominant local plane (e.g. at the occluding contours), the putative transformation for a patch cannot

be estimated using standard least squares estimators. The Random Sample Consensus (RANSAC)

[11] is used for a robust estimation of the transformation, H. Finally, for each confirmed patch corre-

spondence, a pair of corresponding points, u ��� H � u � , with sub-pixel accuracy is created by selecting

a representative center point of the patch in the first image u� and its homography-induced correspond-

ing point, H � u � , in the second image. The set of all corresponding points created this way is called the

“quasi-dense correspondences”. In practice, we also add to the quasi-dense point correspondences

all corresponding points of interest within the patch and validated by the homography of the patch.

Usually these points of interest have longer tracks along the sequence than other points obtained by

propagation. This definition of quasi-dense correspondences is illustrated in Figure 2, and an example

from a real image pair is given at (c) of Figure 4.

Regular sampling grid in image 1

: center point

: interest point

Homography−induced correspondances in image 2

Figure 2: For each corresponding patch, the re-sampled points include the center point of the patch and all

points of interest within the patch and their homography-induced correspondences in the second image.

These re-sampled corresponding points are not only more suitable for geometric computation

thanks to their more uniform distribution in images, but they also are more reliable as the robust local
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homography fitting significantly singled out match errors contained in the original quasi-dense pixel

correspondences, as illustrated at the middle and left of Figure 3.

3 Estimation of a Quasi-Dense Geometry

The geometric estimation of a sequence of uncalibrated images, including both camera positions and

the 3D reconstruction of scene points, is now standard for sparse points of interest [20, 10]. Mostly,

we will apply some of the standard algorithms to our new “point” features, the quasi-dense point

correspondences. But we also propose two new algorithms. The first is the core two-view quasi-

dense correspondence and geometry method that turns out to be much more robust and accurate

than the sparse methods. The second is a fast gauge-free uncertainty estimation, necessary for our

development. A description of the whole optimization procedure including three-view projective

and N-view projective and Euclidean geometry parameterization and estimation is briefly given in

Appendix A.2 for the completeness of the system.

3.1 Robust two-view quasi-dense correspondence and geometry

The two-view geometry of a rigid scene is entirely encoded by the fundamental matrix. The standard

strategy is to recover geometry using sparse matching [63, 54] within a random sampling framework.

We propose two procedures for fundamental matrix estimation in our quasi-dense approach: the first

is the constrained propagation that grows only those satisfying the current epipolar constraint. The

second is the unconstrained propagation. The unconstrained propagation is motivated by the fact that

the estimation might be local, biased toward the areas with a high density of matches (for example,

either merely the background or the foreground or a dominant plane) if the initial distribution of the

matched points is not uniform across images. This bias due to the irregular distribution of the points

in image space is well-known and discussed in [20]. The final strategy that combines these procedures

and overcomes the disadvantage of each is given as follows:

1. Detect feature “points of interest” in each image; establish the initial correspondences between

the images by computing normalized correlation; Sort the validated correspondences by corre-

lation score and use them to initialize a list of seed matches for match propagation;

2. Unconstrained propagation from all the seed points using a best-first strategy without the epipo-

lar constraint to obtain quasi-dense pixel correspondences represented as a disparity map;

3. Re-sample the quasi-dense disparity map by local homographies to obtain the quasi-dense (sub-

pixel) point correspondences; Estimate the fundamental matrix using a standard robust algo-

rithm on the re-sampled points, i.e., the quasi-dense correspondences;
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4. Constrained propagation from the same initial list of seeds using a best-first strategy with the

epipolar constraint by the computed fundamental matrix;

5. Again re-sample the obtained quasi-dense disparity map to get the final quasi-dense point cor-

respondences; Reestimate the fundamental matrix with the final quasi-dense correspondences.

The result of this procedure is a list of quasi-dense sub-pixel correspondences satisfying the epipo-

lar constraint. These sub-pixel matches are usually more reliable, denser, and more evenly distributed

over the whole image space than the standard sparse points of interest. Figure 1 shows the major steps

of the computation for a typical pair of images. The computational time for a pair of images is more

costly than a standard sparse method, but it is limited about 10-15s for ����� � ����� images on a P4

2.4Ghz. Figure 3 illustrates the incremental robustification of correspondences in different steps. We

have also tested the strategy of combining a sparse geometry and a constrained propagation, and have

found that the domain of the final propagation tends to be reduced and results in the undesirable local

estimates discussed earlier.

(a) (b) (c)

Figure 3: The quasi-dense disparity map, (a) after the first unconstrained propagation, (b) after the second con-

strained propagation, (c) after robust local homography fitting that removes many wrong pixel correspondences

for the second constrained propagation.

Another advantage of this strategy is that it works for more largely separated image pairs than

those acceptable by the standard sparse approach for the simple reason that the number of matched

interest points dramatically decreases with an increasing geometric distortion between views. How-

ever, we do not compare our approach with specific sparse methods such as affine invariant regions

[59, 32] and points [44, 53] matching methods. Figure 4 shows comparative results between the sparse

and the quasi-dense methods for a widely-separated pair for which the standard sparse method fails

in computing a wrong fundamental matrix. Also, in our experiments, we may use as few as about 20

images to make a full turn of the object, which might be impossible for the standard sparse approach.
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(a) (b) (c)

Figure 4: (a) Initial sparse correspondences by cross-correlation for a pair of images with large disparities.

Only 31 matches in white out of 111 are correct. (b) Failure of the standard sparse method. Many correspon-

dence points in black are obviously incorrect. (c) Successful quasi-dense estimation.

3.2 Fast gauge-free uncertainty estimation

To assess the accuracy of the final 3D reconstruction obtained using the global bundle adjustment

described in Appendix A, the covariance matrix should be estimated both for camera positions and

for each reconstructed point. As the underlying Hessian matrix is of extremely large size and singular

in the gauge-free situation, we develop a fast gauge-free covariance estimation inspired by recent

work [58, 20].

The covariance matrix could be estimated as the inverse of Hessian, H � ��� �
J � J � � � , up to a

common noise level, �	� , which can also be estimated if H is not singular, i.e. if there is no gauge

freedom. For numerical efficiency, the current bundle optimization has been carried out with an over-

parametrized free gauge. We need to solve two major problems: the first is that the final H after

optimization is now singular due to free gauge; and the second is that H is excessively large in size.

