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Stochastic mean-field approach to strongly correlated phases 
of ultracold fermions. 

 
 

Olivier Juillet 
LPC/ENSICAEN, Boulevard du Maréchal Juin, F-14050 Caen Cedex, France  

 
 

We propose a new projector quantum Monte-Carlo method to investigate the 
ground state of ultracold fermionic atoms modeled by a lattice Hamiltonian with an on-
site interaction. The many-body state is reconstructed from Slater determinants that 
evolve in imaginary-time according to a stochastic mean-field motion without explicit 
sign problems. The method is applied to calculate ground-state energies and correlation 
functions of the repulsive two-dimensional Hubbard model. Numerical results for the 
unitary Fermi gas validate simulations with nodal constraints. 
 
 
PACS numbers: 03.75.Ss, 05.30.Fk, 71.10.Fd. 
 
 

Since the experimental achievement of Fermi degeneracy1 with an atomic vapor, 
a considerable attention has been attracted by the physics of dilute ultracold fermions. 
The ability to tune many parameters, such as temperature, density or inter-particle 
interactions, makes atomic Fermi gases ideal candidates to understand a wealth of 
phenomena relevant for physical systems ranging from nuclear matter to high-
temperature superconductors. Of particular interest is the strongly interacting regime in 
the transition from Bardeen-Cooper-Schrieffer (BCS) superfluidity of Cooper pairs to 
Bose-Einstein condensation (BEC) of atomic dimers. In the crossover region, Fermi 
condensates have been observed on both the BCS and the BEC sides of a magnetically 
controlled Feshbach resonance2. The unitary regime, where the scattering length 
diverges, is particularly studied3 to investigate the universal features of the fermionic 
quantum many-body problem. With the help of several standing laser beams, ultracold 
atoms can also be loaded in optical lattices where they experience all the strong many-
body correlations associated to the Hubbard model of solid-state physics4. Optical lattice 
setups may allow for engineering quantum spin models5, fractional quantum Hall effect6, 
non-Abelian gauge potentials7 or quantum information processing8. 

In this letter, we investigate a new Monte-Carlo scheme to study strongly 
correlated ground states of ultracold fermions interacting on a lattice. The projection onto 
the ground state is performed through a reformulation of the imaginary-time Schrödinger 
equation in terms of Slater determinants undergoing a Brownian motion driven by the 
Hartree-Fock Hamiltonian. Such exact stochastic extensions of the mean-field 
approaches have been recently proposed for boson systems with a boson condensate 
ansatz and a Gutzwiller wave-function9. Up to now, the fermionic counterpart uses Slater 
determinants whose orbitals evolve under their own mean-field, supplemented with a 
stochastic one-particle-one-hole excitation10. Unfortunately, the sampling generally 



suffers from negative weight trajectories that cause an exponential decay of the signal-to-
noise ratio, which is known as the sign problem. The convergence issue of such a Monte-
Carlo calculation plagued by negative “probabilities” belongs to the class of NP hard 
problems and a polynomial complexity solution can be probably ruled out11. Here, we 
extend the stochastic Hartree-Fock approach to remove negative weight paths in the 
Monte-Carlo calculation of any observable.  

 
For a system of fermions interacting through a binary potential, we first introduce 

a set of hermitian one-body operators ˆ A s  s = 0,1,L( ) allowing to rewrite the model 
Hamiltonian ˆ H  in a quadratic form: 

 
ˆ H = ˆ A 0 − ωs

ˆ A s
2

s≥1
∑  (1) 

 
In what follows, we will adopt the second quantization formalism, so that 
ˆ A s = As( )ij

i, j
∑ ˆ a i

+ ˆ a j  where ˆ a i
+, ˆ a i  are the Fermi creation and annihilation operator in a 

single-particle mode i . Let us now consider two N-particle Slater determinants ψ , ϕ  
of orbitals satisfying the biorthogonality relations ψn ϕ p = δn,p . Any matrix element 

ψ ˆ A ϕ  can then evaluated by using Wick’s theorem with the set of contractions 

  
R ij = ψ ˆ a j

+ ˆ a i ϕ = i ϕn
n

∑ ψn j . The non-hermitian one-body density matrix   R  is 

linked to the usual Hartree-Fock single-particle Hamiltonian h  by 
  
hij R( )=

∂H
∂R ji

, where 

  H R( )= ψ ˆ H ϕ  is the matrix element of the Hamiltonian. Under the Hamiltonian (1), it 
can be shown that the Slater determinant ϕ  transforms according to: 
 

  
ˆ H  ϕ = H ϕ + ˆ h 0,1 ϕ − ωs

ˆ A s,0,1
2

s≥1
∑  ϕ  (2) 

 
ˆ h 0,1 is defined by 

  

