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Smoothing effect and delocalization of interacting Bose-Einstein condensates in random potentials

L. Sanchez-Palencia
Laboratoire Charles Fabry de I'Institut d’Optique, CNRSdabiniv. Paris-Sud,
Campus Polytechnique, RD 128, F-91127 Palaiseau cedexlcﬂa
(Dated: 29th November 2006)

We theoretically investigate the physics of interactings®dinstein condensates at equilibrium in a weak
(possibly random) potential. We develop a perturbatiorreqgh to derive the condensate wave function for
an amplitude of the potential smaller than the chemicalmi@kof the condensate and for an arbitrary spatial
variation scale of the potential. Applying this theory tealidered potentials, we find in particular that, if
the healing length is smaller than the correlation lengtthefdisorder, the condensate assumes a delocalized
Thomas-Fermi profile. In the opposite situation where threetation length is smaller than the healing length,
we show that the random potential can be significantly smeab#ind, in the mean-field regime, the condensate
wave function can remain delocalized, even for very smaligtation lengths of the disorder.

PACS numbers: 03.75.Hh;79.60.Ht

I. INTRODUCTION In the opposite situatior¢(> o%), the kinetic term should be
taken into account and the exact BEC wave function usually

Ultracold atomic gases are currently attracting a lot afratt cannot be found analytically.

tion from both experimental and theoretical viewpointsk-Ta  Besides a general interest, the question of determining the
ing advantage of the recent progress in cooling and trappingEC wave function for an arbitrary ratie., /¢ has direct ap-
of neutral atoms[[1], dilute atomic Bose-Einstein condéezsa plications to the case whefé(r) is a random potential. The
(BECs) [2] and degenerate Fermi gases (DF@s[][$] 4] 5. 6physics of quantum systems in the presence of disorder is
are now routinely produced at the laboratory. Using vari-central in CM [2B,[24[ 25], owing to unavoidable defects in
ous techniques, space-dependent potentials can be designgeal-life systems’. One of the major paradigms of disoedir
almost on demand in these systems. For example, one cafuantum systems is due to Anderson who has shown that the
produce periodiﬁ% uasi-period{d [9] {0] 11], or ramd  eigenstates of single quantum particles in arbitrary weak r
potentials [1P] 1 B.]17] by using optical means. Fodom potentials can be localized, i6.shows an exponential
these reasons and due to unique control and analysis fessibiiecay at large distancefRd]. Recent experiments have stud-
ities, ultracold gases constitute a favorite playgroundé  ijed the onset of strong or weak localization effects of light
visiting standard problems of condensed matter physics)(CMwaves [2J7[ 28] and microwavef |2, 30]. Ultracold matter
[@',@1]- waves are also widely considered as promising candidates to
Most current experiments with BECs lie in the mean-fieldinvestigate Anderson localization in randolil [ @ 33] or
regime where the Bose gas is described by a single wave funquasi-random structureE[lEl 34] and more generally to
tion, v, governed by the (nonlinear) Gross-Pitaevskii equatiorinvestigate the effects of disorder in various quantumesyst
[@]. Due to the interplay between the kinetic energy tereh an (for a recent review, see ReDSS] and references therHiis).
the interaction term, it is usually difficult to derive theaet  expected that the dramatic versatility of ultracold gaseslad/
solution of this equation. The importance of interactioas ¢ allow us for a direct comparison with theoretical studies of
be characterized by theealing length &, which defines the quantum disordered systems.

typical distance below which the spatial variations/otig- A key peculiarity of BECs is that interactions usually can-

nhificantly contribute to the energy of the BEM@a the kinetic not be neglected and interaction-induced delocalizatenm c

energy term[[42]. In the Thomas-Fermiregime (TF), i.e. when . . r e
¢ is significantly smaller than the typical variation scalg, compete with disorder-induced localization effeqts (18, 1

