Weighted Sobolev spaces and regularity for polyhedral domains
Bernd Ammann, Victor Nistor

To cite this version:
Bernd Ammann, Victor Nistor. Weighted Sobolev spaces and regularity for polyhedral domains. 2006. hal-00090987

HAL Id: hal-00090987
https://hal.science/hal-00090987
Preprint submitted on 4 Sep 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
WEIGHTED SOBOLEV SPACES AND REGULARITY FOR POLYHEDRAL DOMAINS

BERND AMMANN AND VICTOR NISTOR

Dedicated to Ivo Babuška on the occasion of his 80th birthday.

Abstract. We prove a regularity result for the Poisson problem $-\Delta u = f$, $u|_{\partial P} = g$ on a polyhedral domain $P \subset \mathbb{R}^3$ using the Babuška–Kondratiev spaces $K^m_a(P)$. These are weighted Sobolev spaces in which the weight is given by the distance to the set of edges [4, 33]. In particular, we show that there is no loss of K^m_a-regularity for solutions of strongly elliptic systems with smooth coefficients. We also establish a “trace theorem” for the restriction to the boundary of the functions in $K^m_a(P)$.

CONTENTS

1. Introduction 1
2. Smooth functions and differential operators on P 4
3. Function spaces on P 8
4. Proof of the regularity theorem 11
Appendix A. Additional constructions 13
References 14

1. INTRODUCTION

Let $\Omega \subset \mathbb{R}^n$ be a smooth, bounded domain. Then it is well known [1, 12, 16] that the equation

$$\Delta u = f \in H^{m-1}(\Omega), \quad u = 0 \text{ on } \partial \Omega,$$

has a unique solution $u \in H^{m+1}(\Omega)$. In particular, u will be smooth on $\overline{\Omega}$ if f is smooth on $\overline{\Omega}$. This well-posedness result is especially useful in practice for the numerical approximation of the solution u of Equation (1), see for example [1, 12, 16] among many possible references.

In practice, however, it is rarely the case that Ω is smooth. In fact, if $\partial \Omega$ is not smooth, then the smoothness of f on $\overline{\Omega}$ does not imply that the solution u of Equation (1) is also smooth on $\overline{\Omega}$. Therefore there is a loss of regularity for elliptic problems on non-smooth domains. Wahlbin [22] (see also [1, 12, 16]) has shown that this leads to some inconvenience in numerical applications, namely that a quasi-uniform sequence of triangulations on Ω will not lead to optimal rates of convergence for the Galerkin approximations u_h of the solution of (1).

Date: September 4, 2006.
The loss of regularity can be avoided, however, if one removes the singular points by “sending them to infinity” by suitably changing the metric with a conformal factor. It can be proved then that the resulting Sobolev spaces are the “Sobolev spaces with weights” considered for instance in \[[3, 11, 12, 33] \] and in several other papers. A related construction, leading however to countably normed spaces, was considered in \[[13] \]. Let \(f > 0 \) be a smooth function on a domain \(\Omega \), then the \(m \)th Sobolev space with weight \(f \) is defined by

\[
K^m_a(\Omega; f) := \{ u, f^{\alpha - a} \partial^a u \in L^2(\Omega), |\alpha| \leq m \}, \quad m \in \mathbb{Z}_+, \ a \in \mathbb{R}.
\]

The regularity result for Equation (1) extends to polyhedral domains \(P \) in three dimensions and the usual Sobolev spaces replaced by the spaces \(K^m_a(P) := K^m_a(P; \vartheta) \), \(\vartheta \) being the distance to the edges. The spaces \(K^m_a(\partial P; \vartheta) \) on the boundary are defined similarly for \(m \in \mathbb{Z}_+ := \{0, 1, \ldots\} \); for \(m \in \mathbb{R}_+ \) they are defined using interpolation.

Theorem 1.1. Let \(P \subset \mathbb{R}^3 \) be a polyhedral domain. Let \(m \in \mathbb{Z}_+ \) and \(a \in \mathbb{R} \). Assume that \(u \in K^m_{a+1}(P) \), \(\Delta u \in K^{m-1}_{a-1}(P) \), and \(u|_{\partial P} \in K^{m+1/2}_{a+1/2}(\partial P; \vartheta) \), then \(u \in K^{m+1}_{a+1}(P) \) and there exists \(C > 0 \) independent of \(u \) such that

\[
||u||_{K^{m+1}_{a+1}(P)} \leq C(||\Delta u||_{K^{m-1}_{a-1}(P)} + ||u||_{K^{m+1}_{a+1}(P)} + ||u|_{\partial P}||_{K^{m+1/2}_{a+1/2}(\partial P; \vartheta)}).
\]

The same result holds if we replace \(\Delta \) with a strongly elliptic operator or system.

Theorem 1.1 is well known in two dimensions, i.e., for polygonal domains, and for domains with conical points \[[10, 37, 45] \]. See also \[[24, 25, 31, 40, 49] \] where similar results were proved using a dyadic partition of unity technique. For the result in two dimensions, \(\vartheta \) is the distance to the vertices of the polygonal domain considered or the conical points. In general, in \(d \) dimensions, one takes \(\vartheta(x) \) to be the distance to the set of non-smooth boundary points of \(P \). Significantly less papers have dealt with the case of three dimensions. Nevertheless, let us mention the following. A general and far reaching theory (valid also in higher dimensions) was developed by Dauge in \[[24] \]. Regularity estimates based on singular function expansions were proved by Apel and Nicaise \[[3, 21, 25, 40, 48, 49] \] and Lubuma and Nicaise \[[34] \]. These results were then applied in these papers in order to obtain optimal rates of convergence in the Finite Element Method. In \[[33] \], Mazya and Rossmann have obtained similar results using estimates on Green functions. Buffa, Costabel, and Dauge \[[19] \] have proved and stated similar regularity and well posedness results for polyhedral dimensions in three dimensions. Our modified weight \(r_\Omega \) was introduced in \[[22] \], where the above regularity theorem was proved for \(m = 1 \). In \[[22] \], Kellogg and Osborn have obtained regularity results of a similar kind for the Stokes operator. Borsuk and Kondratiev established many regularity results for Dini-Liapunov regions in \(\mathbb{R}^n \), \(n \geq 3 \), in their recent monograph \[[11] \]. Note that the notion of a Dini-Liapunov region is a generalisation of a domain with \(C^{1,\alpha} \)-boundary. See also \[[2] 22, 24, 31, 40, 4, 18 \] to mention just a few other papers. A regularity result valid in all dimensions was obtained in \[[1] \] using “Lie manifolds.”

We are grateful to one of the referees, who pointed out to us that Theorem 1.1 can also be obtained from the results of the monograph \[[13] \]. In this paper, we follow \[[13] \], but we use more elementary methods that lead to a short proof. We also introduce some ideas that are specific to polyhedral domains in three dimensions.
and may be useful in applications to Numerical Analysis. Moreover, our paper is self-contained and the references to [1] are only for comparison.

We would like to stress that Theorem 1.1 does not constitute a Fredholm (or “normal solvability”) result, because the inclusion \(K^{m+1}_a(\mathcal{P}) \to K^0_0(\mathcal{P}) \) is not compact for all \(m \) and \(a \). By contrast, if \(\mathcal{P} \) is a polygon, then \(\mathcal{P} = -\Delta \) with Dirichlet boundary conditions is a Fredholm operator from \(K^{m+1}_a(\mathcal{P}) \) to \(K^{m-1}_{-a}(\mathcal{P}) \) precisely when \(a \) is different from \(k\pi/\alpha \), where \(k \in \mathbb{Z} \), \(k \neq 0 \), and \(\alpha \) ranges through the angles of the polygon \([3, 4, 5, 6] \).