ˆ h 0,1 = 1− R( )hR[ ]ij
i, j
∑ ˆ a i

+ ˆ a j  and ˆ A s,0,1 is given by a similar expression: 

  

ˆ A s,0,1 = 1−R( )AsR[ ]ij
i, j
∑ ˆ a i

+ ˆ a j . Note that if the two Slater determinants ψ , ϕ  are 

identical, ˆ h 0,1 and ˆ A s,0,1
2  physically represent one-particle-one-hole and two-particle-two-

holes excitations. After an infinitesimal “time” step dτ , during which ϕ  evolves to 
exp −dτ ˆ H ( ) ϕ , the last term of the expansion (2) causes departures from the Slater 
determinant manifold. Introducing random fields according to the Hubbard-Stratonovich 
transform12, the dynamics can be linearized and the exact imaginary-time propagation of 
the Slater determinant ψ  is obtained through a stochastic motion of its biorthogonal 
partner ϕ :  

exp −τ ˆ H ( ) ψ = E exp S τ( )( ) ϕ τ( )[ ] (3) 



 
where    E L( ) is the statistical average over a random functional; S  and the orbitals ϕn  
evolve according to the following equations in the Ito sense:   
 

  dS = −dτH R( ), S 0( )= 0 (4) 
 

  
d ϕn = 1− R( ) −dτ h R( )+ dWs 2ωs As

s≥1
∑

 

 
 

 

 
  ϕn , ϕn 0( ) = ψn  (5) 

 
The dWs are infinitesimal increments of independent Wiener processes: E dWs( )= 0, 
dWsdW ′ s = dτ δs, ′ s .  We emphasize that the dynamics (5) exactly preserves the 
biorthogonality properties between the two Slater determinants ψ , ϕ : indeed, the left-
eigenvalue relation   ψn R = ψn  implies   ψn ϕ p + dϕ p = δnp  and therefore ψ ϕ =1 at 

any “time”. Provided that the trial state ψ  is not orthogonal to the ground state Ψg , the 
representation (4) then allows to compute the ground-state energy Eg  according  to 
 

Eg = lim
τ →∞

ψ  ˆ H exp −τ ˆ H ( ) ψ

ψ  exp −τ ˆ H ( ) ψ
= lim

τ →∞

E exp S τ( )( ) ψ  ˆ H  ϕ τ( )[ ]
E exp S τ( )( )[ ]

 (6) 

 
As long as S τ( ) remain real during the imaginary-time motion, the weight exp S τ( )( ) of 
each stochastic path is positive and one can perform an exact Monte-Carlo calculation 
without explicit sign problems. Moreover, if the Slater determinant ansatz ψ  and the 
ground state share a common symmetry, the stochastic paths are automatically projected 
onto this symmetry sector in the estimate (6). Otherwise, the sampling can be improved 
by projection techniques13. These conclusions also hold for any observable commuting 
with the Hamiltonian. In other cases, one obtains an approximate ground-state 
expectation value, known as the mixed estimate14.  It can be corrected by the following 
extrapolated estimate14 that is one order better in the difference ψ − Ψg : 
 

ˆ O 
extrap.

= 2 ˆ O 
mixed .

− ψ ˆ O ψ , ˆ O 
mixed

= lim
τ →∞

E exp S τ( )( ) ψ  ˆ O  ϕ τ( )[ ]
E exp S τ( )( )[ ]

 (7) 

 
The exact expectation value would require obtaining the ground-state density matrix by a 

double propagation in imaginary-time15: Ψg Ψg ∝ lim
τ →∞

 exp −
τ
2

ˆ H 
 
 
 

 
 
  ψ ψ  exp −

τ
2

ˆ H 
 
 
 

 
 
 . 

  
We now turn to applications in the field of ultracold atomic Fermi gases. First, we 

concentrate on the single-band SU 2( ) Hubbard model that describes the low-energy 
physics of two-component ultracold fermions trapped in optical lattices: 

 



  

ˆ H = −t  
r 
r , ′ 

r 
r ,σ =↑,↓
∑ ˆ a r r ,σ

+ ˆ a ′ 
r 
r ,σ + U ˆ n r r ,↑ ˆ n r r ,↓

r 
r 

∑  (8) 

 
Here   ̂ a r r ,σ

+  creates one atom at site  
r 
r  in the internal state σ = ↑ ,↓  and   ̂ n r r ,σ = ˆ a r r ,σ

+ ˆ a r r ,σ  is 
the corresponding number operator; t  is the hopping matrix element between nearest 
neighboring sites   

r 
r , ′ 

r 
r ; U  is the amplitude of the on-site interaction between two atoms. 