) . : ' . fi7]. Generally, the interplay between the kinetic energ, t
of the potentialV'(r), to which the BEC is subjected, the ki interactions and the disorder is still a open question that h

Pheélggztrigl i/sa:}zgg?]floef ;nedpfgti r?ﬁiCI: density simply follows i ated many works[[3€, BT, 38,130, 40]. It is clear from
Eq. ﬂ) that, in the TF regimerg > &), where the interaction
5 forces the wave function to adapt to the random potential, a
()" ocp = Vi(r). (1) BEC will not localize. Indeed, i/ (r) is ahomogeneousan-
dom functior? [B], so is the BEC wave function, which
therefore, cannot decay at large distances. This has been co

*URL:htt p: // wwv. at onopti c. f r|

1This is standard in the case of a harmonic confineméntr) =
mw?r? /2. Although, there is no intrinsic typical variation scaleeccan
defineor asmw?02/2 = p, i.e. or = Lr¢, the usual TF half size of 21n 1D and 2D systems, all eigenstates are usually localizeitevin 3D,
the condensate and the validity of the TF regime reads Ltr. For pe- they are localized below the so-calletbbility edge
riodic, quasi-periodic or random potentials; is the spatial period or the 3 In this context, the term ‘homogeneous’ means that all Istatistical
correlation length (see sectiE Il for details). properties of the random potential are independent of tiséipn.
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firmed in recent experimentﬂl@ 17]. The question thugase, no macroscopic wave functign,can be defined. How-
arises as to understand whether, as a naive transcription efrer, because density fluctuations are strongly suppressed
the loffe-Regel criterion[[42] would suggest, localizatican  the presence of interactions, the Bose gas formeasicon-
happen whemw, < £. densate[@] and the densityp, can be treated as a classical

In this paper, we show that this criterion is actually notfield. It turns out that/n is governed by Eq[}2). Therefore,
sufficient for BECs at equilibrium if the interactions arenno  even though we only refer to BEC wave functions in the fol-
negligible (i.e. if¢ <« L, whereL is the size of the system). lowing, our formalism also applies to quasicondensatésy af
We indeed show that interaction-induced delocalizatidh st replacingy by \/n.
overcomes localization effects even whegn> 0. In fact,
due to thesmoothingof the random potentia3], the effect
of disorder turns out to be reduced whigtw, increases. A. TheThomas-Fermi regime

In the following, we develop a general formalism based
on perturbation theory (see sectiﬂn II) to determine the BEC In the simplest situation, the healing length of the BEC is
wave function in any given weak potenti®l(r), for an arbi- much smaller than the typical length scale of the potential
trary ratioos/¢. We find that the BEC densityss|?, is still (¢ < o). Therefore, the kinetic energy term in the GRE (2)
given by Eq. [IL), except that the potentia(r) has to be re- is small and the BEC densitly|2, simply follows the spatial
placed by asmoothed potentiall’ (r). We derive an exact modulations of the potential:
formula for the smoothed potential up to first order in the per 9
turbation series. We thenpapply ourrr)esults to the case vshere W) =[u—V(r)l/ga  forp >_V(r)
V(r) is a 1D homogeneous random potential (see seftpn 11y~ and  [¢(r)|* =0 otherwise  (3)
and de_rivg the statistica! properties of the smoot_hed mdo This corresponds to the TF regime. Note thatWfpr« 1, one
potential,V (r). From this, we conclude that an interacting 1,55
BEC remains delocalized, even o> o (if £ < L).