The singularity of H could have been easily handled by a direct SVD based pseudo-inverse if it were

not excessively large in size.

Normal covariance matrix When H is non-singular and has a specific sparse structure as in our

case, it can be block-diagonalized into H
�

TAT � . Then, the pseudo-inverse of H can be efficiently

computed as

H 
 � H � � ���
TAT � ��
 ��

T ��� � A 
 T � ���
exactly as in the basic reduction technique used in photogrammetry [4, 20, 10, 35, 34, 58].

Now the final resulting H after minimization is singular due to the free gauge. Though it is still

formally possible to compute H � as T ��� A 
 T � � , it is no more the pseudo-inverse H 
 of H. We need to

clarify its underlying statistical meaning. The choice of coordinate fixing rules is a gauge fixing [58].

Each choice of gauge, locally characterized by its tangent space, determines an oblique covariance

matrix. The interpretation of H � computed above is therefore an oblique covariance matrix at the

particular solution point we have chosen by a first-order perturbation analysis around the maximum
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likelihood solution [34]. It has been shown that all these oblique covariance matrices at a given

solution point from different gauges are geometrically equivalent in the sense that they all have the

same “normal” component in the orthogonal space to the gauge orbit. This normal component is

called the normal covariance [34]. We choose this uncertainty description as it is convenient and

does not require the specification of gauge constraints. It also gives a lower bound on all covariances

defined at that point on the gauge orbit.

Fast computation To compute this more significant normal covariance, we need to project any

oblique covariance onto the orthogonal space to the gauge orbit tangent space, i.e. Cov
�

PH � P � ,

where P is the projector to ��� � H � in the direction of ����� � H � . The major difficulty is handling the

very large size of H to make the projection computable.

If N is an orthonormal basis of ����� � H � , then P
�

I � NN � . Since 	�
�� � ����� � H � � �� , N is

a thin matrix of dimensions � ������� � �  , where
�

is the number of points and
�

is the number of

cameras. Using the approximated Hessian H
� � C M

M � S � , where C (resp. S) is an inversible

block-diagonal and sub-hessian of camera (resp. structure) parameters, we have H
�

TAT � �� I Y�
I � � Z

��
S � � I

�
Y � I � where Y

�
MS � � � Z �

C � MS � � M � . Thus,

����� � H � � � I� Y � � ����� � Z �
and N is efficiently computed by a SVD of the matrix Z of small dimensions � ��� � � � ��� � .

Using the notation K
�

H � N, the computation of normal covariance Cov is given by

Cov
�

PH � P � � H � � KN ��� NK � � N
�
N � K � N ���

The matrices N and K are very thin. Their width is only 7; the matrix N � K is
 � 

. The calculation

complexity of all diagonal blocks of Cov for camera and point covariances is � ����� � � , provided that

K and the corresponding diagonal blocks of H � are computed.

The diagonal blocks of H � are computed in time � ���!� � �"�$# � and in memory � � 
 �%� � � with 
 the

number of 2D points [20, 4]. For K, let N & � N ' be vectors such that N � ��
N �& N �' � and the height

of N & (resp. N ' ) is the same as that of C (resp S). It is easy to verify that

K
�(� �

S � � N ' � �)� I� Y � � Z 
 � N &*� YN '��+�
This calculation is feasible because of the small size of Z 
 ( � ��� � � � ��� � ) and the diagonal structure

of S. Time and space complexities are only � � 
 �,� � � .
Figure 5 illustrates one example of the computed uncertainty ellipsoids. We finish this fast gauge-

free covariance computation by making the following observations:
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(a) (b)

Figure 5: The 90% confidence ellipsoids zoomed by 4 for reconstructed points and camera centers. Only one

out of 50 point ellipsoids are displayed. (a) a top view of the cameras and the object. (b) a close-up view of the

only object on the right.

� The gauge theory has been reintroduced into computer vision in [58], which gives a very gen-

eral exposition on issues related to the gauge-free covariance matrices. Hartley and Zisserman

pointed out in [20] that a condition is necessary to have H � � H 
 . Unfortunately, this condition

is not satisfied. Morris et al. [34] have justified the computation of H� by defining a “geomet-

rically” equivalent class of covariance matrices. However, they carried out only a small-scale

bundle problem.

� This fast computation of uncertainty can also be extended to the computation of any gauged

oblique covariance matrix with any oblique projection having a small kernel dimension as the

projector still verifies P
�

I � BC� , and B and C are very thin matrices like N.

� We also prove some invariant properties of the normal covariance matrix. The point and camera

center ellipsoids are invariant with respect to rigid transformation (resp. scaling factor) if the

scaling factor (resp. rigid transformation) is fixed.

4 Surface Reconstruction

In addition to increased robustness and accuracy, the most significant aspect of the quasi-dense ap-

proach is that it reconstructs a high density of 3D points on which we can build a surface representa-

tion of the objects. Surface-based representations as natural extensions of the point-based geometry

are indispensable for most current modeling and visualization applications. This section describes the

surface reconstruction algorithms from the quasi-dense 3D points.

11



Many surface reconstruction algorithms have been proposed for different data. For only 2D im-

ages and camera geometry, the recent volumetric methods [46, 25, 9, 24] are the most general image-

based approaches, but they are not robust enough. For densely scanned 3D point data, Szeliski et

al. [51] used a particle-based model of deformable surfaces; Hoppe et al. [22] presented a signed

distance for implicit surfaces; Curless and Levoy [7] described a volumetric method; and Tang and

Medioni [52] introduced a tensor voting method. Most recently, Zhao et al. [64] developed a level-set

method based on a variational method of minimizing a weighted minimal surface. Similar work to

[64] has also been reported by Whitaker [60] using a MAP framework. For depth data obtained from

stereo systems, it is more challenging than that from scanned 3D data as the stereo data are usually

much sparser and less regular. Fua [14] used a system of particles to fit the stereo data. Kanade et al.

[36] and Fua and Leclerc [13] proposed a deformable mesh representation to match the multiple dense

stereo data. These methods that perform reconstruction by deforming an initial model or tracking the

discretized particles to fit the data points are both topologically and numerically limited compared to

modern dynamic implicit surface approaches.

