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We propose a new projector quantum Monte-Carlo method to investigate the ground state of ultracold fermionic atoms modeled by a lattice Hamiltonian with on-site interaction. The many-body state is reconstructed from Slater determinants that randomly evolve in imaginary-time according to a stochastic mean-field motion. The dynamics prohibits the crossing of the exact nodal surface and no sign problem occurs in the Monte-Carlo estimate of observables. The method is applied to calculate ground-state energies and correlation functions of the repulsive two-dimensional Hubbard model. Numerical results for the unitary Fermi gas validate simulations with nodal constraints.

2. The sign-free stochastic mean-field scheme. For a system of fermions interacting through a binary potential, we first introduce a set of hermitian one-body operators s A ˆ ( ) 

L
ji ij h R H R ∂ ∂ =
, where

( ) ϕ ψ H = R H
is the matrix element of the Hamiltonian. Under the Hamiltonian (1), it is shown in Appendix that the Slater determinant ϕ transforms according to:

ϕ ω ϕ ϕ ϕ ˆ ˆ1 2 1 , 0 , 1 , 0 ∑ ≥ - + = s s s A h H H (2)
1 , 0 ĥ is defined by

( ) [ ] j i j i ij a a h h ˆ 1 ˆ, 1 , 0 + ∑ - = R R and 1 , 0 , ˆs A
is given by similar expression:

( ) [ ] j i j i ij s a a A A ˆ 1 ˆ, 1 , 0 , + ∑ - = R R s
. If the two Slater determinants ψ , ϕ were identical, 1 , 0 ĥ and 2 1 , 0 , ˆs A would represent physically one-particle-one-hole and two-particle-two-holes excitations. After an infinitesimal time step dτ , during which ϕ evolves to

( ) ϕ τ êxp H d -
, the last term of the expansion (2) causes departures of the propagated state from a single Slater determinant. However, introducing random fields according to the Hubbard-Stratonovich transformation can linearize the dynamics [19][20][21]. The detailed derivation is reported in Appendix. Finally, the exact imaginary-time evolution is recovered through the stochastic average of Brownian trajectories in the subspace of Slater determinants states ϕ :

( ) ( ) ( ) ( ) ( ) [ ] τ ϕ τ ϕ τ exp 0 êxp S E H = - (3) 
where ( )

L E
is the average over a random functional; the evolution of S and the orbitals n ϕ is governed by the following equations in the Itô sense:

( ) R H τ d dS - = , ( ) 0 0 = S (4) ( ) ( ) n s s s s n A dW h d d ϕ ω τ ϕ 2 1 1         + - - = ∑ ≥ R R . ( 5 
)
The s dW are infinitesimal increments of independent Wiener processes:

( ) 0 = s dW E , s s s s d dW dW ′ ′ = , δ τ
. We emphasize that the dynamics (5) exactly preserves the biorthogonality properties between the two Slater determinants ψ , ϕ : indeed, the left-eigenvalue equation

n n = R ψ ψ implies np d δ ϕ ϕ ψ = + p p n
and therefore 1 = ϕ ψ at any time. This feature guarantees that sign problems will not occur as long as S remains real during the imaginary-time motion, as we detail below.

Consider a walker ( ) o τ ϕ at time o τ . Its overlap with the exact many-body ground-state g Ψ can be obtained from the representation (3) in the limit of large τ , provided that the trial state

ψ is not orthogonal to g Ψ : ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) g g g g o o g E S E E H τ ψ τ ϕ ψ τ τ ψ τ ϕ τ ψ τ ϕ τ τ - Ψ = - Ψ - = Ψ ∞ → ∞ → exp exp lim exp êxp lim ( 6 
)
where g E is the ground-state energy and where the phase of ψ can be chosen to have and no walker can cross the exact nodal surface if S is real. In contrast, the standard auxiliary-field projector quantum Monte- Carlo method [START_REF] Assaad | Lecture notes of the Winter School on Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms[END_REF], as well as our previous stochastic mean-field scheme [16,17], generally leads to Slater determinants ϕ whose overlap ϕ ψ exhibits a varying sign. As a consequence, a walker can reach the nodal surface and it then generates stochastic paths that do not contribute to the ground-state:

( ) ( ) ( ) ( ) [ ]0 ( exp êxp = Ψ = - Ψ τ ϕ τ τ ϕ τ g o g S E H
as long as

( ) 0 = Ψ o g τ ϕ
. Such trajectories only increase the statistical error and are responsible of the sign-problem. Thus, one is forced to perform the constrained-path approximation [START_REF] Zhang | [END_REF] where walkers are eliminated "by hand" when their overlap with a ground-state ansatz wave-function becomes negative.