(4)

II. SMOOTHING EFFECT IN INTERACTING . . .
BOSE-EINSTEIN CONDENSATES with ¥y = \/p/gap being the BEC wave function a(r) =
0. Therefore, the BEC wave function itself follows the modu-

. . . lations of the potential(r).
Consider a low-temperature Bose gas dndimensions

with contact atom-atom interactiong;pd(® (r), wheregp
is the d-dimensional interaction parameter. In 3D geome- B, Beyond the Thomas-Fermi regime: the smoothing effect
tries, gsp = 4mwh?asc/m, Whereag is the scattering length
[@], and m is the atomic mass. Low dimensional ge-
ometries (1D or 2D) can be realized in ultracold atomic
samples using a tight radial confinement, so that the radi
wave function is frozen to zero-point oscillations in thenfo

¢ (r.), wherer, is the radial coordinate vector. In this

The situation changes when the healing length is of the or-
er of, or larger than, the typical length scale of the paaént
¢ > oy). Indeed, the kinetic contribution limits the small-
est variation length of the spatial modulations of a BEC wave
0 4 ) : function to a finite value of the order of the healing length
case,gap = gsp [ dry |p] (r1)|*. For instance, one finds [23]. Therefore, the BEC can only follow modulations of the

= 2hw , for a 2D harmonic radial confinement of : :
?rlquuencywi.ascln addition, the Bose gas is assumed to bepotentlal on a length scale typically larger thaand Eg. EB)

: . . ) . . no longer holds.
f/ubjec(:jtedtto a g||ven .p?tem"y’(lr)’ WF')th agplctzal amp;lltut(jel For a weak amplitude of the potenfialve can use perturba-
VR(f)n maztayyr?zli(\:/ae \\:Z:il(a)lulgnleicgi?s.calgzg Ir?/,thisec%%snvilae’astion theory techniques. We thus write the BEC wave function
’ . S : - TR 9 as = o where we assume th , and
sume thaty, is the smallest. Assuming weak interactions, i.e. V() = Yo + ou(r) 8 < o

. is th h- luti f th 2):
72/ > mgqp/h?, wherem the mean density [44, #5], we Yo is the zeroth-order solution of the GFff (2)

treat the BEC in the mean-field approafH [22] and we use the R _, 3
Gross-Pitaevskii equation (GPE): ppo = *%V Yo + gapy - ®)
_R2Vy2 Since the BEC is homogeneous at zeroth-order, onehas
pp(r) = | ———+V(r)+ gap|(r)|*| ¥(r), () \/u/gap. Then, the first order term of the perturbation series
is given by
wherey is the BEC chemical potential, and where the wave 72
function, v, is normalized to the total number of condensed meVQ(&/J) — [u—3gap¥3] v = =V (r)o . (6)

atoms, [ dr [¢(r)|*> = N. Note that) minimizes theN-body
energy functional so thap is necessary a real function (up
to a non-physical uniform phase). In 1D and 2D geometries
and in the absence of trapping, no true BEC can exist due t@ a precise condition for the validity of the perturbative apach will be
significant long-wavelength phase quctuatio@ [46]. Irsthi given later [see EqG)].
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Sinceu — 3gap2 = —2u, we are left with the equation & < oy, Changes to the potentiﬁl(r) for &€ > og. The poten-
) tial V(r) is a convolution of/ (r) with a function which has a
— V2 (6) + 0p = — V(r)vo 7 @) typical widthg_ and thus corresponds tosmpothgd potential

2 21 with an amplitude smaller thaW:. In addition, if o; corre-

) ) sponds to the width of the correlation function of a random
wheres = h/\/2my is the healing length of the BEC. We potential,V, the correlation length of the smoothed random

straightforwardly find the solution of Eq.|(7), which reads potentiaI,I7, is of the order ofnax (&) [for details, see sec-
V(I‘/)l/io tion m 6, . )
o (8) Note that, for{ < o5, G(r) can be approximated k) (r)
in Eq. (1%), and/(r) ~ V(r). We thus recover the results of
whereG(r) is the Green function of Eq[](7), defined as theseCtiO, valid for the TF regime.
solution of The validity condition of the perturbation approach dihect
follows from Eq. [14):

S(r) = — /dr’ G(r—r))