The insufficient 3D reconstruction from images and the difficulties of obtaining surface data from

only images have motivated us to develop a new approach that integrate both quasi-dense 3D points

and all available 2D image information including image correlation, photo-consistency, and silhouette

information if it is available. We propose a variational approach with new functionals integrating 3D

points and 2D image information. An efficient bounded regularization method to implement the

surface evolution by level-set is also developed.

4.1 Problem statement and general approach

Given a set of calibrated 2D images and a set of quasi-dense 3D points derived from the given images,

the goal is to reconstruct a surface representation of the objects in the scene.

The problem is different from surface reconstruction from a set of calibrated images as addressed

in [9, 46, 25] in which only 2D images are used without any 3D information. It is also different from

surface reconstruction from scanned 3D data without 2D image information [22, 51, 7, 64, 52].

The general methodology that we follow is a variational approach inspired by the work of Faugeras

and Keriven [9], Caselles et al. [6, 5], Zhao et al. [64], and many others. Intrinsic functionals as a

kind of weighted minimal surface are defined to integrate both 3D point data and 2D image data. The

object surfaces are represented as a dynamic implicit surface, �
�
x � � � in R

#
, which evolves in the

direction of the steepest descent provided by the variation calculation of the functional we minimize.

The intrinsic nature of the functionals (i.e., independent of any surface parametrization) makes the

implementation of the surface evolution by the level-set method possible, which in turn handles the

surface topology changes.
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Our contribution is threefold: First, we show that the accuracy of the reconstructed 3D points

is sufficient for the 3D modeling application. Second, we introduce new intrinsic functionals that

take into account both 3D data points and 2D original image information, unlike previous works that

consider either only 2D image information [9] or only scanned 3D data [64]. By doing this, we

compensate for the lack of reconstructed 3D points with 2D information. The new functionals are

also expected to have a much smaller number of local minima and better convergence than a pure 2D

approach [9]. Third, we propose a bounded regularization method that is more efficient than the usual

full regularization methods and give a proof of its stability.

4.2 Defining the functionals

By analogy to 2D geodesic active contours [6] whose mathematical properties have been established,

the weighted minimal surface formulation was introduced by Caselles et al. [5] and Kichenassamy et

al. [23] for 3D segmentation from 3D images, i.e., the 3D surfaces they seek are those minimizing

the functional
����� 	�� using the weight

� ��� ��� � � where 		� is the infinitesimal surface element and�
is a positive and decreasing function of the 3D image gradient

� � .
Faugeras and Keriven [9] developed a surface reconstruction from multiple images by minimizing

the functional
�
��� 		� using a weighting function

�
that measures the consistency of the reconstructed

objects reprojected onto 2D images. This measure is usually taken as a function of the correlation

functions � � x � n � between pairs of 2D images, i.e.,
� �

x
�
n � �� � � � x � n � � . The correlation function

is dependent not only on the position x of the object surface, but also on its orientation n. A poten-

tially general and powerful reconstruction approach was therefore established. But the existence and

uniqueness of the solution for the proposed functional have not yet been elucidated.

In the different context of surface reconstruction from sufficiently dense and regular sets of scanned

3D point data, Zhao et al. [64] proposed to minimize the functional
�
��� 		� using a new weighting

function
�

as the distance function of any surface point x to the set of 3D data points. Given a set of

data points � and 	 � x � � � the Euclidean distance of the point x to � , the weighting function is simply
� �

x � � 	�� � x � � � . The method gives interesting results with good 3D data points.

In our surface reconstruction, we have both 3D data points and 2D image data. It is interesting to

observe that the variational formulation mentioned above in different contexts is based on the minimal

surface. This makes it possible to define a unifying functional taking into account data of a different

nature. Thus, we first propose to minimize the functional
��� � 	�� using a new weighting function for

the minimal surface formulation consisting of two terms
� �

x
�
n � � 	 � � x � � � ��� � � x � n � � � where the

first 	 � x � � � is the 3D data attachment term that allows the surface to be attracted directly onto the 3D

points; and the second � � x � n � � � is a consistency measure of the reconstructed object in the original

2D image space. The consistency measure might be taken to be any photo-consistency or correlation
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function. The minimizing functional is given by� �
x � ����� � 	 � � x � � � � � � � x � n � � � � 		� �

Silhouette information might also be a useful source of information for surface construction [50].

It is not sufficient on its own as it gives only an approximate visual hull, but it is complementary to

other sources of information. If used, it amends the distance function of the weighting function as

	 � x � ����� � � � 
�� � 	 � x � � � �	� � 	 � x � � � � �
where 	 is the 3D Euclidean distance function; � is the set of 3D points; � is the surface of the

intersections of the cones defined by the silhouettes, i.e., the visual hull; and
�

is a small constant

favoring 3D points over the visual hull in the neighborhood of 3D points. An adequate initialization

is also proposed to optimize the functional derived from this weighting function.

4.3 Solving the variational problem

The solutions of the minimizing functional are given by a set of PDEs: the Euler-Lagrange equation

designated
� � � �

, and obtained from the functional
� � �
��� 		� to be minimized. The Euler-

Lagrange equation is often impossible to solve directly. One common way is to use an iterative and

steepest-descent method by considering a one-parameter family of smooth surfaces x
��
 �� � �

��� � 
 ������� �
�
��� � 
 � ��� � �

��� � 
 � ��� � �
��� � 
 � � as a time-evolving surface x parametrized by time t. The surface

moves in the direction of the gradient of the functional
�

with the velocity � � � , according to the

flow x � ��� x ����� �	� � �� � � � � � � This is the Lagrangian formulation of the problem that describes how

each point on the dynamic surface moves in order to decrease the weighted surface. The final surface

is then given by the steady state solution x � � � . The problem with this approach is that it does not

handle the topology change [47]. However, it is important to notice that though the derivation has been

based on a parametrization, the various quantities including the velocity for the steepest descent flow

are intrinsic, i.e., independent of any chosen parametrization that makes the computation possible.