Numerically, the stochastic differential equations (5) are solved, in the Stratonovich form, by an embedded Runge-Kutta (5,4) algorithm with adaptive stepsize control. We take ( ) ψ ϕ = 0 as initial condition and the spreading of the weights ( ) S exp is avoided through standard population control techniques. In practice, we use the stochastic reconfiguration method [24] that deals with a fixed-number of walkers ϕ among which some are killed and others are cloned according to their relative weight in the population. Observables are estimated from the representation (3) of the manybody state. For instance, the ground-state energy E g is be obtained according to

( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] τ τ ϕ ψ τ ϕ τ ψ ϕ τ ψ τ τ S E H S E H H H E g exp ˆ exp lim 0 êxp 0 êxp ˆ lim ∞ → ∞ → = - - = (7) 
where the amplitudes

( ) ( ) τ S exp
are now all real positive. Moreover, when the Slater determinant ansatz ψ and the ground-state share a common symmetry, the stochastic paths are automatically projected onto this symmetry sector in the estimate (7). Otherwise, the sampling can be improved by projection techniques [25,26]. These conclusions also hold true for any observable commuting with the Hamiltonian. In other cases, one obtains an approximate ground-state expectation value, known as the mixed estimate [START_REF] Ceperley | Monte Carlo Methods in Statistical Physics[END_REF]. It can be corrected by the following extrapolated estimate that is one order better in the difference g Ψ -ψ [START_REF] Ceperley | Monte Carlo Methods in Statistical Physics[END_REF]:

ψ ψ O O O mixed extrap 2 ˆ. . - = , ( ) ( ) ( ) ( ) ( ) [ ] τ τ ϕ ψ τ τ S E O S E O mixed exp ˆ exp lim ˆ.       = ∞ → (8)
Note that these observable estimates are biased in standard projector quantum Monte-Carlo methods by the nodal constraints introduced to circumvent sign problems. The stochastic Hartree-Fock approach (3)(4)(5) removes this systematic error. The exact expectation value would require obtaining the ground-state density matrix by a double propagation in imaginary-time:

      -       - ∝ Ψ Ψ ∞ → H H g g 2 exp 2 exp lim τ ψ ψ τ τ .
For such calculations, our scheme can be extended by expanding the density-matrix in terms of dyadics ( ) ( ) b a ϕ ϕ that are formed by biorthogonal Slater determinants, both undergoing a Brownian motion similar to Eq. ( 5). We emphasize that the method then becomes the equivalent, at fixed particle-number, of the recent Gaussian Monte-Carlo technique [25,[START_REF] Corney | [END_REF], which is more suited for thermodynamical studies in the grand-canonical ensemble. , ; U is the amplitude of the on-site interaction between two atoms. Analytical solutions only exist in one dimension. For higher dimensional problems, standard auxilliary-field quantum Monte-Carlo calculations are limited to the repulsive model at half filling and to the attractive model with symmetric populations in the two spin channels ↓ ↑ , . In other cases, one experiences severe sign problems that practically prohibit studying large lattices, strongly interacting systems or open shells configurations [START_REF] Assaad | Lecture notes of the Winter School on Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms[END_REF]. In contrast, our new stochastic Hartree-Fock scheme (3)(4)(5) does not manifest explicit sign problems regardless of the lattice topology, band filling and sign of the interaction. Indeed, a quadratic form (1) can be recovered from the Hamiltonian (9) by using the local density or magnetization depending on the sign of the interaction parameter U :