[—QVQ + 1} G(r) =6@D(r), (©)
5 Vir)<pu. (16)

or equivalently, in Fourier space Note that if ¢ > o, the potential can be significantly

e R 4 smoothed SO t_hat th_e_ above condition can be less restrictive
[3|k| + 1] G(k) =1/(2m)"=, (10)  than thea priori condition, V (r) < p.
The results of this section show that the potentidl;), can
be significantly smoothed in interacting BECs. We strest tha
this applies to any kind of potentials provided thak L and
(r) < p. Inthe next section, we present an illustration of
the smoothing effect in the case of a random potential.

where,G(k) = W [ dr G(r)e~"®T is the Fourier trans-
form of G. In contrast to the case of single particles, the Gree
function,@(k), has no singularity point so that the perturba-
tive approach can be safely applied for any wave vektor
The explicit formula for the Green functio&, depends on
the dimension of the system. After some simple algebra, we

find [1l. APPLICATION TO A TRAPPED INTERACTING
BOSE-EINSTEIN CONDENSATE IN A 1D RANDOM
: 1 El POTENTIAL
in1D, G(z) = \/_—2§ exp —5/\/5 (11)
1 1| A. Trapped 1D Bose-Einstein condensatein arandom
in 2D, G(p) = —Ko (+—) (12) potential
in3D, G(r)= 1 exp ( [r] > . (13) In this section, we consider a 1D Bose gas subjected to a
2182 |r| ¢/V2 weak homogeneous random potentialz), with a vanishing

. . _ ) _average value({') = 0), a standard deviatiof¥z, and a spa-
where K is the modified Bessel function. Finally, up to first a1 correlation lengthg, significantly smaller than the size

order in the perturbation series, the BEC wave functionsead 4 ine system. In addition, we assume that the gas is trapped
in a confining harmonic trepV;,(z) = mw?z2/2 as in almost

b(r) = o — V(r)yo (14)  all current experiments on disordered BEE{ [14,[15] 16, 17].
2p We consider a situation such that < ngip < h?n?/m,

i.e. the Bose gas lies in the mean-field regime, and in the ab-
sence of disorder, the interactions dominate over the ikinet
energy. The situation mimics the experimental conditions of

with
Vi(r) = /dr’ G )V(r—1). (15)

Interestingly enough, the Green function in any dimension
shows a exponential decay, with a typical attenuation kengt © in contrast, for example in the case of a deterministic plcipotential,

&, and is normalized to uni@fdr G(r) = 1. Therefore, V(z) = Vrcos (kz), the variation ~sca|e;R = 2m/k, corresponds to the
G(r) can be seen assanoothing functiomwith a typical width period of the potential, and we firld (z) = ‘T%ﬁf) The potential is

. Indeed, it should be noted that Em(14) is similar to Eq. (4) indeed smoothed as the amplitudelofis smaller than that of. Never-
except that the potentidl (r) which is relevant in the case  theless, the period of the smoothed potentialis the same as that of the
bare potential}/.
7 All results also apply if there is no trapping. In this cadezaroth-order
terms simply do not depend an
8 This corresponds to the usual TF regime for confined BECsdratisence
5 This property follows directly fromAthe definitiOIDlO) ofa@hGreen func- of disorder ] However, no restriction is imposed for tago or /€, SO
tion. Indeed,[ dr G(r) = (27)%/2G(k = 0) = 1. that the BEC can be out of the TF regime as defined in seﬂtion l.



V(@) I Vg

O L N W MU O N

=

|
N

z/Lg

Figure 1: (color online) Example of the realization of a dgecan-
dom potential withrg ~ 1072 L.

Ref. [15,[1}]. The presence of the harmonic confinement in

troduces a low-momentum cut-off for the phase fluctuations =
so that the 1D Bose gas forms a true condensate at low tem-5

peratures|[44, 45]. In this case, the BEC wave function is

Yo = vV po(2)/ 91D

wherepg(z) = u — mw?2%/2 is the local chemical potential.