This paves the way for the well-known and powerful level-set formulation [39, 47] that regards the

surface as the zero level-set of a higher dimensional function. As the flow velocity � � � is intrinsic

(it has been demonstrated for a general
�

depending also on the surface normal in [9]), we may easily

embed it into a higher dimensional smooth hyper-surface �
�!
 �

x � � � which evolves according to

�"� � � ��� �$#
n �&%'% � �(%'% � , and the normal n

� � ) �*+* ) � *+* , . Topological changes, accuracy, and stability of

the evolution are handled using the proper numerical schemes developed by Osher and Sethian [39].
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4.4 A bounded regularization method

The Bounded Regularization Method The Euler-Lagrange expression
� �

might be complicated if

the weighting function
� �

x
�
n � also depends on the surface normal [9]. It seems that the complication

by this dependency on the surface normal is rather unnecessary in practice [16]. We therefore assume

a weighting function independent of the surface normal. Thus, the expression
� � #

n consists simply

of two terms like the geodesic active contour case,
� � #

n
� � � #

n, in which the first is the data

attachment term and the second the regularization term. Using n
� � ) �*+* ) � *+* , on the level-set function,

the surface evolves according to
�

�� 
 � � � � �
� � % % � �(% % � �

�

where
� � 	�
 � ) �*+* ) � *+* , is the sum of the two principal curvatures (twice the mean curvature). When

�
is taken to be the correlation function, it is the simplified version of [9] presented in [16]. And

when
�

is taken to be the 3D distance function, it is the first method proposed in [64]. However the

curvature-based regularization
� % % � �(% % � � over-smooths, resulting in a loss of geometric details and

in slow convergence as the time step has to be � 
 � � � � � � � for a stable solution.

In [65], a convection model is also proposed to ignore the regularization term,
� % % � �(% % � � , to

speed up the procedure, but this is only envisageable for applications where data quality is sufficient,

for instance, for synthetic and high-quality scanned data [65].

Motivated by the need for regularization of noisy data and the inefficiency of the curvature-based

regularization, we propose an intermediate bounded regularization method. It has a “bounded” reg-

ularization term, � 
 � � � � �����	� �&% % � �(% % � � , instead of the “full” regularization term,
� %'% � �(%'% � � . The

corresponding evolution equation is given as:

�
�� 
 � � � � �

� � 
�� � � � �
����� �&% % � �(% % � � �
The following remarks can be made:

� The fully regularized surface evolution is obtained when
�������� % % � %'%�� .

� The unregularized surface evolution is obtained when
������� � �

.

� As
��� ��� �
���	�

in the vicinity of the steady surface for any
�

, it is expected that the fully

regularized and the bounded regularized evolutions behave in the same manner in this region.

Efficiency of the bounded regularization method The efficiency of our proposed bounded regu-

larization method is evaluated by estimating the maximum time step � 
 �����
for stability computation.

We are currently unable to quantify � 
 ���	�
of the bounded regularization method for the general
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curvature-based regularization, but we are able to prove it for a simplified isotropic regularization us-

ing a Laplacian operator. Replacing the curvature-based regularization by the isotropic regularization

for � 
 �����
calculation is a heuristic motivated by the fact that the curvature/anisotropic regularization

term, %'% � �(%'% � �
� % % � �(% % � 	�
 � ) �*+* ) � *+* , , and the Laplacian/isotropic one � � are equal when % % � �(% % �

�
�

is enforced periodically, which is the case often in practice to avoid too flat and too steep variations

of � . It is therefore tempting to simplify the evolution equation to�
�� 
 � � � � �

� � 
 � � � � �
���	� ��� ���
Assuming that the stability condition is the same for curvature-based and Laplacian-based regu-

larizations, the stability, % % ��� 
 � % % � � %'% ���"% %�� , is achieved if � 
 � � 
 �����
with

� 
 ���	� � � � �� �
���	� � % % � � � % 	�� � � % � % 	��
	 � % � % 	���� � % ��% % �
�

where 	 � � , 	 �
	 , and 	 ��� are the centered differences at the grid point in the three axes. The proof is

given in Annex B.

We choose
�������

to be proportional to � �
for our bounded regularization method, i.e., fixing

�
�
��������� � , and obtain

� 
 ���	� � � �
� �
�
� % %'% % � � %'% � % % � �

Under this condition, the complexity of � 
 �����
is given by � 
 ����� ��� � � � � , the same for the

bounded regularized and unregularized evolutions, much better than � 
 ���	� ��� � � � � � for the fully

regularized evolution.

No previous work to our knowledge provides such a stability analysis for an evolution equation

with both convection and regularization terms. In practice, the time step, � 
 � � 
 ���	�
, is always used

for surface evolution in all our examples with the bounded and curvature-based regularization.

5 Implementation and experiments

Experimental data are available at maxime.lhuillier.free.fror www.cs.ust.hk/˜quan

5.1 Quasi-dense geometry estimation

5.1.1 Comparative experiments

Representative real examples of the quasi-dense reconstruction (QUASI) are given and compared

with the standard sparse methods (SPARSE) to demonstrate the superior performance of QUASI both

in accuracy and robustness. The results on synthetic sequences are presented in [28] due to space

limitations.
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Implementation of the sparse methods The first method simply tracks all points of interest de-

tected in each individual image. The second is a mixture of sparse and quasi-dense methods: it

assesses points of interest from individual images by geometry that is computed from the quasi-dense

algorithm and re-evaluates the whole geometry only from these matched points of interest. In the

following, SPARSE indicates the best result of these two methods.

Reconstruction accuracy is measured by considering the bundle adjustment as the maximum like-

lihood estimates, if we assume that the image points are normally distributed around their true lo-

cations with an unknown standard deviation � . The confidence regions for a given probability can

therefore be computed from the covariance matrix of the estimated parameters. The covariance ma-

trix is defined only up to the choice of the gauge [58, 33, 35] and the common unknown noise level

� � . The noise level � � is estimated from the residual error as �	� � � ��� � � � �,	 � , where � � is the sum

of the � squared re-projection errors, 	 is the number of independent parameters of the minimization:	 � �
� � � � � � �  ( � is the common focal length,

�
is the number of cameras,

�
is the number

of reconstructed points and


is the gauge freedom choice). We use our fast gauge-free uncertainty

estimation method presented in Section 3.2 to compute the normal covariance matrix H 
 from the

oblique covariance matrix H � in the coordinate system of the camera in the middle of the sequence

and with the scale unit equal to the maximum distance between camera centers. We choose a 90%

confidence ellipsoid for any 3D position vector, either camera position or 3D point. The maximum of

semi-axes of the 90% confidence ellipsoid is computed as the uncertainty bound for each 3D position.

