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AUTO-ADAPTATIVE ALGORITHM
USING FREQUENCY DERIVATIVES
OF HARMONIC EQUATIONS FOR
AUTOMATIC SEARCH OF
RESONANCES

C.Dedeban* J.P. Damiano ' P.Duboist J.P. Zolésio §

September 30th 2005

Abstract

Electromagnetic modeling provides high accuracy but is often too
time-consuming. Solving electromagnetic scattering and radiation prob-
lems with moment methods or finite element methods over a large fre-
quency band requires the computer code to be run for every frequency
sample. This is too expensive. So we propose a fast, accurate method-
ology for calculating the electromagnetic behaviour of an antenna with
very few simulations over a large frequency band.
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1 Introduction

The computational electromagnetic simulation takes so long that the user
often reduces the number of frequency samples in order to have a moderate
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computing time. However if the number of sample points is small, some
physical effects may not be considered, so the obtained results are not right.

Today the cost of computation for the moment method is expensive
because the computer model is running for every frequency sample. But from
some years, various interpolation algorithms were developed and published
([1]-[5]). They were applied to build a moment matrix and its frequency
interpolation.

Our aim is to know the current flows at the antenna surface over the
frequency band using only a limited number of frequency samples adding
specific information ([6],[7] and [8]) as the knowledge of the derivatives of
these current flows. Then we developed an original adaptive polynomial
interpolation. We present various results and comments for some structures.

2 Technical modeling

2.1 Analysis

We propose an original method taking into account the formal knowledge
of the derivatives of the variational expressions of the current flows. It
is numerically solved by a surface finite element method coupled with an
interpolation adaptive algorithm . This approach takes into account the
real electromagnetic behavior.

With the frequency derivability results associated to the Huyghens prin-
ciple for C2 surfaces, and the two derivatives of the Rumsey reaction [10]
obtained by a computer algebra system (Maple), we determined the un-
known current flows and their derivatives at the antenna surface for a very
small number of frequency samples ([7] and [8]). The expressions of the
derivatives of the current flow become more complex when the order of
derivation increases and the kernel singularity is never stronger than the
original one. Nevertheless the integration of the successive kernels needs
specific developments.

Solving numerically the Rumsey reaction, we use a finite element com-
puter code (SR3D of France Tlcom R&D). This software is based on an
integral equation formulation with a surface triangular finite element dis-
cretization as it is shown on the flowchart
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Figure 1 : Flow chart of the method

2.1.1 Surface integral equation

For a given w we shearch in an homgeneous subdomain electric and magnetic

fields of the form:

-

B({(J.m},z) = Eg(x)+iwu7{qa(w,x,y).J(y)dsy...

1 — -
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with EZ{,ﬁi the incident field, S the regular boundary of an homogeneous
open set 2, eu the material caracteristics and j, m the Electrical and mag-
netical currents density on S.

The Rumsey reaction between {J,m}and {J¢,m!} is defined by

Ry (b AT ity) = § (BQTba) - P@) = BT i} o) -t (a)) ds.
1)



with N subdomains ; limited by S;(I = 1,2,..., N) as shown above we can
get a weak formulation of the classical harmonic Maxwell problem V{.J}, m}}

S (R (0 b, 471 8Y) = R ({77 @), () (T 7)) = 0
=1

where {jly (w), M} (w)} are the surface currents density associated to the
incident field Ef, H] in Q. If u = ({J;, 7 })the equation can be written
Vulgy, (u,ul) = ¢ (ul (w),u?) where ¢, is a bilinear form. It can be written

also A (w,u) = B (w)or ® (w,u,ul(w)) = 0 so u is an implicit function of
w. From implicit function theorem due to the existence of the Colton-Kress
isomorphism when Sjare C?then g—z exists.

2.1.2 Computing derivatives

By derivating this expression compared to the pulsation one finds :

Vulpy,(u,ul) = ¢u(ul (W), ul) = (2)
u b, ) = (Gl (@), ) — (o) (1)

also
Aw ) =B@) > (oA) @) + 4 (w5o0) = 22 BW) @
w,u) = B (w a5 ) (@ u Wit = g B W
at the order k g—f]u is solution of:
k . ak ; . k—1 8k—m om .
¢w(%uau )= %(%(U (w),u’)) — mZ::I Cy (W%)(auau ) (5)

Triangular surface finite elements are used to discretise these equations so
to obtain the following scheme. where Ay, uy, By ...are the restrictions in
the finite element space of operator and solution.
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Figure 2 : Obtaining numerical expressions of the equations

We shall note I € C™ the components of upand A will be now the matrix
of Ah-

For each frequency sample we have to solve a linear system for each
derivative. Fortunately at one frequency the matrix of the linear systems
are the same for all derivatives. So we needs only one matrix factorisation
for each frequency as it can be shown in the flowchart below.
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Figure 3 : Computing numerical values of current frequency derivatives

2.2 Interpolation

Once the successive derivatives of the unknown current flows are computed
at some sampling points over the frequency band, our special adaptive in-
terpolation routine is applied to evaluate them ([8]).

The analysis of the behavior of the interpolation function (interpolated
current flows) allows to detect critical points where a small number of new
sampling frequency points is needed. So the surface currents can be com-
puted faster (ratio from 1 to 10) and we are able to deduce the expressions
of the antenna characteristics.



antennas. rowever 1 appeers that 11 the case O a slotted line antenna tne
currents with the largest module were not well interpolated near resonance
frequency of the patch as it is shown in Fig 4 below. If we add two frequency
points correctly choosen the problem disapears.
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Fig 4 Improving accuracy




the average module of the M strongest discrete values of the current

This choice allows to improve the influence of resonances and mi
the number of frequency samples (figure 5).
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Fig 5 Autoadaptive algorithm




1hne ngure (o) presents tne variations or ¥ js versus tihe Irequency in tne
case of the line slotted patch antenna for successive levels of the autoadap-
tive process begining with three frequency points to show the robustness of
the autoadaptive process. In this case a good precision is obtained on the
full band width begining with 7 frequency samples. It is compared to the
reference results of SR3D code with 55 frequency points.
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Fig 6 Auto adaptive process applied to the line slotted patch antenna

In each figure, we presents the comparison of the average of the twenty
strongest values of the modulus of the current flow versus the frequency
(4.5-6.0 GHz) .



3.2 Lossy resoning structure

As we succeed to catch the resonance frequency of a patch antenna we tried
to study a dielectric cube starting with 10 frequency samples from 300Mhz
to 2300Mhz.

Searching resonances

Resonances of a dielectric cube

FDTD
Results

Level 3

AMPLITUDE (E o H) ~/(18%%3)

o

Fig 7 Autoadaptive search of resonance

3.3 Searching resonance frequencies

The autoadaptive process was then applied to search resonance frequencies
of a metallic cube the results were compared to the exact values of the cavity
modes frequencies and to FDTD results
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4 Conclusion

We presented an original and accurate auto adaptive technique to calculate
the current flow at the antenna surface over a large frequency band, starting
with a very small number of the frequency samples. We use the knowledge
of the formal derivatives of the current flow associated with a piecewise
polynomial interpolation. We compare our results with reference points
obtained by a finite element code based on an integral-equation formulation
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without any optimization. We observe excellent results and an important
computing time saving.
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