This corresponds to an inverted parabolic density profita wi

a half-size,L. = \/2u/mw?, where the chemical potential
_ hw ( 3Nmgipl 2

3
IS i = pire = 75 SiD ) / , with I = /h/mw being the
extension of the ground state of the harmonic oscillator.

As L > (&, 0w), itis legitimate to use the local density ap-
proximation (LDA) ], i.e. in a region significantly smatl
than L, the quantities)y and o can be considered as uni-
form. We can thus directly apply the results of sec I1B.
From Egs.[(14){(7), we immediately find that

(17)

n(z) ~no(z) — ‘;Ez) , (18)
where
= _ / oxp (EOZJ)Z/,l/g) /

is the smoothed potential, withy(z) = //+/2mpuo(z) being
the local healing length. The density profile of the BEC issthu
expected to follow the modulations osanoothed random po-
tential

Note that the total number of condensed atomsVis=

[ dz |\/no(2) +6¢)? ~ [ dz (no(z) - V(z)/gw) up to first
order inV /. Since(V) = 0, one hagN) ~ [ dz ng(2),
owing to the assumed self-averaging property of the paknti
[@]. In addition, we haver = fire.

We now compare our predictions to the exact solutions of9 & me

0.8

0.6

Lelw® /N

0.4

0.2

0.55

=z
-~
o

z/ Ly

Figure 2: (color online) Density profiles of a BEC confined in
a combined harmonic plus random potentigk (= 0.1y, or
7.5 x 1073 L). The solid (red online) line corresponds to the nu-
merically computed BEC wave function; the dashed (greemepl
line is the TF profile in the absence of disorder; and the bitied
line is a plot of the disordered TF profile [Ecﬂ (3)]. a) Casecren
the healing length at the trap centégr,is smaller than the correla-
tion length of the random potentiaktz/¢ ~ 10. In this case, the
density profile follows the modulations of the random padtdrec-
cording to Eq.). b) Opposite situatioaz/§ ~ 0.5. In this case,
the BEC density profile, obtained numerically, significgrdiffers
from Eq. (), but can hardly be distinguished from Hg] (183da
plotted in Fig[IZb) as a dotted (purple online) line]. Theetnshows

a maghnification of the plot in a very small region of the BEC.

exponential
PV(e)] = exp[<v<|zv> : W V),
and P[V(z)] =0 otherwise, (20)

corresponding to the average valiié) = 0 and the standard
deviationAV = /([V (z) — (V)]?) = |V&k|. Second, the spa-
tial correlations are characterized by the autocorreidtioc-
tion C(Az) = (V(Az)V(0)) which correlation length is de-
notedo, and can be chosen at wifl [17,]47]. For the numerical
calculations, we numerically generate a 1D speckle patigrn
thod similar to the one described in R [48] in 1D

the GPE [) as obtained numerically. For the sake of concreté@nd corresponding to the correlation function

ness, we consider a speckle random potertial [4
the one used in the recent experimeé}; 14,115
Fig.fl). Briefly, a speckle pattern consists in a random inten
sity distribution and is characterized by its statisticadper-
ties. First, the single-point amplitude distribution iseative

7] similar to
6, 17] (see

2

C(Az) = V2 [sindV3Az/V20%)| (21)

where sin¢x) = sin(z)/z. For the sake of simplicity, it is
useful to approximat€’(z) to a Gaussian function (see for



example sectio@B). Up to second ordeix /o, we have  potential, (ii) the average value ofvanishes,
C(Az) ~ V2 exp(—Az2/202).
Numerical solutions of the GP@ (2) are presented in |Eig. 2 <‘7> =(V)=0 (22)
for two values of the rati@, /¢, where¢ is the BEC healing ’
length at the trap center. In the first case (Fﬂg. 2a), we have ) ] ~
¢ < g, and the density simply follows the modulations of @nd (iii) the correlation function d¥’ is given by
the bare rﬁndom potential, according to K}y. (3). In the sécon
case (Fig||2b), we have > o,, and as expected, the BEC ~ _ _
wave function does not follow the modulations of the bare C=(A2) = /dUdv ClAaz+v=u)]G:(W)Georazv), (29)
random potential/(z) but actually follows smoother mod-