The camera uncertainty is characterized by taking the mean of all uncertainty bounds of camera posi-

tions x &�� as the number of cameras is moderate. The point uncertainty is characterized by computing

the rank 0 (the smallest uncertainty bound x � ), rank
�� (x �� ), rank

�
� (median x �, � , rank

#� (x �� ) and rank

1 (the largest uncertainty bound x � ) of the sorted uncertainty bounds, as the number of points is very

high. The uncertainty of the focal length � is given by the standard deviation �
	 . We give detailed

experimental results for some typical real sequences. The Lady 1 sequence (20 images at
 � � � ����� )

has a more favorable lateral motion in close-range. The uncertainties given in Table 2 and Figure 7

for QUASI are smaller than for SPARSE, and three to six times smaller for focal length and camera

positions. Similar conclusions hold for all the sequences shown in Figure 14 for which SPARSE suc-

ceeds. The Lady 2 sequence (43 images at � � � � � ��� ) is captured with an irregular but complete tour

around the central person. Table 3 and Figure 1 show the results. The Garden-cage sequence (34 im-

ages at
� � � � ����� ) was captured by a hand-held still camera (Olympus C2500L) with an irregular but

complete tour using a rather short focal length to increase the viewing field for the larger background.

The Garden-cage sequence contains a close-up of a bird cage and a background of a house, and tree,

with a very profound viewing field. SPARSE methods failed because some triplets of consecutive im-

ages do not have sufficiently matched points of interest. The QUASI method gives the uncertainties
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listed in Table 4 and 90% ellipsoids shown in Figure 8. As the images were captured with the smallest

focal length available, the camera’s non-linear distortion became non-negligible. After a first round

of Euclidean bundle adjustment, a second adjustment by adding one radial distortion parameter � for

all cameras is carried out. We find that � � � � � � � � . This result is similar to that obtained with a

very different method proposed in [8] for the same camera but different images: � � � � � � � � . The

corridor sequence from Oxford University (11 images at ����� � ����� resolution) has a lateral forward

motion along the scene which does not provide strong geometry, but favors the SPARSE method as it

is a low textured polyhedric scene in which matched points of interest are abundant and spread well

over the scene. With almost 40 times redundancy in the number of points, camera position and focal

length uncertainties for QUASI are two to four times smaller than for SPARSE. However, the point

uncertainties are almost of the same order of magnitude for the majority of points. As the camera

direction and path are almost aligned with the scene points, many points on the far background of the

corridor are almost at infinity. Not surprisingly with the actual fixing rules of the coordinate choice,

they have extremely high uncertainty bound along the camera direction for both methods as illustrated

in Figure 6.

According to the discussions in Section 3.2, H 
 gives the normal covariance matrix while H � is

an oblique covariance matrix at a given solution point as was previously used in [35, 20]. The normal

covariance matrix should be the ’smallest’ one in the sense of the matrix trace, the lower bound of all

oblique covariance matrices. We want empirically to demonstrate this by comparing these different

covariance matrices. In all cases, the main uncertainty changes are those of camera centers which

are bigger for the normal covariance matrix than for the oblique one, while the trace of the whole

normal covariance matrix is slightly smaller than that of the oblique one as expected. This suggests

that the normal covariance matrix describes a better distribution of uncertainties between cameras and

structures.

Reconstruction robustness To measure the reconstruction robustness, we consider the success rate

of reconstruction for all tested sequences in this paper as illustrated in Table 6. The robustness of

QUASI with respect to the sampling rate of the sequence is also experimented. For the Lady 2

sequence making a complete tour around the object, SPARSE fails for a sequence of 43 images,

but succeeds for a sequence of 86 images with only 1827 sparse points. QUASI succeeds until a

subsequence of 28 images with 25339 quasi-dense points. A typical pair of this subsequence is shown

in Figures 4 and 3. It is clear that QUASI has superior robustness: whenever a sequence is successful

for SPARSE, it is equally successful for QUASI, while SPARSE fails for many sequences (including

those not shown in this paper). Furthermore, even when SPARSE is successful, it is sometimes only

the mixed SPARSE that is successful. Recall that the SPARSE method was defined as the best result

of a pure sparse and a mixed sparse-quasi method. We also notice that our QUASI method requires
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Table 1: Uncertainty measures for the Corridor sequence: the mean of the uncertainty bounds of camera

centers and the rank- � of the sorted uncertainty bounds of points, calculated from the oblique (resp. normal)

covariance matrix at top (resp. middle and bottom). Middle (resp. bottom): they are physically implausible

(resp. plausible) for SPARSE and QUASI without (resp. with) deleting points that are further away than 5 from

the middle of the camera movement (camera length= 1).

Table 2: Uncertainties for Lady 1 from the oblique (top) and normal (bottom) covariance matrix.

Table 3: Uncertainties for Lady 2 from the oblique (top) and normal (bottom) covariance matrix.

Table 4: Uncertainties for Garden-cage from the oblique (top) and normal (bottom) covariance matrix.

Table 5: Computation times in minutes for the QUASI method with a P4 2.4 Ghz.

Table 6: Automatic success rate of reconstruction between Q(uasi) and S(parse).
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Figure 6: ¿From left to right: three of the 10 Corridor images, QUASI and SPARSE reconstructions for

Corridor and their 90% confidence ellipsoids viewed on a horizontal plane. Only one out of 10 ellipsoids for

QUASI are displayed.

Figure 7: ¿From top to bottom and left to right: three of the 20 Lady 1 images, QUASI and SPARSE recon-

struction for Lady 1, and their 90% ellipsoids (zoomed by 4) viewed on a horizontal plane.
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Figure 8: Left: three of the 34 Garden-cage images. Right: top view of the 90% confidence ellipsoids. The

small square shaped connected component at the center is the reconstructed bird cage while the visible crosses

forming a circle are camera positions.

only about 30 to 35 frames for a complete tour around an object. This is far fewer than the 50 to

100 frames necessary for SPARSE methods such as [38, 41, 1], which are more suitable for video

sequences.

5.2 Surface reconstruction from quasi-dense geometry

The surface reconstruction method is limited to smooth and closed objects. The outdoor scenes such

as the garden-cage example are not handled. To model a complete object, we usually make a full turn

around the object by capturing about 30 to 35 images to compute the geometry of the sequence.

5.2.1 Surface initialization from quasi-dense 3D points

The reconstructed 3D points are segmented into the foreground object and the background. The

background includes obvious outliers like isolated and distant points from the majority of points.