The Poincaré inequality \(||u||_{C^1(\mathcal{P})} \leq C||\nabla u||_{L^2(\Omega)} \) proved in [14], gives that \(\Delta \) is coercive on the space \(C^1(\mathcal{P}) \) and hence the map \(\Delta : K^1_1(\mathcal{P}) \cap \{ u = 0 \text{ on } \partial \mathcal{P} \} \to K^{-1}_{-1}(\mathcal{P}) \) is a continuous bijection. By combining this with Theorem 1.1 we obtain that

\[
\Delta : K^{m+1}_a(\mathcal{P}) \cap \{ u = 0 \text{ on } \partial \mathcal{P} \} \to K^{m-1}_{-a}(\mathcal{P})
\]

is a continuous bijection, for any \(m \in \mathbb{Z}_+ \) and \(|a| < \eta \), with \(\eta \) depending only on \(\mathcal{P} \). The same result holds if \(\Delta \) is replaced with \(P + cP \), where \(P \) is a strongly elliptic system with smooth coefficients and \(cP > 0 \) and \(\eta > 0 \) are constants depending only on \(P \) [14, 15].

To prove Theorem 1.1, we first introduce the weighted Sobolev spaces \(K^m_a(\partial \mathcal{P}, \vartheta) \) and \(K^m_u(\partial \mathcal{P}, \vartheta) \) using partitions of unity. This allows us to define a trace map \(K^m_a(\mathcal{P}) \to K^{m-1/2}_{-a}(\partial \mathcal{P}, \vartheta) \), which extends the restriction map and is a continuous surjection, as in the case of a smooth domain. We also show that any differential operator \(P \) of order \(m \) with smooth coefficients induces a continuous map \(P : K^m_a(\mathcal{P}) \to K^{m-m}_{-a}(\mathcal{P}) \).

We need to introduce an enhanced space of smooth, bounded functions \(C^\infty(\Sigma \mathcal{P}) \), which contains the cylindrical and spherical coordinates functions and is minimal with this property. In particular, \(C^\infty(\overline{\Omega}) \subset C^\infty(\Sigma \mathcal{P}) \subset C^\infty(\Omega) \). Let \(\rho_P(p) \) be the distance from \(p \) to the vertex \(P \) of \(\mathcal{P} \) and \(r_e(p) \) be the distance from \(p \) to the line determined by the edge \(e \) of \(\mathcal{P} \) (for \(\mathcal{P} \) non-convex we need to slightly change the definition of \(r_e \)). Then \(\rho_P, \rho_e \in C^\infty(\Sigma \mathcal{P}) \), although they are not smooth functions on \(\overline{\Omega} \) in the usual sense. Let \(A \) and \(B \) be the end vertices of the edge \(e \) (i.e., \(e = [AB] \)). We further define \(\tilde{r}_e := \rho_A^{-1} \rho_B^{-1} r_e \) and \(r_p := \prod_e \tilde{r}_e \times \prod_p \rho_P \). Then \(\tilde{r}_e, r_p \in C^\infty(\Sigma \mathcal{P}) \). The functions in \(C^\infty(\Sigma \mathcal{P}) \) have the following strong boundedness property

\[
(r_p \partial_x)^i (r_p \partial_y)^j (r_p \partial_z)^k u \in C^\infty(\Sigma \mathcal{P}) \subset L^\infty(\mathcal{P})
\]

for all \(u \in C^\infty(\Sigma \mathcal{P}) \). The consideration of \(C^\infty(\Sigma \mathcal{P}) \) and of the derivatives of the form \(r_p \partial_x, r_p \partial_y, \) and \(r_p \partial_z \) is a substitute for the results on Lie manifolds used in [1]. However, the results of [1] also apply to non-compact manifolds and to a larger class of singular domains.

The methods of this paper are used for a general regularity and well-posedness result for anisotropic elasticity in general polyhedral domains (including cracks) in [13]. We do not include in this paper any concrete applications, but let us refer the reader to [2, 3, 9, 18, 19, 22], where concrete applications of results similar to ours were provided.
Acknowledgements: We would like to thank Ivo Babuška, Constantin Bacuta, Alexandru Ionescu, Robert Lauter, Anna Mazzucato, and Ludmil Zikatanov for useful discussions. The first named author wants to thank MSRI, Berkeley, CA, USA for its hospitality, the last named author thanks Institut Élie Cartan, Nancy, France, where part of the work has been completed.

2. Smooth functions and differential operators on P

In this section, we shall introduce the space $C^\infty(\Sigma^P) \subset C^\infty(P) \cap L^\infty(P)$ and relate it to the differentials $r_\partial, r_\partial^x, r_\partial^y, r_\partial^z$ mentioned in the Introduction. Similar vector fields have appeared also in [17]. When only edges are involved (i.e., no vertices), the use of these vector fields goes back to [11, 12]. See also [14, 50].

2.1. Polygons and polyhedral domains. Let us fix some terminology to be used in what follows.

A polygon P_0 in a two dimensional Euclidean space is an open, connected subset whose boundary consists of finitely many straight segments (possibly of infinite length) called sides and having at most the end points in common. For simplicity, we assume that $\partial P_0 = \partial P_0$, which means that no point of the boundary ∂P_0 is in the interior of P_0 (thus cracks are excluded). The points common to more than one straight segment of the boundary are called the vertices of P_0. We require that each vertex belongs to exactly two sides. We do not require the boundary of P_0 to be connected. For simplicity, in this paper we also assume that the sides are maximally extended, so that they are not contained in larger segments contained in the boundary. This assumption is however not essential.

Similarly, a polyhedral domain $P \subset \mathbb{R}^3$ is a connected, open subset whose boundary satisfies $\partial P = \partial P = \bigcup_{j=1}^N D_j$ and:

(i) each D_j is a polygon contained in an affine 2-dimensional subspace of \mathbb{R}^3;

(ii) the sets D_j are disjoint;

(iii) a side of D_j is a side of exactly one other D_k.

The vertices of P are the vertices of the polygonal domains D_j. The edges of P are the sides of the polygonal domains D_j. Hence an edge belongs to exactly two faces of P. For each vertex P of P, we choose a small open ball V_P centered in P. We assume that the neighborhoods V_P are chosen to be disjoint.

We stress that, in our convention, both the polygons and the polyhedra are open subsets. We do not require these sets to be bounded in general, although this assumption is needed for some of our results.

2.2. Useful functions and other notation. Assume, for the definition of $r_\partial, \theta_\partial,$ and $\phi_{P,e}$ in this subsection, that P is convex. If P is not convex, then we slightly change the definitions of these functions such that the new functions retain their behaviour around e, but will become smooth everywhere in space except on π. The modified functions $\phi_{P,e}$ and θ_∂ will then be defined and smooth on P. We postpone the technical construction of the modified functions $\phi_{P,e}$ and θ_∂ for the Appendix, in order not to interrupt the flow of the presentation. (Let us stress, however, that none of our results requires the assumption that P be convex.)

Let us first recall from the Introduction that we have denoted by $\rho_P(p)$ the distance from p to the vertex P of P. Also, recall that we have denoted by $r_\partial(p)$
the distance from p to the line determined by the edge e of \mathbb{P} and by

$$r_\mathbb{P} := \prod_e \tilde{r}_e \times \prod_P \rho_P, \quad \text{where } \tilde{r}_e := \rho_A^{-1} \rho_B^{-1} r_e \text{ for } e = [AB].$$

(5) In the above formula, the products are taken over all vertices P and all edges e of \mathbb{P}. The notation $e = [AB]$ means that e is the edge joining the vertices A and B. If $e = [A, \infty)$, that is, if e is a half-line, then $\tilde{r}_e := \rho_A^{-1} r_e$. Finally, if e is infinite in both directions (i.e., for a dihedral angle), we let $\tilde{r}_e := r_e$.