ulations of the smoothed potentill(z). Figure[Pb (and the whereC(Az) = (V(Az)V(0)) is the correlation function of
inset) shows that the numerically computed density canijnard the bare potentidl andG.. (u) is given by Eq.[(1]1) wittg re-
be distinguished from Eq[ (18). This supports the validity o placed by, (z). In the following, we assume thédtz < L
our approach. so thatG, ~ G.+a. and we omit the subscripts. Assuming
for simplicity a Gaussian correlation function for the beae-
dom potentialC'(Az) ~ VZ2exp(—Az%/202), we find after

B. Statistical propertiesof the smoothed random potential some algebra
It is useful to compute the statistical properties of the ~ 9 or Az
~ . . . Az) = Y| —,— 24
smoothed random potentill(z) as they will be imprinted on C(az) =V, & & ) (24)
the BEC density profile according to Ef.{18). From Eq} (15),
we immediately find that, (i)’ (z) is a randonhomogeneous with
|
—-—2
__ A
Y(Gr, AZ) = Tlexp (—%)
20%
_ — 252 2 Az
+ﬁER (1 — 252 — V2 Az) exp (Eﬁ +2 Az) erfc <L\/_Z> (25)
4 20x

LV (1 — 252 4 ﬁm) exp (ag - ﬁm) erfc <M>

4 20x

5 This functionX clearly decreases with. /&, indicating the
onset of an increasing smoothing effect. At = 0, we have
a simple asymptotic expression fay > &:

-~

Gr
&o
w

o

2
1 Y(0r/&p,0) ~ 1 — <§—0> , o> & . (26)

So, as expected;(o:/&,0) — 1 asox/{ — oo, i.e. the
random potential is hardly smoothed. Far< &:

Figure 3: (color online) Left: Plot of the correlation furarn

by (%, %) Right: Width at1//e of the normalized correlation Y(0w/&0,0) ~ \/7%?, or K & . (27)
0
function® (%, %) /3 (%,O).
So, ¥(0r/&0,0) — 0 asor/& — 0, i.e. the amplitude of
the smoothed random potential is significantly reduced com-
where ., _ on/Co, Bz _ Az/¢  and pared to the. amplitude of the bare rand~02m pote~nt|al. Gen-
9 oo g2 erally speaking, from Eq[ (4), we ha®'?) = C(0) =
erfc (r) = 2= [™dt e" is the complementary er- ~ Son s ) )
v Je Vii¥(or/&0,0). It follows that (V*) is an increasing func-

in Fig. ﬁ idea of asmoothingpf the random potential.



In addition, the correlation lengthy, of the smoothed ran- 0.18

dom potentialV, is given by the width at /,/e of the func- 016 [ e .
tion Az — X(7r/&0, Az/&n). At or > &, the smoothing 0.14 |- Vg=0.20u .
is weak andby ~ 0. Foroz < &, the smoothing is signif- =z 012} e .
icant, so tha®, saturates af, ~ &, as expected. Roughly > 01f 1
king, we havé; ~ Fi . L 008 7
speaking, we havé, ~ max(o, &) [see Fig[B] OO o]
0o4te e . =