Application to ultracold atomic

∑ ∑ ↓ ↑ ′ + ↓ =↑ ′ + - = r r r r r r r n n U a a t H r r r r r r r , , , , , , , ˆ ˆσ σ σ 
( ) ( ) ∑ ∑ ↓ ↑ ′ + ↓ =↑ ′ + - - = r r r r r r r n U n U a a t H r r r r r r r 2 , , , , , , , ŝgn 2 ˆ ˆσ σ σ (10)
where we have omitted a constant term proportional to the total number of particles. All the one-body operators s A ˆ defined by Eq. (10) . The simulations on the 8 8 × lattice, presented on the right panel of Fig. 1, are in agreement to less than 0.5% with the constrained-path approach [START_REF] Zhang | [END_REF]. This is fully consistent with the error usually observed in constrained-path calculations of the ground-state energy on small clusters [START_REF] Zhang | [END_REF]. But, we emphasize that such small discrepancies can originate from the numerical error in the integration of the stochastic differential equations ( 5) and from the unavoidable bias that is introduced by the population control algorithm.

On contrary, the finite-time simulations with the free-atom trial wave-function F ϕ reaches large values, leading to numerical errors both in the dynamical evolution of the wavefunction and in the calculation of observables. The Monte-Carlo sampling can also become incorrect if a power-law tail develops in the walkers' distribution. This scenario would then be identical to the one encountered in real-time simulations of boson systems in the context of positive-P representation [30].

In the half-filling limit, our calculations confirm the emergence of an antiferromagnetic phase [31], as shown in Fig. 2 We finally address the unitary Fermi gas limit. In this ideal regime of strong interaction via a two-body potential of zero range and infinite scattering length, fermions are among the most intriguing physical systems since they are believed to exhibit universal many-body states. For instance, at zero temperature, the energy must be a universal fraction η of the Fermi energy that is the only relevant energy scale in the system. From experiments with trapped atomic gases [5][6][7], the measured values for this ratio η vary from . We model a spatially homogeneous Fermi gas by a lattice Hamiltonian with a two-body discrete delta potential whose coupling constant is adjusted to reproduce the physical scattering length a [34]:

∑ ∑ ↓ ↑ ′ + ↓ =↑ ′ ′ - + = r r r r r r r r r n n l Ka a Ml a a T H r r r r r r r r r h , , 3 2 , , , , , , 1 4 ˆ 
ˆπ σ σ σ (12) Here periodic boundary conditions are assumed in each direction; is a numerical constant. In the unitary limit, a goes to infinity but the coupling constant on the lattice remains finite and negative, so that the gas clearly experiences attraction. Our sign-free simulation method with the model Hamiltonian (12), transformed as in Eq. ( 10), has been checked from the known solutions of the two-and three-body problem in an harmonic trap at the unitarity point [35,36]: in all cases, the discrepancy does not exceed one percent. 

( ) ( ) ( ) ( ) ( ) 2 1 1 , , , + + - - = ∞ ∞ ∞ N E N E N E N g g g δ
displays the odd-even staggering characteristic of a superfluid. The odd-N value of δ , i.e.

( )

F ε 3 442 . 0
, gives an estimate of the pairing gap that is also of the same order as the fixed-node result ( )

F ε 54 . 0 .

Conclusion.

In summary, we have introduced a new stochastic Hartree-Fock scheme that allows quantum Monte-Carlo ground-state calculations of interacting fermions. For a wide class of ultracold fermions models, including the repulsive Hubbard model, positive weights trajectories are guaranteed and the sampling does not exhibit explicit sign problems. The method is in principle exact for the ground-state energy and for the mixed estimate of any observable. However, systematic errors can occur when the trial Slater determinant, that drives the stochastic motion, is closed to the nodal surface. Otherwise, the numerical simulations are very encouraging and accurate results have been obtained in situations that traditionally experience severe convergence problems. Further investigation on unbalanced resonant Fermi gases and doped Mott insulators are under development to provide new insights into the physics of strongly correlated fermions.

We acknowledge fruitful discussions with Y. Castin, R. Frésard and F. Gulminelli.

Appendix. Derivation of the sign-free stochastic Hartree-Fock equations.