Choose for each edge e a plane \mathcal{P}_e containing one of the faces D_j of \mathbb{P} such that $e \subset \mathcal{D}_j$. If x is not on the line defined by e, we define θ_e to be the angle in a cylindrical coordinates system (r_e, θ_e, z) determined by the edge e and the plane \mathcal{P}_e. More precisely, let $q \in e$ be the foot of the perpendicular from p to e. Then $\theta_e(p)$ is the angle between pq and \mathcal{P}_e. Similarly, for each vertex P and edge e adjacent to P, we define $\phi_{P,e}(p)$ to be the angle between the segment pP and the edge e (except for $p = P$, in which case $\phi_{P,e}(p)$ is not defined).

If \mathbb{P} is convex, then the functions θ_e and $\phi_{P,e}$ are defined and smooth on \mathbb{P} (recall that \mathbb{P} is an open subset). They will be part of the spherical coordinate system $(\rho_P, \theta_e, \phi_{P,e})$ centered at P. For \mathbb{P} non-convex, this property will be enjoyed by the modified functions θ_e and $\phi_{P,e}$ introduced in the Appendix. All the following definitions and constructions below are the same in the case of a non-convex domain, but using the modified θ and ϕ variables.

We shall denote by $\theta = (\theta_{e_1}, \ldots, \theta_{e_r})$ the vector variable that puts together all the θ_e functions, for e ranging through the set of all edges $\{e_1, \ldots, e_r\}$. Similarly, let $\{\phi_1, \ldots, \phi_p\}$ list all the functions $\phi_{P,e}$, for all vertices P and all edges e containing P we shall denote by $\phi = (\phi_1, \ldots, \phi_p)$ the vector variable that puts together all the $\phi_{P,e}$ functions. We then introduce the space $W^{k, \infty}(\Sigma \mathbb{P})$ as the space of functions $u: \mathbb{P} \to \mathbb{C}$ of the form

$$u(x, y, z) = f(x, y, z, \theta, \phi) = f(x, y, z, \theta_{e_1}, \ldots, \theta_{e_r}, \phi_1, \ldots, \phi_p), \quad f \in W^{k, \infty}(\mathbb{P} \times (0, 2\pi)^r \times (0, \pi)^p).$$

Thus f above has k bounded weak derivatives. We let $C^{\infty}(\Sigma \mathbb{P}) := \bigcap_k W^{k, \infty}(\Sigma \mathbb{P})$. The point of this definition is that, for example, θ_e is a smooth function on \mathbb{P} that is not in $W^{k, \infty}(\mathbb{P})$ for $k > 1$. On the other hand $\theta_e \in C^{\infty}(\Sigma \mathbb{P})$, by definition.

One can show as in [17] that there exists a canonical Riemannian manifold $\Sigma(\mathbb{P})$ such that $C^{\infty}(\Sigma(\mathbb{P})) = C^{\infty}(\Sigma \mathbb{P})$, so our notation is justified. The construction of a space with this property is not very intuitive. However, at this point, we do not assign any significance to $\Sigma \mathbb{P}$, which should be regarded in this paper just as a symbol. (Let us mention however, that, had we used curved boundaries, then the desingularizations ΣD_j of the faces would have been necessary. See [13].)

2.3. Vector fields and $C^{\infty}(\Sigma \mathbb{P})$. We now establish several technical properties of the functions in $C^{\infty}(\Sigma \mathbb{P})$, especially in relation to the vector fields (differentials) $r_\mathbb{P} \partial_x$, $r_\mathbb{P} \partial_y$, and $r_\mathbb{P} \partial_z$.

Let us notice first that it follows right away from the definition that $C^{\infty}(\Sigma \mathbb{P})$ is closed under addition and multiplication.

Lemma 2.1. Let P be a vertex of \mathbb{P}, then $\rho_P \in C^{\infty}(\Sigma \mathbb{P})$. Similarly, let $e = [AB]$ be the edge of \mathbb{P} joining the vertices A and B, then $r_e := \rho_A^{-1} \rho_B^{-1} r_e \in C^{\infty}(\Sigma \mathbb{P})$. In particular, $r_\mathbb{P} := \prod_e r_e \times \prod_P \rho_P \in C^{\infty}(\Sigma \mathbb{P})$.
This is proved using polar coordinates. Assume P belongs to the edge e, then $\rho_P = (\sin \phi_P \cos \theta_P)^{-1} x$, where this is defined (x stands for the first component variable). Similar formulas for ρ_P in terms of y and z then combine, using a partition of unity on $\mathbb{R}^3 \setminus \{ P \}$ with functions in $C^\infty(\Sigma P)$, to define ρ_P globally as an element in $C^\infty(\Sigma P)$.

Similarly, $r_e = \rho_A \sin \phi_A e$, so $\rho_P \rho_A$ is “smooth” near A. The same argument, together with a partition of unity, shows that $r_e \in C^\infty(\Sigma P)$. Our result then follows from the fact that $C^\infty(\Sigma P)$ is closed under products, by definition.

Lemma 2.2. Let $\vartheta(p)$ be the distance from p to the union of the edges of \mathbb{P}. Then there exists $C > 0$ such that $C^{-1} \vartheta(p) \leq r_p \leq C \vartheta(p)$ for all $p \in \mathbb{P}$.

This lemma is proved using the homogeneity properties of the functions ϑ and r_p close to the vertices and edges of \mathbb{P}. Using a compactness argument, it is enough to prove that the ratio r_p / ϑ is bounded and bounded away from zero in the neighborhood of each point. This allows us to assume that \mathbb{P} is either a dihedral angle or an infinite cone. If \mathbb{P} is the dihedral angle $0 < \theta < \alpha$, with α fixed, then $r_p / \vartheta = 1$. If \mathbb{P} is a cone with center the origin, let α_t be the dilation with center the origin and ratio t. Then $r_p(\alpha_t(p)) = r_p(p) \vartheta(\alpha_t(p)) = t \vartheta(p)$. This shows that the ratio $r_p(p) / \vartheta(p)$ depends only on $p/|p|$. Furthermore, r_p is a continuous function on the compact set $\mathbb{P} \cap S^{n-1}$, and the lemma follows from this.

Lemma 2.3. We have that the functions $r_e \partial_e \vartheta$, $r_e \partial_e \theta$, $r_e \partial_e \rho_P$, $\rho_P \partial_e \vartheta$, $\rho_P \partial_e \theta$, $\rho_P \partial_e \rho_P$, $\partial_e \vartheta$, $\partial_e \theta$, $\partial_e \rho_P$, and $\partial_e \rho_P$ are all in $C^\infty(\Sigma P)$.

To prove this, let us notice first that we can use any linear system of coordinates (x, y, z). In particular, for each of the above calculations, we can assume that our cylindrical or spherical coordinate system is aligned to the coordinate system (x, y, z). Then the result is simply an exercise in the calculation of the partial derivatives of the cylindrical coordinates ϑ and r and of the spherical coordinates ϕ and ρ.

Corollary 2.4. We have $\partial_e r_p$, $\partial_p r_p$, $\partial_e \vartheta \in C^\infty(\Sigma P)$.

Proof. Let us concentrate on ∂_e. We use the product rule to compute the derivative of r_p. A summand containing $\partial_e \rho_P$ is in $C^\infty(\Sigma P)$ by Lemma 2.3. Let $e = [AB]$. The other products are obtained by replacing $r_e := \rho_A^{-1} \rho_B^{-1} r_e$ with

$$
\partial_e (r_e) = \rho_A^{-1} \rho_B^{-1} \partial_e (r_e) - \rho_A^{-1} \partial_e (\rho_A) r_e - \rho_B^{-1} \partial_e (\rho_B) r_e.
$$

The factors of ρ_A^{-1} and ρ_B^{-1} then cancel out in the product defining r_p and all the remaining factors are in $C^\infty(\Sigma P)$ by Lemma 2.3. □

Proposition 2.5. If $u \in C^\infty(\Sigma P)$, then the functions $r_p \partial_e u$, $r_p \partial_p u$, and $r_p \partial_2 u$ are in $C^\infty(\Sigma P)$.