Analytical solutions only exist in one dimension. For higher dimensional problems, 
standard quantum Monte-Carlo calculations are limited to the repulsive model at half 
filling and to the attractive model with symmetric populations in the two spin channels 
↑ ,↓ .  In other cases, one experiences severe sign problems that practically prohibit 
studying large lattices, strongly interacting systems or open shells configurations. In 
contrast, our improved stochastic Hartree-Fock scheme does not manifest explicit sign 
problems regardless of the lattice topology, band filling and sign of the interaction. 
Indeed, a quadratic form (1) can be recovered from the Hamiltonian (8) by using the local 
density or magnetization depending on the sign of the interaction parameter U :   
 

 

ˆ H = −t  
r 
r , ′ 

r 
r ,σ =↑,↓
∑ ˆ a r r ,σ

+ ˆ a ′ 
r 
r ,σ −

U
2

 
r 
r 

∑ ˆ n r r ,↑ + sgn U( )ˆ n r r ,↓( )2
 (9) 

 
where we have omitted a constant term proportional to the total number of particles. All 
the one-body operators ˆ A s defined by Eq. (9) are real in the representation   

r 
r ,σ . If the 

orbitals of the trial Slater determinant ψ  are real in this same basis, their biorthogonal 
partners ϕn , stochastically propagated by the dynamics (5), will be real at any 
imaginary-time. Therefore,   H R( ) and S τ( ) are also real, so that positive weights 
trajectories are guaranteed.  In practice, the ansatz ψ  is a spin-singlet Slater determinant 
for free-fermions or an antiferromagnetic Hartree-Fock mean-field solution.  Fig. 1 
displays the convergence to the ground-state energy for the positive-U  Hubbard model 
on two-dimensional lattices corresponding to a hole doping δ = 0.125 from half-filling. 
This density generates the most important sign problem in conventional auxiliary-field 
Monte-Carlo approaches. As in fixed-node methods16, the accuracy of the stochastic 
Hartree-Fock scheme depends on the quality of the trial Slater determinant ψ . For 
instance, the imaginary-time propagation of the free-atom wave-function does not 
achieve to filter out all the excited states. The antiferromagnetic mean-field state is far 
more efficient and the exact ground-state energy of the 4 × 4  lattice is recovered to 
within less than 0.2% if the sampling is improved by projecting onto the spin-singlet 
sector.  At half-filling, our calculations confirm the emergence of an antiferromagnetic 
phase17, as shown in Fig. 2 through the extrapolated estimate (7) of the space spin-spin 

correlation function 
  

r ˆ S r 
0 
.
r ˆ S r r . We also reproduce the destruction of antiferromagnetic 

order by hole doping or by a geometrical frustration induced via a large next-nearest 
neighbor hopping17 (see Fig.2).  The extrapolated values (7) of the magnetic and charge 
structure factors, defined by 
 



 
Sm

r 
q ( )=

4
3

ei
r 
q .

r 
r 

r 
r 

∑
r ˆ S r 

0 
.
r ˆ S r r , 

 
Sc

r 
q ( )= ei

r 
q .

r 
r 

r 
r 

∑ ˆ n r 
0 
ˆ n r r ,  (11) 

 
are in agreement with the diagonalization results for the 4 × 4  lattice18: at the corner 
  
r 
q = π ,π( ) of the Brillouin zone, one obtains Sm = 3.681 4( ),  Sc = 0.3872 6( ) and 
Sm = 2.254 1( ),  Sc = 0.4236 1( ) compared to the exact values Sm = 3.64, Sc = 0.385 and 
Sm = 2.18, Sc = 0.424  for a doping δ = 0 (half-filling) and δ = 0.125, respectively.  
 

We finally address the unitary Fermi gas limit. In this ideal regime of strong 
interaction via a two-body potential of zero range and infinite scattering length, fermions 
are among the most intriguing physical systems since they are believed to exhibit 
universal many-body states. For instance, at zero temperature, the energy must be a 
universal fraction η of the Fermi energy that is the only relevant energy scale in the 
system. From experiments with trapped atomic gases3, the measured values for this ratio 
η vary from 0.32−13

+10  to 0.51 4( ).  We model a spatially homogeneous Fermi gas by a 
lattice Hamiltonian with a two-body discrete delta potential whose coupling constant is 
adjusted to reproduce the physical scattering length a19: 

 

 

ˆ H =  Tr 
r ,

r 
′ r  

r 
r , ′ 

r 
r ,σ =↑,↓
∑ ˆ a r r ,σ

+ ˆ a ′ 
r 
r ,σ +

4πh2

Ml3
a

1− Ka l
ˆ n r r ,↑ ˆ n r r ,↓

r 
r 

∑  (12) 

