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AUTO-ADAPTATIVE ALGORITHM

USING FREQUENCY DERIVATIVES

OF HARMONIC EQUATIONS FOR

AUTOMATIC SEARCH OF

RESONANCES

C.Dedeban∗ J.P. Damiano † P.Dubois‡ J.P. Zolésio §

September 30th 2005

Abstract

Electromagnetic modeling provides high accuracy but is often too
time-consuming. Solving electromagnetic scattering and radiation prob-
lems with moment methods or finite element methods over a large fre-
quency band requires the computer code to be run for every frequency
sample. This is too expensive. So we propose a fast, accurate method-
ology for calculating the electromagnetic behaviour of an antenna with
very few simulations over a large frequency band.

keywords: Electromagnetic, Integrals Equations, Frequency derivatives

1 Introduction

The computational electromagnetic simulation takes so long that the user
often reduces the number of frequency samples in order to have a moderate
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computing time. However if the number of sample points is small, some
physical effects may not be considered, so the obtained results are not right.

Today the cost of computation for the moment method is expensive
because the computer model is running for every frequency sample. But from
some years, various interpolation algorithms were developed and published
([1]-[5]). They were applied to build a moment matrix and its frequency
interpolation.

Our aim is to know the current flows at the antenna surface over the
frequency band using only a limited number of frequency samples adding
specific information ([6],[7] and [8]) as the knowledge of the derivatives of
these current flows. Then we developed an original adaptive polynomial
interpolation. We present various results and comments for some structures.

2 Technical modeling

2.1 Analysis

We propose an original method taking into account the formal knowledge
of the derivatives of the variational expressions of the current flows. It
is numerically solved by a surface finite element method coupled with an
interpolation adaptive algorithm . This approach takes into account the
real electromagnetic behavior.

With the frequency derivability results associated to the Huyghens prin-
ciple for C2 surfaces, and the two derivatives of the Rumsey reaction [10]
obtained by a computer algebra system (Maple), we determined the un-
known current flows and their derivatives at the antenna surface for a very
small number of frequency samples ([7] and [8]). The expressions of the
derivatives of the current flow become more complex when the order of
derivation increases and the kernel singularity is never stronger than the
original one. Nevertheless the integration of the successive kernels needs
specific developments.

Solving numerically the Rumsey reaction, we use a finite element com-
puter code (SR3D of France Tlcom R&D). This software is based on an
integral equation formulation with a surface triangular finite element dis-
cretization as it is shown on the flowchart
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Figure 1 : Flow chart of the method

2.1.1 Surface integral equation

For a given ω we shearch in an homgeneous subdomain electric and magnetic
fields of the form:

~E({ ~J, ~m}, x) = ~EI
ω(x) + iωµ

∮

S
G(ω, x, y). ~J (y)dsy . . .

−
1

iωε

∮

S

−−−→
gradxG(ω, x, y).divS

~J(y)dsy −
−→
rot

(
∮

S
G(ω, x, y).~m(y)dsy

)

~H({ ~J, ~m}, x) = ~HI
ω(x) + iωµ

∮

S
G(ω, x, y).~m(y)dsy . . .

−
1

iωε

∮

S

−−−→
gradxG(ω, x, y).divS ~m(y)dsy −

−→
rot

(
∮

S
G(ω, x, y). ~J (y)dsy

)

with ~EI
ω, ~HI

ω the incident field, S the regular boundary of an homogeneous
open set Ω, εµ the material caracteristics and ~j, ~m the Electrical and mag-
netical currents density on S.

The Rumsey reaction between { ~J, ~m}and { ~J t, ~mt} is defined by

Rω

(

{ ~J, ~m}, { ~J t, ~mt}
)

=

∮

(

~E({ ~J, ~m}, x) · ~J t(x) − ~H({ ~J, ~m}, x) · ~mt(x)
)

dsx

(1)
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with N subdomains Ωl limited by Sl(l = 1, 2, . . . , N) as shown above we can
get a weak formulation of the classical harmonic Maxwell problem ∀{ ~J t

l , ~mt
l}

N
∑

l=1

(

Rω

(

{~Jl, ~ml}, { ~J t
l , ~mt

l}
)

− Rω

(

{ ~JI
l (ω), ~mI

l (ω)}, { ~J t
l , ~mt

l}
))

= 0

where { ~JI
l (ω), ~mI

l (ω)} are the surface currents density associated to the

incident field ~EI
l , ~HI

l in Ωl. If u = ({~Jl, ~ml})the equation can be written
∀utφω(u, ut) = φω(uI(ω), ut) where φωis a bilinear form. It can be written

also A (ω, u) = B (ω)or Φ
(

ω, u, uI(ω)
)

= 0 so u is an implicit function of

ω. From implicit function theorem due to the existence of the Colton-Kress
isomorphism when Slare C2then ∂u

∂ω
exists.