Proof. This follows from Lemma 2.3 and $r_p \partial_e \in C^\infty(\Sigma P) \cap \rho \rho P C^\infty(\Sigma P)$. □
the structure of $\Diff^k_0(\mathcal{P})$, we shall need two simple calculations that we formalize in the following lemma, whose proof is based on the fact that $\partial_\tau \tau \in C^\infty(\Sigma \mathcal{P})$.

Lemma 2.6. Let $\lambda \in \mathbb{R}$ and let ∂_j and ∂_k stand for either of ∂_x, ∂_y, or ∂_z. Then

$$[\tau \partial_j, \tau \partial_k] := (\tau \partial_j)(\tau \partial_k) - (\tau \partial_k)(\tau \partial_j) = \partial_j(\tau \partial_k) - \partial_k(\tau \partial_j) \in \Diff^1_0(\mathcal{P}).$$

Then we have the following simple but basic result.

Proposition 2.7. We have $\Diff^k_0(\mathcal{P}) \subset \Diff^{k+m}_0(\mathcal{P})$ and hence $\Diff^\infty_0(\mathcal{P})$ is an algebra.

Proof. We shall prove by induction on $k + m$ that $\Diff^k_0(\mathcal{P}) \subset \Diff^{k+m}_0(\mathcal{P})$. Indeed, if $k + m = 0$, then $k = m = 0$ and the statement is clearly true because $C^\infty(\Sigma \mathcal{P})$ is closed under products. Let us assume then that $k + m > 0$. We need to show that $u(\tau \partial)^\alpha v(\tau \partial)^\beta \in \Diff^{k+m}_0(\mathcal{P})$ if $u, v \in C^\infty(\Sigma \mathcal{P})$ and $|\alpha| := \alpha_1 + \alpha_2 + \alpha_3 = k$, $|\beta| := \beta_1 + \beta_2 + \beta_3 = m$, where $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $\beta = (\beta_1, \beta_2, \beta_3)$.

If $m = 0$, then the relation

$$u(\tau \partial)^\alpha v = \sum u(\tau \partial)^{\alpha'} [\tau \partial_j(v)] (\tau \partial)^{\alpha''}$$

for suitable α', α'' with $|\alpha'| + |\alpha''| = k - 1$, together with the induction hypothesis and with Proposition 2.7, shows that $u(\tau \partial)^\alpha v \in \Diff^{k}_0(\mathcal{P})$.

Let now m be arbitrary. We shall proceed by a second induction on m. The same argument as in the paragraph above allows us to assume that $\tau = 1$. We can also assume that the monomial $(\tau \partial)^\alpha (\tau \partial)^\beta$ is already ordered in the standard way. Then, using Lemma 2.6 we commute $\tau \partial_j$, the last derivative in $(\tau \partial)^\alpha$, with $\tau \partial_k$, the first derivative in $(\tau \partial)^\beta$. Induction on $k + m$ for the terms containing $\partial_j(\tau \partial)\partial_k$ and $\partial_k(\tau \partial)\partial_j$ and induction on m or m for the term containing $(\tau \partial)^\alpha(\tau \partial)^\beta$ then complete the proof of the fact that $\Diff^k_0(\mathcal{P}) \subset \Diff^{k+m}_0(\mathcal{P})$.

The above proposition gives the following useful corollary.

Corollary 2.8. If P is a differential operator of order m with smooth coefficients, then $\tau^m P \in \Diff^m_0(\mathcal{P})$.

Proof. It is enough to show that $\tau^m \partial^\alpha \in \Diff^m_0(\mathcal{P})$ if $\partial^\alpha = \partial^{\alpha_1}_x \partial^{\alpha_2}_y \partial^{\alpha_3}_z$, with $|\alpha| = m$. We shall again proceed by induction on m. The case $m = 1$ is obvious. Let ∂_j be the first derivative in ∂^α, so that $\partial^\alpha = \partial_j \partial^\alpha$. Then Lemma 2.6 and Corollary 2.4 give

$$\tau^m \partial^\alpha - (\tau \partial_j)(\tau^{m-1} \partial^\alpha') = -(m - 1)\partial_j(\tau^{m-1} \partial^\alpha') \in \Diff^{m-1}_0(\mathcal{P}).$$

Then Proposition 2.7 shows that $\Diff^1_0(\mathcal{P}) \subset \Diff^m_0(\mathcal{P})$. This and the induction hypothesis allows us to complete the proof.

The proof of the above corollary also shows that

$$\tau^m \partial^\alpha_1 \partial^\alpha_2 \partial^\alpha_3 - (\tau \partial x)^{\alpha_1}(\tau \partial y)^{\alpha_2}(\tau \partial z)^{\alpha_3} \in \Diff^{m-1}_0(\mathcal{P}), \quad |\alpha| = m.$$
3. Function spaces on \mathcal{P}

We now recall and study the Babuška–Kondratiev spaces $\mathcal{K}_m^a(\mathcal{P}) := \mathcal{K}_m^a(\mathcal{P}; \vartheta)$ and $\mathcal{K}_m^a(\partial \mathcal{P}; \vartheta)$ on a 3-dimensional polyhedral domain \mathcal{P} and its boundary $\partial \mathcal{P}$. These spaces are weighted Sobolev spaces with weight given by ϑ, the distance to the set of edges of \mathcal{P}, as in Equation (2). Note that we can replace ϑ with $r_\mathcal{P}$, by Lemma 2.2 (we shall use this below).

3.1. The Babuška–Kondratiev spaces. We let

\[
W^{k,p,a}_{BK}(\mathcal{P}) = \{ u : \mathcal{P} \to \mathbb{C}, r_\mathcal{P}^{a-\alpha} \partial^\alpha u \in L^p(\mathcal{P}) \text{ for all } |\alpha| \leq k \},
\]

for $k \in \mathbb{Z}_+$, $a \in \mathbb{R}$, $p \in [1, \infty]$. If $p = 2$, we denote $\mathcal{K}_k^a(\mathcal{P}) := W^{k,2,a}_{BK}(\mathcal{P})$, which coincides with the definition in the Introduction (Equation (2)).

We similarly define

\[
W^{m,p,a}_{BK}(\partial \mathcal{P}) = \{ u : \partial \mathcal{P} \to \mathbb{C}, r_\mathcal{P}^{k-a} P(u|_{D_j}) \in L^p(D_j) \text{ for all } k \leq m \}
\]

and all differential operators P of order k on D_j, $k \leq m$, $m \in \mathbb{Z}_+$.

We let $\mathcal{K}_m^a(\partial \mathcal{P}; \vartheta) := W^{m,2,a}_{BK}(\partial \mathcal{P})$. Thus $\mathcal{K}_m^a(\partial \mathcal{P}; \vartheta) \simeq \bigoplus \mathcal{K}_m^a(D_j; \vartheta)$ is thus a direct sum of weighted Sobolev spaces. Note that we require no compatibility conditions for the resulting functions on the faces D_j.

Equation (3) and Lemma 2.2 then give immediately the following lemma.

Lemma 3.1. We have $\mathcal{K}_m^a(\mathcal{P}) = \{ u, \partial^\alpha P u \in L^2(\mathcal{P}) \text{ for all } P \in \text{Diff}^k(\mathcal{P}) \}$. A similar result holds for $\mathcal{K}_m^a(\partial \mathcal{P}; \vartheta)$ and for $W^{k,p,a}_{BK}(\mathcal{P})$.

Next, Proposition 2.2 and Corollary 2.4, together with a straightforward calculation, show the following.

