N
N

N

HAL

open science

Screening effect and delocalization of interacting
Bose-Einstein condensates in random potentials

Laurent Sanchez-Palencia

» To cite this version:

Laurent Sanchez-Palencia. Screening effect and delocalization of interacting Bose-Einstein condensates

in random potentials. 2006. hal-00090760v2

HAL Id: hal-00090760
https://hal.science/hal-00090760v2
Preprint submitted on 30 Oct 2006 (v2), last revised 30 Nov 2006 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00090760v2
https://hal.archives-ouvertes.fr

hal-00090760, version 2 - 30 Oct 2006

Screening effect and delocalization of interacting Bose-Einstein condensates in random potentials

L. Sanchez-Palencia
Laboratoire Charles Fabry de I'Institut d’Optique, CNRSdabiniv. Paris-Sud,
Campus Polytechnique, RD 128, F-91127 Palaiseau cedexlcﬂa
(Dated: 31st October 2006)

We theoretically investigate the physics of interactings®dinstein condensates at equilibrium in a weak
(possibly random) potential. We develop a perturbationr@@gh to derive the condensate wavefunction for
an amplitude of the potential smaller than the chemicalm@kof the condensate and for an arbitrary spatial
variation scale of the potential. Applying this theory tealidered potentials, we find in particular that, if
the healing length is smaller than the correlation lengtthefdisorder, the condensate assumes a delocalized
Thomas-Fermi profile. In the opposite situation where threetation length is smaller than the healing length,
we show that the random potential can be significantly se@emd, in the meanfield regime, the condensate
wavefunction can remain delocalized, even for very smalietation lengths of the disorder.

PACS numbers: 03.75.Hh;03.75.-b;79.60.Ht

I. INTRODUCTION In the opposite situatior¢(> o%), the kinetic term should be
taken into account and the exact BEC wavefunction usually

Ultracold atomic gases are currently attracting a lot afratt cannot be found analytically.

tion from both experimental and theoretical viewpointsk-Ta  Besides a general interest, the question of determining the
ing advantage of the recent progress in cooling and trappinBEC wavefunction for an arbitrary ratig,/¢ has direct appli-
of neutral atoms[]1], dilute atomic Bose-Einstein condésa cations to the case whefié(r) is a random potential. The
(BECs) [2] and degenerate Fermi gases (DF@s[][$] 4] 5. 6physics of quantum systems in the presence of disorder is
are now routinely produced at the laboratory. Using vari-central in CM [2B,[2B[ 25], owing to unavoidable defects in
ous techniques, space-dependent potentials can be designgeal-life systems’. One of the major paradigms of disoedir
almost on demand in these systems. For example, one cafuantum systems is due to Anderson who has shown that the
produce periodiﬁ% uasi-period{d [9] {0] 11], or ramd  eigenstates of single quantum particles in arbitrary weak r
potentials [1P] 1 B.]17] by using optical means. Fodom potentials can be localized, i6.shows an exponential
these reasons and due to unique control and analysis fessibilecay at large distancefRd]. Recent experiments have stud-
ities, ultracold gases constitute a favorite playgroundé  jed the onset of strong or weak localization effects of light
visiting standard problems of condensed matter physics)(CMwaves [2]7,[28] and microwavef [28,] 30]. Ultracold matter-
[@',@1]- waves are also widely considered as promising candidates to
Most current experiments with BECs lie in the meanfieldinvestigate Anderson localization in randolil [ @ 33] or
regime where the Bose gas is described by a single wavefunquasi-random structureE[lEl 34] and more generally to
tion, v, governed by the (nonlinear) Gross-Pitaevskii equatiorinvestigate the effects of disorder in various quantumesyst
[@]. Due to the interplay between the kinetic energy teroh an (for a recent review, see ReDSS] and references therHiis).
the interaction term, it is usually difficult to derive theaet  expected that the dramatic versatility of ultracold gasesla/
solution of this equation. The importance of interactioas ¢ allow us for a direct comparison with theoretical studies of
be characterized by theealing length &, which defines the quantum disordered systems.

typical distance below which the spatial variations,/ofig- A key peculiarity of BECs is that interactions usually can-

hificantly contribute to the energy of the BEM@a the kinetic not be neglected and interaction-induced delocalizatenm c

energy term[[42]. In the Thomas-Fermiregime (TF), i.e. when . . . e
¢ is significantly smaller than the typical variation scalg, compete with disorder-induced localization effeqts 18, 1

) : . ' . fi7]. Generally, the interplay between the kinetic energ, t
of the potentialV'(r), to which the BEC is subjected, the ki interactions and the disorder is still a open question that h

Pheélggztrigl i/sa:}zgg?]floef ;nedpfgtiz r?ﬁiCI: density simply follows i ated many works[[3€, BT, 38,130, 40]. It is clear from
Eq. (}) that, in the TF regimerg > ¢), where the interac-
5 tion forces the wavefunction to adapt to the random potgntia
()" ocp—Vi(r). (1) a BEC will not localize. Indeed, i’ (r) is ahomogeneous
random functiof [41]], so is the BEC wavefunctiom;, which
therefore, cannot decay at large distances. This has been co