The points of the foreground object are obtained as the largest connected component of the graph

neighborhood of all points such that the distance between any two “edge” points of this graph should

be smaller than a multiple of the uncertainty median of the points. The surface initialization is then

obtained as follows. The foreground object points are regularly sliced into sections along the major

direction of the point cloud. A 2D-convex hull is computed for each section and these convex hulls
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are used to define the successive sections of a truncated cone as the bounding volume of the object.

The initialization of all examples shown in this paper is automatically obtained using this method.

One example of the initialization for the Bust sequence is shown on the left of Figure 10. We note

that the initialization procedures proposed in [64, 65] cannot be applied here because of the big holes

without 3D points, especially at the object bottom.

Also, all 3D points are rescaled into a � � � � ��� � � ��� � voxel space in all examples by applying a

similarity transformation. The resulting voxel size is of the same order of magnitude as the uncertainty

median of the 3D points.

5.2.2 Description of different methods

The following surface evolution methods are tested and compared in Section 5.2.3.

BR3D is the bounded regularization method by taking the weighting function
�

to be the 3D dis-

tance from the set � of the reconstructed 3D points:
� �

x � � 	 � x � � � . The number of iterations is

always 100 with
�
�
� � � � .

BR2D is the bounded regularization method by taking the weighting function
�

to be the image

correlation function � . More details are given in Section 5.2.3.

BR3D+BR2D sequentially applies the BR3D and BR2D methods. Fifty iterations are used with

BR2D.

BR3D2D uses the weighting function
�

as a combination of a 3D distance function and a 2D im-

age consistency measure using a bounded regularization method:
� �

x � � 	 � x � � � � � � � x � � � , where� � � � � � � �� � x � � � �� � x � � � �� � x � and � � x � is the standard deviation of the reprojected voxel in each

of three color channels in � � � ��� . The consistency measure � is similar to the photo-consistency of

the space-carving method. The basic idea is to avoid surface evolution in the immediate neighbor-

hood of the reconstructed points where the surface previously obtained by BR3D is assumed to be

correct. It also inflates the surface elsewhere and stops in the surface portions having inconsistent

re-projections, mainly due to the difference between the object and the background colors. Thus, we

use the following evolution equation
�

�� 
 � � � � �
� � 
 � � � � �
���	� �&%'% � �(%'% �

��� � � � �
where

�
is an inflating constant introduced and used in segmentation works [31, 5]. Note that the

term � 
�� � � � �
����� ��% % � �(% % �
�

is negligible in areas where
� � �

, i.e., in the close neighborhood of the

reconstructed points. This is a much desired outcome. We choose
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�
� � �

in the immediate neighborhood of reconstructed points 	 � x � � ��� � � �
in the unit cube

� � � ��� # and
� �

� elsewhere;

�
� � � � and

�
�
� � � � with ���

�
inside the current surface �

� �
.

BR3D+2D sequentially applies the BR3D and BR3D2D methods. Fifty iterations are used with

BR3D2D.

BR3DS is a mixed method combining both 3D points and the silhouette information using a weight-

ing function,
� �

x � � � 
 � � 	 � x � � � ��� � 	 � x � � � �+� We choose
� �

� � �
to favor the 3D points, � , over

the visual hull, � , in the immediate neighborhood of the reconstructed points. This method should be

initialized by BR3D. Otherwise, the evolving surface may never reach the concave parts of the object.

BR3D+S sequentially applies the BR3D and BR3DS methods. Fifty iterations are used with BR3DS.

First, the surface is only attracted by 3D points including those of the object concavities. Second, the

surface does not move in the immediate
�
-neighborhoods of 3D points, but it moves toward the visual

hull in the areas closer to the visual hull than the 3D points.

Freeze plane To avoid the convergence of the dynamic surface to the empty surface, a freeze plane

is often introduced to stop/freeze the surface evolution in one of the two delimited half spaces. The

freeze plane is manually placed to fill in the biggest gap, often on the bottom or on the back of the

object if the sequence is not complete.

5.2.3 Results, comparisons, and discussions

The reconstructed surfaces and experiments summary are shown in Figures 14 and 15 on many image

sequences taken by a hand-held still digital camera, except for the Lady 1 sequence taken with a

special device. Each row includes three images of the given sequence, which are followed by the

reconstructed stereo points, and a Gouraud-shaded and a textured-mapped view of the surface, both

from the same viewpoint.

BR3D vs. BR3D+2D Combining 2D image information using BR3D2D can significantly improve

the final reconstruction results as using only a 3D distance function may fail when there are no suffi-

cient reconstructed points on some parts of the surface. This is illustrated in Fig. 9.

3D distance vs. image correlation Using only image correlation as suggested in [9, 16] makes

convergence very difficult for low-textured objects. Here we take a reasonably textured object, the
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a. b.

Figure 9: Surface geometry obtained by BR3D in (a) and BR3D+2D in (b). There are many missing 3D

points in the low-textured cheeks (cf. Figure 14), so BR3D using only 3D information gives poor results while

BR3D+2D gives good results by adding 2D information.

a. b. c. d. e.

Figure 10: Surface computed using (a) initialization, (b) BR3D method, (c) BR3D+BR2D with � � ������� , (d)

BR3D+BR2D with � � �����	� , and (e) BR3D+BR2D with � � �
� .

bust, to test the BR2D method and compare it with the others. The surface initialization is shown on

the left of Figure 10 and is obtained with the method described in Section 5.2.1. Figure 11 shows the

results by the BR2D method with
� � � � � � � � � � and ��� ��� � � � � for 400 and 1000 iterations with

�
�
� � � � (left),

�
�
� � � � (middle), and

�
�
�

� (right), using a  �  ZNCC-window. The lower bound
�
�
� � � � gives a noisy surface (see the pyramid part). The upper bound

�
�
�

� gives a too smoothed

surface (see the flat nose). The intermediate bound gives a compromise between the two. The original

correlation [9, 16] with full regularization is even smoother than the upper bound
�
�
�

� case. Also,

the convergence is extremely slow. It is still not done around the intersection of the concave part

between the cube and the pyramid after 800 iterations. We have also found that the original correlation

method is actually slower than BR2D, since its time step, � 
 �����
, is 380 smaller. We experimented

with the two-step method, BR3D+BR2D. The results are shown in Figure 10. The results are similar

to the previous case and not very satisfactory. However, this method is more efficient: the 100 steps

of BR3D-iterations take only about 5 min. on a P4 2.4 GHz (including initialization), compared with

the 20 (resp. 50) min. for 400 (resp. 1000) BR2D steps. Figure 12 shows the difference between the

BR3D and BR3D+BR2D methods, with the best previous bound
�
�
� � � � and only 50 iterations for

BR2D. Still, the nose is too smooth for BR3D+2D and the chin is also degraded.