0.02 F Vg=0.05u 7\e\"”""——7—75,,,%&” 4

C. Effect of disorder in interacting Bose-Einstein condensates 0 b R MR
0.1 1 10

¢log

We finally discuss the properties of the BEC wave func-
tion in the presence of disorder. It follows from Em(18)ttha
the BEC density follows the modulations of a random pOten'Figure 4: (color online) Amplitude of the fluctuations of tB&C

tial V. Inthe TF regime{ < ow), V =~ V, while when  density at the trap centen, in the combined harmonic plus ran-
£ > or, V is smoothed. Sinc& is a homogeneous random dom potential as a function of the ratio of the healing lertgtthe
potential, there is no decay of the wave function. In particu correlation length of the disorder for several amplitudethe ran-
lar, Anderson localization does not occur, evengos ox. dom potential. The dots correspond to exact numerical teButhe
In the case whefi > oy, it turns out that the BEC density is Gros_s-_Pitaevskii approach [Eﬁl (2)] and the lines showttbertetical
actually less affected by the random potential than in the TFrediction [Eq. (28)].
regime € < o). This is in striking contrast with the case of
non-interacting particles where localization effectsiaeally
stronger at low energy [#1]. IV. CONCLUSION

More quantitatively, using the statistical properties lué t
smoothed random potentidl,, one can easily compute the
fluctuationsAn(z) = /([n(z) — no(z)]2) of the BEC den-

In summary, we have presented an analytical technique,
sity around the average valug(z) — (i — mw?2?/2]/g baseq on the perturbation theory, to compute the static wave
. ) 5 9 5 . function of an interacting BEC subjected to a weak potential
From Eq. [1B), we find\n? ~ C(0)/g7,. Note thatAn® de-  ppig applies to the case where both the healing length of the
pends on the displacement from the trap center through thggc (€) and the spatial scale of the potentiak) are much
dependence @ on . At the trap center, we find smaller than the size of the systeif)( but whithout restric-
tion for the ratiaS /0. In particular, we have shown that when
Ang = E /% (0w/€,0) . (28)  the healing length is larger than the space scale of the poten
9o tial, the BEC is sensitive to amoothed potentialhich can

) ) be determined within our framework.
We recall thatt = £, (0) = f/+/2mypu is the BEC healing

length in the trap center.
We have numerically extracted the fluctuations of the den
sity in the trap center, according to the formulen, ~

Applying these results to the case of a 1D random potential,
we have shown that the wave function of a static interacting
BEC is delocalized, similarly as in the TF reginje][15]. This
= 5 _ _ is confirmed by numerical calculations. The results of this
\/LTF/Q S 1s dz [n(2) —no(2)]". This provides a good analysis show that, for an interacting BEC at equilibriuie, t
estimate ofAn¢ as¢ (Z) changes by less tha¥ in the range larger the healing length, the smaller the perturbationded
[~ L1 /4, +Lr/4]. As shown in Fig[J4, the numerical results by the disorder. It is worth noting that the conclusions @ th
perfectly agree with Eq_mas) over a large range of the rapresent work hold fostatic BECs in themean-field regime
tio £/ox. The numerical calculations are performed for theand when the interaction energy dominates over the kinetic
speckle potential described in sectfon |Il B and no fitting pa energy in the absence of disorder, i.e. when the healinghieng
rameter has been used. In addition, note that we have usdgisignificantly smaller than the BEC half size« L). Going
a single realization of the random potential for each paint i beyond the mean-field regime, it is interesting to study the
Fig. 4. Averaging over disorder turned out to have little im- interplay of interactions, disorder and kinetic energy Bose
portance, since the random potential is almost self-auegag gas for interactions ranging from zero (where localizain

in the rangd— Ly /4, +Lr/4], if 0x < L. expected) to the TF regime (where the BEC is delocalized as
Finally, we find from Eq. @6) that the perturbative ap- shown in this work). This question is addressed in FEI [49].
proach that we have performed is valid wheneer < ng, Finally, we note that the transport properties of a BEC can
i.e. whenever show significantly different physics. For instance, lozali
tion has been studied in matter-wave beams [33] and in the
Va/S(0r/€0,0) < . (29)  expansion of an interacting BEG ]16,]16,[17]. In the lat-

ter two cases, localization indeed does occur although non-
Note that this effect is more restrictive in the trap centeere  negligible interactions can modify the usual picture ofdbc

&o is minimum. ization [1$,[1}[3B].
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