2.1.2 Computing derivatives

By derivating this expression compared to the pulsation one finds :

∀utφω(u, ut) = φω(uI(ω), ut) ⇒ (2)

∀utφω(
∂

∂ω
u, ut) =

∂

∂ω
(φω(uI(ω), ut)) − (

∂

∂ω
φω)(u, ut)(3)

also

A (ω, u) = B (ω) ⇒ (
∂

∂ω
A) (ω, u) + A

(

ω,
∂

∂ω
u

)

=
∂

∂ω
B (ω) (4)

at the order k ∂k

∂ω
u is solution of:

φω(
∂k

∂ω
u, ut) =

∂k

∂ω
(φω(uI(ω), ut)) −

k−1
∑

m=1

Cm
k (

∂k−m

∂ω
φω)(

∂m

∂ω
u, ut) (5)

Triangular surface finite elements are used to discretise these equations so
to obtain the following scheme. where Ah, uh, Bh . . .are the restrictions in
the finite element space of operator and solution.
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Figure 2 : Obtaining numerical expressions of the equations

We shall note I ∈ Cn the components of uhand A will be now the matrix
of Ah.

For each frequency sample we have to solve a linear system for each
derivative. Fortunately at one frequency the matrix of the linear systems
are the same for all derivatives. So we needs only one matrix factorisation

for each frequency as it can be shown in the flowchart below.
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Figure 3 : Computing numerical values of current frequency derivatives

2.2 Interpolation

Once the successive derivatives of the unknown current flows are computed
at some sampling points over the frequency band, our special adaptive in-
terpolation routine is applied to evaluate them ([8]).

The analysis of the behavior of the interpolation function (interpolated
current flows) allows to detect critical points where a small number of new
sampling frequency points is needed. So the surface currents can be com-
puted faster (ratio from 1 to 10) and we are able to deduce the expressions
of the antenna characteristics.
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2.2.1 Interpolation technic

Many kinds of interpolation methods exist([8]), for example : the well known
least-square method, the Taylor series, the Newton, Lagrange, Chebyshev
and trigonometric polynomial interpolations, and so on ([10]). The Pad is
a well old formal transformation of the first terms of a serie into a rational
function as a Chebyshev or Chebyshev-Pad approximation ([9]). The Thiele
interpolation is used to derive the rational function interpolating the data
points with the use of continued fractions from the sample points.

A piecewise polynomial function that can have a locally very simple
form and smooth. Splines are very useful for modelling arbitrary functions
. We use a polynomial spline function of degre 5 to interpolate the current
components. This function I : R → Cnis defined by the knowledge of
∂I

∂ωk (fl) k = 0, 1, 2 , l = 1, . . . , Nfwhere fl, Nfare the values and the number
of frequency samples.

This interpolation method was succesfuly applied to the numerical mod-
elisation of various structures. We got a good accuracy for horns and vivaldi
antennas. However it appeers that in the case of a slotted line antenna the
currents with the largest module were not well interpolated near resonance
frequency of the patch as it is shown in Fig 4 below. If we add two frequency
points correctly choosen the problem disapears.
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Fig 4 Improving accuracy
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2.2.2 Auto adaptive process

So we develop an original and flexible adaptive fifth order piecewise polyno-
mial interpolation based on the knowledge of the derivatives of the current
flows. New samples points must be added were the variations of the com-
ponents of current array are fast. To find these points we study the scalar
function defined by :

ΨM (f) =
∑

p∈SM (f)

|Ip (f)|SM (f) ⊂ {1, ., n} ∀q ∈ SM(f) |Iq (f)| ≤ min
p∈SM (f)

|Ip (f)|

Where n is the space dimension of the discretised problem and SM (f)is the
set of the index of the M bigests modules components of I(f) ∈ Cn. ΨM (f)is
the average module of the M strongest discrete values of the current flow.

This choice allows to improve the influence of resonances and minimize
the number of frequency samples (figure 5).
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Fig 5 Autoadaptive algorithm

8



In this flow chart we present our adaptive algorithm based on the detection
of a pathology in the behavior of the function. It is based on the variations
of the first derivative function associated to the second derivative function.

Our model gives better results than other methods as simple polynomial
interpolation, equispaced samples splines functions, least square ([8]).

3 Results

3.1 Application to a patch antenna

The figure (5) presents the variations of ΨM versus the frequency in the
case of the line slotted patch antenna for successive levels of the autoadap-
tive process begining with three frequency points to show the robustness of
the autoadaptive process. In this case a good precision is obtained on the
full band width begining with 7 frequency samples. It is compared to the
reference results of SR3D code with 55 frequency points.
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Fig 6 Auto adaptive process applied to the line slotted patch antenna

In each figure, we presents the comparison of the average of the twenty
strongest values of the modulus of the current flow versus the frequency
(4.5-6.0 GHz) .
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3.2 Lossy resoning structure

As we succeed to catch the resonance frequency of a patch antenna we tried
to study a dielectric cube starting with 10 frequency samples from 300Mhz
to 2300Mhz.
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Fig 7 Autoadaptive search of resonance

3.3 Searching resonance frequencies

The autoadaptive process was then applied to search resonance frequencies
of a metallic cube the results were compared to the exact values of the cavity
modes frequencies and to FDTD results
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4 Conclusion

We presented an original and accurate auto adaptive technique to calculate
the current flow at the antenna surface over a large frequency band, starting
with a very small number of the frequency samples. We use the knowledge
of the formal derivatives of the current flow associated with a piecewise
polynomial interpolation. We compare our results with reference points
obtained by a finite element code based on an integral-equation formulation
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without any optimization. We observe excellent results and an important
computing time saving.
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