24



Isotropic vs. anisotropic smooth Using Laplacian/ isotropic � � instead of the curvature/anisotropic

smooth % % � �(% % � �
� % % � �(% % � 	�
 � ) �*+* ) � *+* , leads to faster evolution, as the level-set function update,

% % � �(% % �
�

� , is done twice as frequently for the anisotropic smoothing than for the isotropic smooth-

ing, which has a smaller discretization neighborhood. It is also important to observe that no apparent

difference occurs between these two different smooths in the final surface geometry, as shown in

Figure 12 (same conclusion with
�
�
� � � � and

�
�
�

� ). This suggests that the benefit of using

curvature-based smoothing is negligible for our context.

With vs. without silhouette Figure 13 shows results obtained by BR3D, BR3D+2D, BR3D+S and

the pure silhouette method S for the Man 3 sequence. Using only 3D points by BR3D misses the

low-textured cheeks, and using only the visual hull by S misses many important concavities on the

surface, like in the areas of the ears and nose. Combining the two gives excellent final results.

Adding silhouette information improves the pure 3D results; both automatic and interactive ex-

traction of silhouettes from unknown backgrounds have been used for different cases. Note that

silhouette information is only optional in our approach and that the majority of our results presented

here do not use it.

Figure 11: Surfaces obtained with the BR2D method after 400 and 1000 iterations with � � � ����� (the first

two), � � �����	� (the middle two), and � � � � (the last two).

a. b. c. d.

Figure 12: Surfaces computed using different smoothing methods. (a) One original image. (b) BR3D+BR2D

with � � �����	� . (c) Curvature-based smoothing BR3D. (d) Laplacian-based smoothing BR3D.
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a. b. c. d.

Figure 13: Surfaces computed using (a) BR3D method with only quasi-dense 3D points, (b) BR3D+S method

with a combination of the quasi-dense 3D points and the silhouettes, (c) BR3D+2D method with a combination

of the quasi-dense 3D points and the image photo-consistency, and (d) S method with only the silhouettes.

6 Conclusion

This paper describes a quasi-dense approach to practical surface model acquisition. In addition to

presenting a complete system of 3D modeling from raw images captured from hand-held cameras,

the main contributions of this paper are threefold: first, the introduction of new point features as the

re-sampled points from the quasi-dense disparity map to densify the feature points to overcome the

sparseness of the points of interest; second, an automatic quasi-dense geometry computation from

uncalibrated images. For efficient evaluation of the reconstruction accuracy, we developed a fast

gauge-free estimation algorithm. This quasi-dense based approach gives more robust and more accu-

rate reconstruction results. It also works for largely separated images and requires fewer images than

the standard sparse approach. It produces a high density of points that can be used for direct surface

reconstruction. Third, new surface reconstruction algorithms integrating both 3D data points and 2D

images. This is possible because of a unified functional based on a minimal surface formulation. We

believe that the new functionals have far less fewer minima than those derived from 2D data alone

and that this will result in more stable and more efficient algorithms. For the efficient evolution of

surfaces, we also propose a bounded regularization method based on level-set methods. Its stability

is also proved.

The methods have been intensively tested on many real sequences and very convincing results

have been shown, including fully textured face models with hair. This is a significant practical advance

as no other active or passive system that we are aware of can deliver full-head models with such a

simple setup. However, the main limitation of our system is due to the choice of the surface evolution

approach, which assumes a closed and smooth surface. The surface reconstruction module is not

designed for outdoor or polyhedric objects.
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Figure 14: Each row illustrates one example of reconstruction by showing the details of the experiment, three

frames of the sequence, the reconstructed quasi-dense 3D points, Gouraud-shaded surface geometry, and the

textured-mapped surface geometry. In the details of the experiment,
���

is the number of cameras,
���

the

number of points; � the image resolution, � the surface reconstruction method, and � the location of the

freeze plane. Running times are about 5 and 3 minutes for BR3D(S) and BR3D2D with a P4 2.4GHz. Some of

the data are available from the authors’ websites.
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Figure 15: Same comments as in Figure 14.

Appendix

A Optimal quasi-dense geometry estimation

A.1 Parametrization of the bundle optimization

The bundle adjustment as a global optimization procedure for either projective or Euclidean recon-

struction is now a standard both in photogrammetry and computer vision, although the implementa-

tion strategy for the cost function, the parametrization and the optimization may vary a lot in exploit-

ing the particular problem structure [58]. The cost function is always taken to be the quadratic of the

total re-projection error with temporary outliers having infinite cost. The optimization procedure is

the standard Levenberg-Marquardt method with a Gauss-Newton step [43]. The global parametriza-

tion is a gauge-free over-parametrization [19, 33]. The state vector is partitioned into camera and

structure parameters. In the projective case, a camera is parametrized by 11 of its 12 homogeneous

entries while locally normalizing its largest absolute value to 1. In the Euclidean case, each camera

is parametrized by its six extrinsic parameters (camera center,

 � � 


	
� 

� , and the three local Euler an-

gles, �
� �

�
� �

�
�
). Also, all cameras are parametrized by their common focal length � and one optional

common radial distortion � . For both projective and Euclidean cases, each 3D point is parametrized

by three of their four homogeneous entries while normalizing its largest absolute value to one. In our

quasi-dense reconstruction case, the points (typically more than twenty thousand) overwhelmingly

outnumber the cameras. It is obvious that camera reduction by eliminating the structure parameters
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suggested in photogrammetry [4, 48] and computer vision [19, 58, 20, 10] is a natural good choice

for the implementation of both projective and Euclidean bundle adjustments.

A.2 Estimating a projective and Euclidean quasi-dense geometry

Projective quasi-dense three-views The quasi-dense correspondences computed from a two-view

geometry still contain outliers as the two-view geometry only defines a one-to-many geometric rela-

tionship. The three-view geometry [45, 10, 20] plays the most important role as it is the minimum

number of images that have sufficient geometric constraints to resolve correspondence ambiguity.