Lemma 3.2. The multiplication map $W^{m,\infty,0}_{BK} \times \mathcal{K}_m^a(\mathcal{P}) \ni (u, f) \mapsto uf \in \mathcal{K}_m^a(\mathcal{P})$ is continuous. We also have $C^\infty(\Sigma \mathcal{P}) \subset W^{m,\infty,0}_{BK}(\mathcal{P})$ and $r_\mathcal{P}^a \in W^{m,\infty,0}_{BK}(\mathcal{P})$, and hence the map $\mathcal{K}_m^a(\mathcal{P}) \ni u \mapsto r_\mathcal{P}^a u \in \mathcal{K}_m^a(\mathcal{P})$ is a continuous isomorphism of Banach spaces.

From this lemma we obtain right away the following result.

Proposition 3.3. Let $k \geq m$. Each $P_0 \in \text{Diff}_0^m(\mathcal{P})$ defines a continuous map $P_0 : \mathcal{K}_0^a(\mathcal{P}) \to \mathcal{K}_0^{-m}(\mathcal{P})$. The family $r_\mathcal{P}^{-1} P_0 r_\mathcal{P}^a$ is a family of bounded operators $\mathcal{K}_k^a(\mathcal{P}) \to \mathcal{K}_k^{-m}(\mathcal{P})$ depending continuously on λ.

Similarly, if P is a differential operator with smooth coefficients on \mathcal{P}, then $r_\mathcal{P}^{-1} P r_\mathcal{P}^a$ defines a continuous family of bounded operators $\mathcal{K}_k^a(\mathcal{P}) \to \mathcal{K}_k^{-m}(\mathcal{P})$.

Proof. The first part follows from Lemma 3.1. The second part follows from the first part of this proposition and Lemma 3.2. \qed

We define the spaces $\mathcal{K}_{-k}^a(\mathcal{P})$, $k \in \mathbb{Z}_+$, by duality. More precisely, let $\mathcal{K}_0^a(\mathcal{P})$ be the closure of $C^\infty(\mathcal{P})$ in $\mathcal{K}_0^a(\mathcal{P})$. Then we define $\mathcal{K}_{-k}^a(\mathcal{P})$ to be the dual of $\mathcal{K}_k^a(\mathcal{P})$, the duality pairing being an extension of the bilinear form $(u, v) \mapsto \int_\mathcal{P} uv \ dv ol$. With this definition, we can drop the requirement that $k \geq m$ in Proposition 3.3.

Let us also note that the resulting weighted Sobolev spaces on the polygons D_j are different from the weighted Sobolev spaces obtained by using the distance to the vertices of these polygons. A regularity theorem on D_j would involve the
latter weight (as in Kondratiev’s theorem mentioned in the Introduction). A consequence of this is that the spaces $K^s_a(\partial \mathcal{P}; \vartheta)$ behave more like the Sobolev spaces defined on a smooth manifold without boundary than like the Sobolev spaces defined on a bounded domain with (smooth) boundary. In particular, we define $K^{-k}_{-a}(\partial \mathcal{P}; \vartheta)$ as the dual of $K^k_a(\partial \mathcal{P}; \vartheta)$. The spaces $K^s_a(\partial \mathcal{P})$, $s \not\in \mathbb{Z}$, can be defined by interpolation, although in this paper we shall use a different definition using partitions of unity (see the following subsection; the two definitions are equivalent, although we shall not need a proof of this fact in this article).

3.2. Definition of Sobolev spaces using partitions of unity. As in [1], it is important to define the spaces $K^s_a(\mathcal{P})$ using partitions of unity. Similar constructions were used in [2, 3, 4, 5, 6]. This construction is possible because the spaces $K^m_{-1/2}(\mathcal{P})$ are the Sobolev spaces associated to the metric $r^2 g_E$, where g_E is the usual Euclidean metric.

We shall need the following lemma. Recall that $\vartheta(p)$ denotes the distance from p to the edges of \mathcal{P}. In view of Lemma 2.2, in all estimates involving ϑ, we can replace ϑ with r_ϑ, although not the other way around, because ϑ is not smooth.

Let $\partial_{\text{sing}} \mathcal{P}$ be the union of the edges of \mathcal{P} and $\mathcal{P}' := \mathcal{P} \setminus \partial_{\text{sing}} \mathcal{P}$.

Lemma 3.4. There is $\epsilon_0 \in (0, 1)$, an integer κ, and a sequence $C_m > 0$ of constants such that, for any $\epsilon \in (0, \epsilon_0]$, there is a sequence of points $\{x_j\} \subset \mathcal{P}' := \mathcal{P} \setminus \partial_{\text{sing}} \mathcal{P}$ and a partition of unity $\phi_j \in C^\infty(\mathcal{P}')$ with the following properties:

(i) either $B(x_j, \epsilon \vartheta(x_j)/4)$ is contained in \mathcal{P} or $x_j \in \partial \mathcal{P}$, $\vartheta(x_j) > 0$, and the ball $B(x_j, \epsilon \vartheta(x_j))$ intersects only the face D_i to which x_j belongs;

(ii) $\text{supp}(\phi_j) \subset B(x_j, \epsilon \vartheta(x_j)/2)$ if $x_j \in \partial \mathcal{P}$ and $\text{supp}(\phi_j) \subset B(x_j, \epsilon \vartheta(x_j)/8)$ otherwise;

(iii) $\phi_j(x_j) = 1$ and $\|\epsilon \vartheta \partial^\alpha \phi_j\|_{L^\infty(\mathcal{P})} \leq C_{\lvert \alpha \rvert} \epsilon^{-\lvert \alpha \rvert}$; and

(iv) a point $x \in \mathcal{P}$ can belong to at most κ of the sets $B(x_j, \epsilon \vartheta(x_j))$.

Let us notice that $B(x_j, \epsilon \vartheta(x_j))$ does not intersect any edge of \mathcal{P} because $\epsilon < 1$. Moreover, the conditions that $\|\epsilon \vartheta \nabla \phi_j\|_{L^\infty(\mathcal{P})} \leq C_1 \epsilon^{-1}$ and $\phi_j(x_j) = 1$ guarantee that the support of ϕ_j is comparable in size with $\epsilon \vartheta(x_j)$. This is reminiscent of the conditions appearing in the definition of the Generalized Finite Element spaces [2, 3, 4].

A proof of this lemma will be given in the Appendix. It is essentially a result that, in the case of non-compact manifolds, goes back to Aubin. It was subsequently used by Gromov and in [1, 5, 6, 7, 8]. We shall fix $\epsilon = \epsilon_0$ in what follows and a sequence x_j and a partition of unity ϕ_j as in the lemma.

Lemma 3.5. Let $u_k = \sum_{j=1}^k \phi_j u$, for $u \in K^m_a(\mathcal{P})$. Then $u_k \to u$ in $K^m_a(\mathcal{P})$.

Proof. Let $\Phi_k := \sum_{j=1}^k \phi_j$. We have that the sequence $(\epsilon \vartheta \partial^\alpha \Phi_k)$ is bounded in the ‘sup’-norm and converges to 0 pointwise everywhere if $\alpha \neq 0$. Similarly, Φ_k is bounded and converges to 1 pointwise everywhere. The result then follows from this using also the Lebesgue dominated convergence theorem.

Denote by $\alpha_j(x) = x_j + \vartheta(x_j)(x - x_j)$ be the dilation of center x_j and ratio $\vartheta(x_j)$. Let J be the set of indices j such that $x_j \in \partial \mathcal{P}$. Below, by \dot{H}^m we shall
mean either $H^m(\mathbb{R}^3)$ or $H^m(\mathbb{R}^3_+)$. Also, denote by
\begin{equation}
\nu_{m,a}(u)^2 := \sum_j \vartheta(x_j)3^{-2a}||\phi_j u \circ \alpha_j||^2_{H^m} = \sum_{j \notin J} \vartheta(x_j)3^{-2a}||\phi_j u \circ \alpha_j||^2_{H^m(\mathbb{R}^3)} + \sum_{j \in J} \vartheta(x_j)3^{-2a}||\phi_j u \circ \alpha_j||^2_{H^m(\mathbb{R}^3_+)}.
\end{equation}

We agree that $||\phi_j u \circ \alpha_j||_{H^m} = \infty$ if $(\phi_j u \circ \alpha_j) \notin H^m(\mathbb{R}^3)$ (or if $(\phi_j u \circ \alpha_j) \notin H^m(\mathbb{R}^3_+)$, respectively). Note that the functions $(\phi_j u \circ \alpha_j)$ will all have support contained in a fixed ball, namely, the ball $B(0, \varepsilon_0/2)$ of radius $\varepsilon_0/2$ and center the origin. Moreover, all derivatives $\partial^m(\phi_j \circ \alpha_j)$ are bounded for each fixed α and arbitrary j by Lemma 3.4.