Consider, at a given imaginary-time (omitted for simplicity), two N -particle Slater determinants ψ , ϕ with biorthogonal orbitals:.

p n p n , δ ϕ ψ = (A.1)
In a single-particle orthonormal basis { }

i , the generalized one-body density matrix

∑ = = + n n n i j ij j i a a ψ ϕ ϕ ψ R
can always be transformed into the Jordan canonical form:

( ) L L , , , , 2 1 1 k J J J diag = Ω Ω -R (A.2)
where Ω is a non-singular matrix and k J a

k k d d × bi-diagonal matrix:                     = k k k k k k J λ λ λ λ λ 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 L L O M M M O L L (A.3) Taking into account the idempotency of R , i.e. R R = 2
, forces all the Jordan blocks k J to be one- dimensional ( )

1 = k d with 1 , 0 = k λ
. So, the column vectors of Ω and the line vectors of 

hermitian diagonalizable matrix R : k k k ω λ ω = R , k k k ω λ ω = R (A.4) and kl l k δ ω ω = ~, 1 ~= ∑ k k k ω ω (A.5) Since ( ) N tr = R
, there are N eigenvalues k λ equal to 1 that we will label with

N k , , 2 , 1 L =
and all the others are equal to zero. Finally, the definition of R and the constraints (A.1) immediately give:

n n ϕ ϕ = R , n n ψ ψ = R (A.6)
It is thus possible to choose the orbitals of the two Slater determinants as the biorthogonal right and left eigenvectors of R associated to the unit eigenvalue: Â is the observable component that couples eigenspaces of R associated to different eigenvalues: 

( ) [ ] j j i i ij N l N k l k a a A a a A A l k ˆ 1 ˆ ~, , 1 , 0 ∑ ∑ + + ≤ > - = = R R ω ω ω ω , (A.
ϕ ω ϕ ˆ ˆ1 2 1 , 0 , 1 , 0       - + = ∑ ≥ s s s A h H H . (A.11) ( ) ( ) ( ) ( ) ( ) [ ] R R R R R H o s s s s s A A tr A tr A tr H - + - = = ∑ ≥ 1 ˆ2 1 ω ϕ ψ
is the Hamiltonian H ˆ matrix element. h ˆ is a self-consistent one-body Hamiltonian defined by the matrix

( ) ( ) ( ) ∑ ≥ - + - = 1 2 2 2 s s s s s s s o A A A A tr A A h R R R ω , (A.12) so that ( ) ji ij h R H R ∂ ∂ =
which exactly characterizes the Hartree-Fock Hamiltonian. Up to order τ d , the imaginary-time infinitesimal propagation of the Slater determinant ϕ then also reads as

( ) ( ) ϕ ω τ τ ϕ τ êxp exp ˆ exp 2 1 , 0 , 1 , 0                 - - - = - ∑ s s s A h d d H d H (A.13)
This dynamics can be linearized with the Hubbard-Stratonovich transformation [19][20][21] allowing us to interpret each evolution under a quadratic form of one-body operators as the ensemble average

( ) ( )

L E denoted over one-body evolutions in fluctuating auxiliary fields:

                + - =                 - - ∑ ∑ s s s s s s s A dW h d E A h d 1 , 0 , 1 , 0 2 1 , 0 , 1 , 0 ˆ 2 ˆ exp êxp ω τ ω τ (A.14)
where the W s are independent Wiener processes in the Itô stochastic calculus:

( ) 0 = s dW E , s s s s d dW dW ′ ′ = δ τ (A.15)
The one-body propagators, obtained after application of the stochastic decoupling (A.14), now transform Slater determinants into new ones. Indeed, for any one-body operator A ˆ, ( )

êxp ϕ ϕ ′ = A
where ϕ′ is the Slater determinant with orbitals

( ) n n A ϕ ϕ exp = ′
. Finally, to the first order in the imaginary-time step τ d , the infinitesimal dynamics (A.13) can be reformulated as the weighted average of stochastic Slater determinants:

( ) ( ) [ ] ϕ ϕ τ ϕ τ d d E H d + - = - exp ˆ exp H (A.16)
with the following variation of the Hartree-Fock orbitals:

( ) ( ) n s s s s n A dW h d d ϕ ω τ ϕ 2 1 1         + - - = ∑ ≥ R R (A.17)
Here, we have used the idempotency of R that implies ( )