Given the quasi-dense correspondences of all pairs, we proceed as follows to obtain the quasi-

dense correspondences of all triplets of images.

1. Merge the two quasi-dense correspondences between the pair 
 � � and 
 and the pair 
 and 
 � �
via the common 
 th frame as the set intersection to obtain initial quasi-dense correspondences

of the image triplet.

2. Randomly draw six points to run RANSAC on the whole set of points. This further removes

match outliers using re-projection errors of points. For six randomly selected points, compute

the canonical projective structure of theses points and the camera matrices [45]. The other

image points are reconstructed using the current camera matrices and reprojected back onto

images to evaluate their consistency with the actual estimate.

3. Optimize the three-view geometry with all inliers of triplet correspondences by minimizing the

re-projection errors of all image points by fixing one of the initial camera matrices.

Projective quasi-dense N-views ¿From the quasi-dense correspondences of all pairs and triplets,

we merge them into the whole sequence to create a consistent N-view quasi-dense geometry encoded

by the projective structure. We essentially adapt the hierarchical merging strategy successfully used

in [12], which is more efficient than an incremental merging strategy.

Given the quasi-dense correspondences of all pairs and triplets of images, the projective geometry

of a longer sequence � 
 � � � � is obtained by merging two shorter sequences � 
 � ��� � ��� and ��� � � � � with two

overlapping frames, � and �
�

� , where � is the median of the index range � 
 � � � � . The merger consists

of

1. Merging the two quasi-dense correspondences between two sub-sequences using the two over-

lapping images.

2. Estimating the space homography between two common cameras using linear least squares.
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3. Applying the space homography for one of the two sub-sequences to bring both of them into

the same projective basis.

4. Optimizing the sequence � 
 � � � � with all merged corresponding points.

After this procedure, we optimize the whole sequence once more by enforcing the closure of the

sequence if the sequence is closed [12] i.e., the next to the last frame of the sequence should be the

first one. This reduces the accumulation errors caused by the sequential ordering of the frames. The

final result of this step is a set of 3D points projectively consistent with all camera projection matrices

on a common space projective basis.

Euclidean quasi-dense geometry ¿From the quasi-dense correspondences encoded as a consistent

projective structure of points and cameras, we use an auto-calibration method and an optimization

method [4, 58] to compute the Euclidean coordinates of the set of quasi-dense points and all camera

poses and intrinsic parameters as follows:

1. Initialize the Euclidean structure of the quasi-dense geometry by auto-calibration. We assume

a constant unknown focal length as we rarely change the focal length for capturing the same

object. Then, a one-dimensional exhaustive search of the focal lengths from a table of possible

values is implemented for optimization of the focal length. The initial value for the focal length

might be either computed by some linear auto-calibration methods [57, 40, 38] or obtained from

the digital camera.

2. Transform the projective reconstruction by the estimated camera parameters to its metric repre-

sentation.

3. Re-parametrize each Euclidean camera by its six individual extrinsic parameters and one com-

mon intrinsic focal length. This natural parametrization allows us to treat all cameras equally

when estimating uncertainties, but it leaves the seven d.o.f scaled Euclidean transformation as

the gauge freedom [58]. Finally, apply an Euclidean bundle adjustment over all cameras and all

quasi-dense correspondence points.

4. Run a second Euclidean bundle adjustment by adding one radial distortion parameter for all

cameras in the case where the non-linear distortions of cameras are non-negligible, for instance,

for image sequences captured by a very short focal length. In practice, for an object of the size

of a human face, this is unnecessary.
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B Stability Proof of the Bounded Regularization Method

Assuming that the stability condition is the same for curvature-based and Laplacian-based regulariza-

tions, the stability, % % � � 
 � % % � � % % � � % % � , is achieved if � 
 � � 
 ���	�
with

� 
 ���	� � � � �� �
���	� � % % � � � % 	�� � � % � % 	��
	 � % � % 	���� � % ��% % � �
This can be proved as follows. Let’s assume that

�  � � % % � % % �  �
���	�  �
. Take � � � � � �

� �
as the space step, and � 


the time step. Also denote the centered (resp. forward and backward)

differences for the x-axis at the 3D grid point 
 � � as 	 � �� ��� (resp. 	 
 �� ��� � 	 � �� ��� ). Further, let � � � � �� � 	 � �� ��� �
and �

� � 
 � � � � ��� � �
���	� � � �� � � � , with similar notations, � 	
�
� � .

We may choose the simplest up-wind discretization scheme for
� � �

� and the centered dis-

cretization scheme for � � . Then, the equation
� �� � � � 
 � � � � �
���	� ��� �

� � � �
� is discretized by

� � 
 �� ��� �
���� ���

� � 
 ��� �� ��� �,� � �� ��� �,� 	 �� ��� � � � �� ��� � such that

� �� ��� � 
 �
�
�

� �� 
 � ���
�

� �� � � ���
�

� �� � 
 � �
�

� �� � � � �
�

� �� ��� 
 �
�

� �� ��� � � � � � �� ��� �
and
� � �� ��� � 	 � �� ��� � � � 	 � �� ��� � � � ��	 	 � �� ��� � ��	 
 �� ��� � � with similar notations for

� 	 �� ��� and
� � �� ��� .

Now, we only need to prove for the case
� � � � � � 	 � � � � � � � , as other cases can be performed

in a similar manner. In this case, we have � � 
 �� ��� �
���� ���

�
� � � ���� 
 � ��� � � �� ��� � � � 	

�
���� ��� � � �� � � � � �

�
� �
�

���� ��� 
 � � ���� ��� � � �
�

���� 
 � ���
�

� �� � � ���
�

���� � 
 � �
�

���� � � � �
�

���� ��� 
 �
�

���� ��� � � � � � �� ��� � . We notice that

� � 
 �� ��� is a weighted sum of �����
 � 
 � 
 such that the sum of the weights is 1. It is also easy to check that all

these weights are in � � � ��� iff %�� � % � %�� 	 % � % � � % � � � � � . This condition is satisfied if � 
 � � 
 ���	�
.

In this case, � � 
 �� ��� is in the convex hull of � ���
 � 
 � 
 . Thus, we have proved that  
 � �
� % � � 
 �� ��� % � % % ��� % %�� .
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