Proposition 3.6. We have $u \in K^m_a(\mathbb{P})$, $m \in \mathbb{Z}$, if, and only if, $\nu_{m,a}(u) < \infty$. Moreover, $\nu_{m,a}(u)$ defines an equivalent norm on $K^m_a(\mathbb{P})$.

The proof of this Proposition is standard (see [3, Lemma 2.4], [1], or [54]): for $m < 0$ one also has to check that both definitions are compatible with duality. We include a brief sketch below.

Proof. Let us also introduce
\[\tilde{\nu}_{m,a}(u)^2 := \sum_j ||\phi_j u||^2_{K^m_a(\mathbb{P})}. \]

Then the fact that $\vartheta(x)/\vartheta(x_j)$ and $\vartheta(x_j)/\vartheta(x)$ are bounded by $(1 - \epsilon)^{-1}$ on the ball $B(x_j, \epsilon \vartheta(x_j))$, for $\epsilon \in (0, 1)$ and a change of variables shows that $\tilde{\nu}_{m,a}$ and $\nu_{m,a}$ define equivalent norms. It is then enough to prove that $\tilde{\nu}_{m,a}(u)$ defines an equivalent norm on $K^m_a(\mathbb{P})$. For $m = 0$, this follows from the inequalities
\[||r_\varphi^{-a}u||^2_{L^2(\mathbb{P})} \leq \kappa \vartheta_0^2 \leq \kappa ||r_\varphi^{-a}u||^2_{L^2(\mathbb{P})}. \]

For arbitrary m, we use induction on m and the fact that $\sum_j |(r_\varphi^a \vartheta)^\alpha \phi_j(p)|$ is bounded uniformly in $p \in \mathbb{P}$ for all α. \qed

We proceed in the same way to study the spaces $K^s_a(\partial \mathbb{P}; \vartheta)$, $s \in \mathbb{R}$. Let us identify the plane containing each face D_k of \mathbb{P} with a copy of \mathbb{R}^2. Then let
\begin{equation}
\mu_{s,a}(u)^2 := \sum_{j \in J} \vartheta(x_j)3^{-2a}||\phi_j u \circ \alpha_j||^2_{H^s(\mathbb{R}^2)}, \quad s \in \mathbb{R}_+.
\end{equation}

Note that only the indices j for which $x_j \in \partial \mathbb{P}$ are used above. Also, note that the power of ϑx_j was changed from $3 - 2a$ to $2 - 2a$.

Then we have an analogous description of the spaces $K^s_a(\partial \mathbb{P}; \vartheta)$, $s \in \mathbb{Z}$.

Proposition 3.7. We have $u \in K^s_a(\partial \mathbb{P}; \vartheta)$ if, and only if, $\mu_{s,a}(u) < \infty$. Moreover, $\mu_{s,a}(u)$ defines an equivalent norm on $K^s_a(\partial \mathbb{P}; \vartheta)$, $s \in \mathbb{Z}$.

We can then define $K^s_a(\partial \mathbb{P}; \vartheta)$, $s \in \mathbb{R}$, as the space of functions u for which $\mu_{s,a}(u) < \infty$ with the induced norm. From this we obtain, by reducing to the Euclidean case, the following Trace Theorem. Let $\partial_{\text{sing}} \mathbb{P}$ be the union of the edges of \mathbb{P} and $\mathbb{P}' := \mathbb{P} \setminus \partial_{\text{sing}} \mathbb{P}$, as above.

Theorem 3.8 (Trace theorem). The space $C^\infty(\mathbb{P}')$ is dense in $K^m_a(\mathbb{P})$, $m \in \mathbb{Z}_+$. The restriction to the boundary extends to a continuous, surjective map $K^m_a(\mathbb{P}) \rightarrow$.
\[K^{m-1/2}_a(\partial \mathbb{P}; \partial) \] for \(m \geq 1 \). For \(m = 1 \), the kernel of this map is the closure of \(C^\infty_c(\mathbb{P}) \) in \(K^1_a(\mathbb{P}) \).

Proof. Clearly \(C^\infty_c(\mathbb{P}) \subset K^m_a(\mathbb{P}) \), for any \(m \in \mathbb{Z}_+ \) and any \(a \in \mathbb{R} \). To prove that it is a dense subspace, let \(u \in K^m_a(\mathbb{P}) \). By Lemma 3.3, we may assume that the support of \(u \) does not intersect \(\partial \text{sing} \mathbb{P} \) (replace \(u \) with \(u_k \) for some \(k \) large). Then we use the fact that \(C^\infty(\Omega) \) is dense in \(H^m(\Omega) \) for \(\Omega \) a smooth, bounded domain and the fact that the \(H^m \)-norm is equivalent to the norm on \(K^m_a(\mathbb{P}) \) when restricted to functions with support in a fixed compact \(K \) such that \(K \) does not intersect any edge of \(\mathbb{P} \) (i.e., \(K \cap \partial \text{sing} \mathbb{P} = \emptyset \)).

We have

\[
\mu_{m-1/2,a-1/2}(u|_{\partial \mathbb{P}})^2 := \sum_{j \in J} \vartheta(x_j)^{3-2\alpha} \| (\varphi_j u) \circ \vartheta_j \|_{H^{m-1/2}(\mathbb{R}^2)}^2 \\
\leq C \sum_{j \in J} \vartheta(x_j)^{3-2\alpha} \| (\varphi_j u) \circ \vartheta_j \|_{H^m(\mathbb{R}^2)}^2 \leq C \nu_{m,a}(u),
\]

and hence the restriction map \(K^m_a(\mathbb{P}) \to K^{m-1/2}_a(\partial \mathbb{P}; \partial) \) is defined and continuous for \(m \geq 1 \), by Propositions 3.2 and 3.3. To prove that this map is continuous, let us fix a continuous extension operator \(E : H^{m-1/2}(\mathbb{R}^2) \to H^m(\mathbb{R}^3) \). By rotation and translation, we extend this definition to an extension operator \(E : H^{m-1/2}(\mathbb{R}^2) \to H^m(\mathbb{R}^3) \), for any two dimensional subspace \(V \subset \mathbb{R}^3 \).

Let then \(v : \partial \mathbb{P} \to \mathbb{C} \) be a function in \(K^{m-1/2}_a(\partial \mathbb{P}; \partial) \). Let us fix a function \(\psi \in C^\infty(\mathbb{R}^3) \) with support in the ball \(B(0, \epsilon_0) \) of radius \(\epsilon_0 \) and center at the origin such that \(\psi = 1 \) on \(B(0, \epsilon_0/2) \). Let \(v_j(p) = \varphi_j(\alpha_j(p)) u(\alpha_j(p)) \), which is defined on a subspace of \(\mathbb{R}^3 \) of dimension 2. We define

\[
u = \sum_j \left(\psi E(v_j) \right) \circ \vartheta_j^{-1}.
\]

Then \(u \in K^m_a(\mathbb{P}) \) and \(u|_{\partial \mathbb{P}} = v \).