 
Here periodic boundary conditions are assumed in each direction;  Tr 

r ,
r 

′ r  are the matrix 
elements of the single-particle kinetic energy operator in the representation position; M  
is the atomic mass, l denotes the grid spacing and  K = 2.44275K is a numerical 
constant. In the unitary limit, a  goes to infinity but the coupling constant on the lattice 
remains finite and negative, so that the gas clearly experiences attraction.  Our sign-free 
simulation method with the model Hamiltonian (12), transformed as in Eq. (9), has been 
checked from the known solutions of the two- and three-body problem in an harmonic 
trap at the unitarity point20: in all cases, the discrepancy does not exceed one percent. For 
different systems, up to N = 42 atoms on a 8 × 8 × 8 lattice, we plot in Fig. 3 the 
convergence of the ratio η τ( ) between the mean energy ˆ H τ( ) of the unitary gas at the 
imaginary-time τ  and the non-interacting ground-state energy Eg,0 on the lattice. In the 
limit of large τ , all the results essentially concentrate around the same value and the 
emergence of a universal regime thus clearly appears. By fitting ˆ H τ( ) to the form 

ˆ H τ( )= Eg,∞ + κe−ωτ , we estimate the ground-state energy Eg,∞ at unitarity and find, for 
even particle number, η = Eg,∞ Eg,0 ≈ 0.449(9) from the numerical values of Table 1. 
This is consistent with fixed-node Green’s function Monte-Carlo calculations that predict 
η ≈ 0.44(1)  in the region 10 ≤ N ≤ 40 and η ≈ 0.42(1) for larger systems21. For odd 
particle number, we obtain similarly Eg,∞ = 0.44 4( )Eg,0 + 0.442 3( ) εF  where εF  is the 
Fermi level. Therefore, the empirical gap δ N( )= Eg ,∞ N( )− Eg,∞ N −1( )+ Eg,∞ N + 1( )( ) 2 
displays the odd-even staggering characteristic of a superfluid. The odd- N  value of δ , 



i.e. 0.442 3( ) εF , gives an estimate of the pairing gap that is also of the same order as the 
fixed node result 0.54 εF( ).  
 

In summary, we have introduced a new exact stochastic Hartree-Fock scheme that 
allows quantum Monte-Carlo ground-state calculations of interacting fermions. For a 
wide class of ultracold fermions models, including the repulsive Hubbard model, positive 
weights trajectories are guaranteed and the sampling does not exhibit explicit sign 
problems. Up to now, we do not obtain an upper bound to the statistical error on the exact 
many-body state and divergent realizations could occur as an indirect manifestation of 
the sign problem. However, the actual numerical simulations are very encouraging and 
accurate results have been obtained in situations that traditionally experience severe 
convergence problems. Further investigation on unbalanced resonant Fermi gases and 
doped Mott insulators are under development to provide new insights into the physics of 
strongly correlated fermions.   
 
 

We acknowledge fruitful discussions with Y. Castin, R. Fresard. and F. 
Gulminelli.  

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Estimate (6) of the energy as a function of the imaginary-time τ  for the two-
dimensionnal Hubbard model with a hole doping δ = 0.125 from half-filling and an 
interaction parameter U = 4t . The trial Slater determinant for stochastic Hartree-Fock 
calculations (SHF) is indicated in parentheses. The results have been averaged over 
several hundred of runs of 100 trajectories. The black line gives on the left the exact 
ground-state energy18 and on the right the constrained-path Monte-Carlo result12.  
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Fig. 2: Extrapolated estimate (7) of the real space spin-spin correlation function for the 
4 × 4  Hubbard model. δ  is the hole doping and ′ t  denotes a next-to-nearest hopping. An 
antiferromagnetic mean-field solution was used as trial wave-function in all cases. 
Stochastic paths have been projected onto the spin-singlet sector. We averaged quantum 
Monte-Carlo results at the imaginary-time τ = 20 t  with 100 trajectories over several 
hundred of runs. Statistical error bars are smaller than the size of the points.  
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Fig. 3: Stochastic Hartree-Fock calculations of the ground-state energy of a unitary 
Fermi gas with N↑ = N↓ = N 2 atoms in each spin state. η τ( ) is the ratio between the 
mean-energy of at “time” τ  and the ground-state energy of the non-interacting gas on the 
lattice. The trial state is a spin-singlet Slater determinant for the free gas. We show the 
average result over many runs of 100 paths. We use a 6 × 6 × 6 lattice, except for N ≥ 40 
where the calculations were performed on a 8 × 8 × 8 grid. l is the lattice spacing.  
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N  η N  η 
6 0.42551 16 0.45473 
8 0.44382 18 0.45273 

10 0.45316 20 0.45211 
12 0.45717 40 0.44691 
14 0.46012 42 0.446 

 
 
Table 1: Numerical values of the ratio η = Eg,∞ Eg,0  for N  interacting fermions in the 
unitarity limit. Eg,a  is the ground-state energy corresponding to a physical scattering 
length a .  
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