0 1 = -R R
. Note that he evolution process (A.17) preserves the biorthogonality constraints (A.1). Therefore, the propagation scheme (A.16) can be iterated for an arbitrary number of imaginary-time steps τ d and one is naturally led to the stochastic mean-field approach (3)(4)(5). is the ratio between the mean-energy of at "time" τ and the ground-state energy of the non-interacting gas on the lattice. The trial state is a spin-singlet Slater determinant for the free gas. We show the average result over many runs of 100 paths. We use a 6 6 6 × × lattice, except for N ≥ 40 where the calculations were performed on a 8 8 8 × × grid. The imaginary-time τ is expressed in units of for N interacting fermions in the unitarity limit.

a g E , is the ground-state energy corresponding to a physical scattering length a . Number 

  creation and annihilation operator in a single-particle mode i . Let us now consider two N-particle Slater determinants ψ , ϕ of orbitals satisfying the biorthogonality relations non-hermitian one-body density matrix R is linked to the usual Hartree-Fock single-particle Hamiltonian h by ( )

  With the dynamics (5) of the Hartree-Fock orbitals, 1 = ϕ ψ

  Fermi gases. First, we concentrate on the single-band ( ) 2 SU Hubbard model that describes the low-energy physics of two-component ultracold fermions trapped in optical lattices:

  ; t is the hopping matrix element between nearest neighboring sites r r r r ′

.

  to filter out all the excited states near half-filling. Indeed, F ψ is quasi-orthogonal to the ground-state g Ψ : for the 4 4 × cluster with t U 4= , we have estimated the overlap 0008 by approximating the ground-state vector to the stochastic mean-field results with the ansatz As a consequence, the imaginary-time projection drives walkers into directions almost orthogonal to F ψ . This can be illustrated through the angle θ between a walker ϕ and the trial state F ψ :

  through the extrapolated estimate(8) of the space spin-spin correlation function order is destroyed by hole doping or by a geometrical frustration induced via a large next-nearest neighbor hopping (see Fig.2), in agreement with Ref.[32]. The extrapolated values (8) of the magnetic and charge structure factors, defined by

  elements of the single-particle kinetic energy operator in the representation position; M is the atomic mass, l denotes the grid spacing and K

  the right eigenvectors k ω and to the left eigenvectors k ω ~ of the non-

8 )

 8 determinant ϕ can be worked out through a decomposition of the single-particle states in the non-orthonormal eigenbasis of R according to the closure relation (A.5):With the help of (A.7), only values of the integer l ranging from 1 to N give a non-zero contribution,

Figure 1 .

 1 Figure 1. Estimate (7) of the energy as a function of the imaginary-time τ for the two-dimensionnal Hubbard model with a hole doping 125 . 0 = δ from half-filling and an interaction parameter U = 4t. The trial Slater determinant for stochastic Hartree-Fock calculations (SHF) is indicated in parentheses.The results have been averaged over several hundred of runs of 100 trajectories. When not shown, statistical error bars are smaller than the symbol size. The black line gives on the left the exact groundstate energy[32] and on the right the constrained-path Monte-Carlo result[START_REF] Zhang | [END_REF].

Figure 2 .

 2 Figure 2. Extrapolated estimate (8) of the real space spin-spin correlation function for the 4 × 4 Hubbard model. δ is the hole doping and t′ denotes a next-to-nearest hopping. An antiferromagnetic mean-field solution was used as trial wave-function in all cases. Stochastic paths have been projected onto the spin-singlet sector. We averaged quantum Monte-Carlo results at the imaginary-time t 20 = τ with 100 trajectories over several hundred of runs. Statistical error bars are smaller than the size of the points.

Figure 3 .

 3 Figure 3. Stochastic Hartree-Fock calculations of the ground-state energy of a unitary Fermi gas with 2 N N N = = ↓ ↑

  l is the lattice spacing.

Table 1 .

 1 on the lattice. In the limit of large τ , all the results essentially concentrate around the same value and the emergence of a universal regime thus clearly appears. This result is consistent with recent exact Monte-Carlo calculations at finite-temperature[37,38].
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Table 1 :

 1 Numerical values of the ratio

	η	=	, E ∞ g	E	g	,	0