Finally, let \(u \in K^1_a(\mathbb{P}) \) such that \(u|_{\partial \mathbb{P}} = 0 \). Let \(u_k \) be as in Lemma 3.3. Then \(u_k|_{\partial \mathbb{P}} = 0 \). Using again the equivalence of the \(H^1 \) and \(K^1_a(\mathbb{P}) \)-norms on functions with support in a fixed compact set \(K \) such that \(K \cap \partial \text{sing} \mathbb{P} = \emptyset \), we see that each \(u_k \) can be approximated in \(K^1_a(\mathbb{P}) \) as well as we want by a function \(v_k \in C^\infty_c(\mathbb{P}) \). Then we can take our approximation of \(u \) to be \(v = \sum_{k=1}^N v_k \), for \(N \) large enough. \(\square \)

4. PROOF OF THE REGULARITY THEOREM

We include in this section the proof of Theorem 1.1. Its proof is reduced to the Euclidean case using a partition of unity \(\varphi_j \) satisfying the conditions of Lemma 3.3 for \(\epsilon = \epsilon_0 \), as in the previous section.

Proof. (of Theorem 1.1) The trace theorem, Theorem 3.8, allows us to assume that \(u|_{\partial \mathbb{P}} = 0 \). We then notice that, locally, Theorem 1.1 is a well known statement. Namely, let us consider a function \(v \) with support in the ball of radius \(\epsilon_0 \). We assume that either \(v \in H^1(\mathbb{R}^2) \) or \(v \in H^1_0(\mathbb{R}^2) \) (that is, \(v = 0 \) on \(\mathbb{R}^2 \), the boundary of \(\mathbb{R}^2_1 = \{ z \geq 0 \} \)). Then there exists a constant \(C > 0 \) such that, for all \(m \geq 0 \),

\[
\| v \|^2_{H^{m+1}(\mathbb{R}^3)} \leq C \left(\| \Delta v \|^2_{H^{m-1}(\mathbb{R}^3)} + \| v \|^2_{L^2(\mathbb{R}^3)} \right). \tag{10}
\]
or, respectively,

\[
\|v\|_{H^{m+1}(\mathbb{R}^n_+)}^2 \leq C_r \left(\|\Delta v\|_{H^{m-1}(\mathbb{R}^n_+)}^2 + \|v\|_{L^2(\mathbb{R}^n_+)}^2 \right).
\]

The constant \(C_r\) in the two equations above depends only on \(\epsilon_0\). (In fact, Equation (11) implies Equation (11), by taking \(v\) to be odd with respect to the reflection in the boundary of the half space \(\mathbb{R}^n_+\).)

We shall proceed by induction on \(m \geq 0\). For \(m = 0\), the result is tautologically true, because of the term \(\|u\|_{K_{\infty}^2(P)}\) on the right hand side of the regularity estimate of Theorem 1.1. Let \(\{\phi_j\}\) be the partition of unity and \(\alpha_j\) be dilations appearing in Equation (8). In particular, the partition of unity \(\phi_j\) satisfies the conditions of Lemma 3.4, which implies that \(\text{supp}(\phi_j) \subset B(x_j, \epsilon_0 \theta(x_j)/2)\) if \(x_j \in \partial P\) and \(\text{supp}(\phi_j) \subset B(x_j, \epsilon_0 \theta(x_j)/8)\) otherwise. We also have that all derivatives of order \(\leq k\) of the functions \(\phi_j \circ \alpha_j\) are bounded. This implies in turn that the commutator

\[
P_j := [\Delta, \phi_j \circ \alpha_j] := \Delta(\phi_j \circ \alpha_j) - (\phi_j \circ \alpha_j)\Delta
\]
is a differential operator all of whose coefficients have bounded derivatives.

Let \(\|v\|_{H^m}\) denote either \(\|v\|_{H^m(\mathbb{R}_n)}\) or \(\|v\|_{H^m(\mathbb{R}^n_+)}\), depending on where the function \(v\) is defined. Let \(\eta_j = \psi \circ \alpha_j^{-1}\), where \(\psi \in C_\infty(\mathbb{R}^3)\) has support in \(B(0, \epsilon_0)\) and is equal to 1 on \(B(0, \epsilon_0/2)\), as before.

Then Equations (11) and (11) and the above remarks give

\[
\nu_{m+2,a}(u)^2 := \sum_j \vartheta(x_j)^{3-2a} \|\phi_j u\|_{H^{m+2}}^2
\]

\[
\leq C_r \sum_j \vartheta(x_j)^{3-2a} \left(\|\Delta[(\phi_j u) \circ \alpha_j]\|_{H^m}^2 + \|\phi_j u \circ \alpha_j\|_{L^2}^2\right)
\]

\[
\leq C \sum_j \vartheta(x_j)^{3-2a} \left(\|\phi_j \circ \alpha_j \Delta(u \circ \alpha_j)\|_{H^m}^2 + \|P_j(u \circ \alpha_j)\|_{H^m}^2 + \|\phi_j u \circ \alpha_j\|_{L^2}^2\right)
\]

\[
\leq C \sum_j \vartheta(x_j)^{3-2a} \left(\|\phi_j \circ \alpha_j \Delta u\|_{H^{m+1}}^2 + \|\eta_j u \circ \alpha_j\|_{H^{m+1}}^2 + \|\phi_j u \circ \alpha_j\|_{L^2}^2\right)
\]

\[
\leq C (\nu_{m,a-2}(\Delta u)^2 + \sum_j \nu_{m+1,a}(\eta_j u)^2 + \nu_{0,a}(u)^2).
\]

Since no more than \(\kappa\) of the functions \(\eta_j u\) are non-zero at any given point of \(P\) and all the derivatives \((\vartheta \partial^a)^\eta_j\) are bounded for all fixed \(|a|\), we obtain that

\[
\sum_j \nu_{m+1,a}(\eta_j u)^2 \leq C \nu_{m+1,a}(u)^2.
\]

This then gives

\[
\nu_{m+2,a}(u)^2 \leq C (\nu_{m,a-2}(\Delta u)^2 + \nu_{m+1,a}(u)^2).
\]

By induction on \(m\) we then obtain

\[
\nu_{m+2,a}(u)^2 \leq C (\nu_{m,a-2}(\Delta u)^2 + \nu_{m+1,a}(u)^2).
\]

The result then follows from Proposition 7.3, which states that the norms \(\|\cdot\|_{K_0^m(P)}\) and \(\nu_{t,a}\) are equivalent.

See [14] for applications of these results, especially of the above theorem.

By contrast, it is known that in the framework of the usual Sobolev spaces \(H^m(P)\), the smoothness of the solution of (6) is limited [24, 25, 28, 29, 35].
Appendix A. Additional constructions

In this appendix we explain how to modify the constructions of the functions \(\theta_e \) and \(\phi_{P,e} \) introduced in Section 3 when \(P \) is not convex and how to construct a partition of unity satisfying the conditions of Lemma 3.4.

A.1. The modified functions \(\theta_e, \phi_e \) and \(r_e \). We continue to denote by \(\rho_P(p) \) the distance from \(p \) to the vertex \(P \). By a dilation, we can assume that each edge of \(P \) has length at least 4.

Let us first modify the functions \(\phi_{A,e} \). We can find \(\delta > 0 \) small enough so that for any vertex \(P \), the sets \(\phi_{P,e} > \pi - 2\delta \) do not intersect \((e \) ranges through the set of edges containing \(P) \). Let \(\epsilon = [AB] \) and \(\psi_1 : [0, \pi] \rightarrow [0, 1 - \delta] \) be a smooth, non-decreasing function such that \(\psi_1(x) = x \) for \(0 \leq x \leq \pi - 2\delta \) and \(\psi_1(x) = \pi - \delta \) for \(x \geq \pi - \delta \). Also, let \(\psi_2 : [0, \pi] \rightarrow [0, 1] \) be a smooth, non-increasing function such that \(\psi_2(x) = 1 \) for \(0 \leq x \leq 1 \) and \(\psi_2(x) = 0 \) for \(2 \leq x \). Then we replace \(\phi_{A,e} \) with \(\psi_1(\phi_{A,e})\psi_2(\rho_A) \). This modifies the function \(\phi_{A,e} \) to make it smooth everywhere except on \(\Gamma \).

We now modify the functions \(\theta_e \). They will be modified in two ways. Let us fix an edge \(e = [AB] \). To understand these modifications, it is useful to think of the spherical domain \(\omega_A \) associated to the vertex \(A \). The old function \(\theta_e \) served the purpose of both desingularizing \(\omega_A \) close to the vertex associated to \(e \) and of providing global coordinates on \(\omega_A \) away from the vertices (together with the functions \(\phi_{A,e} \)). These two purposes of the old \(\theta_e \) will be accomplished by two modified functions \(\theta \). Let \(\psi_3 : [0, \pi] \rightarrow [0, 1] \) be a smooth, non-increasing function such that \(\psi_3(x) = 1 \) for \(x \in [0, \alpha] \) and \(\psi_3(x) = 0 \) for \(x \geq 2\alpha \). We then similarly modify \(\theta_e \) by replacing it with \(\psi_3(\phi_{A,e})\psi_3(\phi_{B,e})\psi_2(\rho_A) \). This makes the function \(\theta_e \) defined and smooth everywhere in space except on \(\Gamma \) (if \(\gamma \) is large enough). The resulting function \(\theta_e \) serves the purpose of desingularizing \(\omega_A \) near the vertex corresponding to \(A \). Let next \(\psi_4 : [0, 2\pi] \rightarrow [0, 2\pi] \) be a smooth function such that \(\psi_4(t) = t \) for \(t \in [2\epsilon, 1 - 2\epsilon] \) and \(\psi_4(t) = 0 \) for \(t \in [0, \epsilon] \cup [1 - \epsilon, 1] \). The second kind of functions \(\theta_A \) will be obtained by considering \(\psi_4(\theta_t)\psi_4(2\phi_{A,e})\psi_4(2\phi_{B,e}) \) for \(\epsilon > 0 \) small enough and all choices of faces passing through \(e \). (To define the old functions \(\theta_e \), we first chose a plane through \(e \) and containing one of the faces of \(P \). This plane was the plane where \(\theta_e = 0 \). For the new functions \(\theta_e \), we consider all the planes through \(e \) and containing one of the faces of \(P \).) These new functions will be smooth on \(\omega_A \) near its vertices, but provide global coordinates away from the vertices.

Finally, let \(\psi_3 \) and \(e = [AB] \) be as in the above paragraph. We then replace \(r_e \) with \(\psi_3(\phi_{A,e})\psi_3(\phi_{B,e})r_e + (1 - \psi_3(\phi_{A,e}))\rho_A + (1 - \psi_3(\phi_{B,e}))\rho_B \).

Let us notice that one can define \(\Sigma P \) directly, which would provide the definition of \(C(\Sigma P) \) as the space of smooth functions on \(\Sigma P \). The advantage of the approach in \(\Sigma P \) is that it makes no distinction between the cases when \(P \) is convex or non-convex. The approach in this paper has the advantage that it is much simpler and more intuitive in the convex case.

Further intuition in the construction of the spaces \(C(\Sigma P) \) can be obtained from the paper [22], page 254, by Costabel and Dauge where various regions and subregions of a polyhedral domain were analyzed. See also [4, 19, 40].

A.2. The partition of unity. Our partition of unity will depend on parameters \((a, b, c)\) that will be specified below.
First of all, let us denote by $B(P, n)$ the open ball of center P and radius $2^{-n}a$. By choosing a small enough, we can assume that the balls $B(P, 1)$ do not intersect. Then let E_e, be the set of points $p \in \mathbb{P}$ that do not belong to any $B(P, 2)$ and are at distance $\leq 2^{-n}ab$ to the edge e. By choosing b small enough, we can assume that the sets $E_{e,1}$ do not intersect. Let Ω_1 be obtained from \mathbb{P} by removing the sets $B(P, 2)$ and $E_{e,2}$.

For each edge e, let N_e be the plane normal to e. Project $E_{e,1} \setminus E_{e,2}$ onto N_e. The projection will be the intersection of an annulus with an angle. Denote this projection by C_e. We shall cover C_e with disks of radius $c/2$ and with disks of radius $c/8$. The disks of radius $c/2$ have the center on the straight sides of C_e (the ones obtained from the angle) and the disks of radius $c/8$ that have centers in the interior of C_e at distance at least $c/4$ to the angle defining C_e. This yields the disks D_1, \ldots, D_N with centers q_1, \ldots, q_N.

Let z be the variable along the line containing e. Then we cover $E_{e,k+1} \setminus E_{e,k+2}$, $k \in \mathbb{Z}_+$, with balls of radius $2^{-k}c$ and centers of the form $(2^{-k}q_j, 2^{-k-3}c)$, if $2^{-k}q_j$ is on one of the faces of \mathbb{P} and is inside $E_{e,1}$. Otherwise, we consider the ball of radius $2^{-k-2}c$ with centers of the form $(2^{-k}q_j, 2^{-k-3}c)$ as long as the center is still inside $E_{e,1}$.

Let us cover
\[
\Omega_1 := \mathbb{P} \setminus \left(\bigcup_B B(P, 2) \cup \bigcup_e E_{e,2} \right)
\]
with finitely many balls of radius $c/2$ or radius $c/8$ with centers in Ω_1 such that the balls of radius $c/2$ have the centers on the faces of \mathbb{P} and the balls of radius $c/8$ are at distance at least $c/4$ to the faces of \mathbb{P}.

Let $D_{P,1}, \ldots, D_{P,N}, \ldots$ be the balls already constructed with centers in $B(P, 1) \setminus B(P, 2)$. Then consider also the balls $2^{-k}D_{P,1}, \ldots, 2^{-k}D_{P,N}, \ldots$ obtained by dilations of ratio 2^{-k} and center P. We repeat this construction for all vertices P and all $k \in \mathbb{Z}_+$. We consider all the balls D_1, D_2, \ldots, constructed so far (relabeled into a sequence) from the coverings of $E_{e,1}$, Ω_1, and from the dilations of ratio 2^{-k} for all the vertices P, as already explained. If we choose c small enough (after the choices of a and b have been made as explained above), then the sequence of these balls is locally finite, the center of each ball is either on the faces of \mathbb{P} or the closure of the ball is inside \mathbb{P}. Moreover, for any such ball D with center p and radius r, we have that $r/\theta(p)$ is bounded from above and bounded from below from zero, say $r/\theta(p) \in [\epsilon_0, \epsilon_1]$, for some $\epsilon_0 \in (0, 1)$. There is an integer κ such that no $\kappa + 1$ of the balls constructed have a common point.

To any ball D of center q and radius r we associate the bump function $\psi_D(p) := \psi((p - q)/r)$, where $\psi : [0, \infty) \to [0, 1]$ is smooth, is equal to 1 in a neighborhood of 0, is equal to 0 in a neighborhood of [1, ∞), and is > 0 on [0, 1]. Then we let $\eta = \sum \psi_D_j$ and $\phi_j = \psi_D_j/\eta$. By further decreasing c, if necessary, we see that our partition of unity (together with the points x_j obtained as the centers of our balls) satisfies the conditions of Lemma 3.4 for the ϵ_0 chosen above.

References

Bernd Ammann, Institut Élie Cartan, Université Henri Poincaré Nancy 1, B.P. 239, 54506 Vandoeuvre-Les-Nancy, France, http://www.differentialgeometrie.de/ammann

E-mail address: bernd.ammann@gmx.net

Victor Nistor, Pennsylvania State University, Math. Dept., University Park, PA 16802, USA

E-mail address: nistor@math.psu.edu