*URL:htt p: // wwv. at onopti c. f r|

1This is standard in the case of a harmonic confineméntr) =
mw?r? /2. Although, there is no intrinsic typical variation scaleeccan
defineor asmw?02/2 = p, i.e. or = Lr¢, the usual TF half size of 21n 1D and 2D systems, all eigenstates are usually localizeitevin 3D,
the condensate and the validity of the TF regime reads Ltr. For pe- they are localized below the so-calletbbility edge
riodic, quasi-periodic or random potentials; is the spatial period or the 3 In this context, the term ‘homogeneous’ means that all Istatistical
correlation length (see sectiE Il for details). properties of the random potential are independent of tiséipn.
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firmed in recent experimentﬂl@ 17]. The question thugase, no macroscopic wavefunctign,can be defined. How-
arises as to understand whether, as a naive transcription efrer, because density fluctuations are strongly suppressed
the loffe-Regel criterion[[42] would suggest, localizatican  the presence of interactions, the Bose gas formeasicon-
happen whemw, < £. densate[@] and the densityp, can be treated as a classical
In this paper, we show that this criterion is actually notfield. It turns out that/n is governed by Eq[}2). Therefore,
sufficient for BECs at equilibrium if the interactions arenno  even though we only refer to BEC wavefunctions in the fol-
negligible (i.e. if¢ <« L, whereL is the size of the system). lowing, our formalism also apply to quasicondensatesy afte
We indeed show that interaction-induced delocalizatidh st replacingy by \/n.
overcome localization effects even when> oy. In fact,
due to thescreeningpf the random potentiamB], the effect of
disorder turns out to be reduced whigtw, increases. A. TheThomas-Fermi regime
In the following, we develop a general formalism based
on perturbation theory (see sectiﬂn II) to determine the BEC In the simplest situation, the healing length of the BEC is
wavefunction in any given weak potenti®r), for an arbi- much smaller than the typical length scale of the potential
trary ratioos/¢. We find that the BEC densityss|?, is still (¢ < o). Therefore, the kinetic energy term in the GRE (2)
given by Eq. [[1), except that the potentiélr) has to be is small and the BEC densitly|2, simply follows the spatial
replaced by acreened potential/ (r). We derive an exact modulations of the potential:
formula for the screened potential up to first order in the per 9
turbation series. We thenpapply oureesults to the case V\I/Ohere W) =[u—V(r)l/ga  forp >_V(r)
V(r) is a 1D homogeneous random potential (see seftpn 111y~ and  [¢(r)|* =0 otherwise  (3)
and dgrivg the statistica_l properties of the scree_ned mr_‘doThis corresponds to the TF regime. Note thatlfr< i, one
potential,V (r). From this, we conclude that an interacting 1,55
BEC remains delocalized, even o> o (if £ < L).

(4)

1. SCREENING EFFECT ININTERACTING . . .
BOSE-EINSTEIN CONDENSATES with 9 = \/p/gap being the BEC wavefunction af(r) =
0. Therefore, the BEC wavefunction itself follows the modu-

. . . lations of the potential(r).
Consider a low-temperature Bose gas dndimensions

with contact atom-atom interactiong;pd(® (r), wheregp
is the d-dimensional interaction parameter. In 3D geome- B. Beyond the Thomas-Fermi regime: the screening effect
tries, gsp = 4mwh?asc/m, Whereag is the scattering length

[@], and m is the atomic mass. Low dimensional ge-

; . : ~ The situation changes when the healing length is of the or-
ometries (1D or 2D) can be realized in ultracold atomlca? 9 g'eng

er of, or larger than, the typical length scale of the pa&ént

¢ > og). Indeed, the kinetic contribution limits the smallest
variation length of the spatial modulations of a BEC wave-
0 4 ) , function to a finite value of the order of the healing length
case,gap = gsp [ dry |¢] (r1)|*. For instance, one finds [23]. Therefore, the BEC can only follow modulations of the

= 2hw , for a 2D harmonic radial confinement of : :
?rlquuencywi.ascln addition, the Bose gas is assumed to be'OOtentlal on a length scale typically larger thaand Eg. EB)

: . . ) , . no longer holds.
subjected to a given potentidf,(r), with a typical amplitude = K i f1h i
V& and a typical variation scalez. Possibly, the potential, or aweak amplitude of the potenfialve can use perturba

. . tion theory techniques. We thus write the BEC wavefunction
V(r), may have various length scales. In this case, we as

sume thatr, is the smallest. Assuming weak interactions, i.e.asw(rr)1 = Yo+ %Mr) v;/hgre V\;ehaszume tzh&t/) < %o, and
72/971 > mgap/h?, wherem the mean density [44, U5], we o Is the zero order solution of the GPE; (2):

samples using a tight radial confinement, so that the radi
wavefunction is frozen to zero-point oscillations in thenfo
¢ (r.), wherer is the radial coordinate vector. In this

treat the BEC in the mean-field approafH [22] and we use the R _, 3
Gross-Pitaevskii equation (GPE): pbo = =5~V %0 + gan¥p - ®)
_R2Vy2 Since the BEC is homogeneous at zero order, one/has
pp(r) = | ———+V(r)+ gap|¥(r)|*| ¥(r), () \/u/gap. Then, the first order term of the perturbation series
is given by

wherey is the BEC chemical potential, and where the wave- 72

function, ¢, is normalized to the total number of condensed fQ—VQ(&/J) — [ —3gaptp] 6% = =V (r)vo . (6)
atoms, [ dr |¢(r)|?> = N. Note thaty) minimizes the N-body m

energy functional so thap is necessary a real function (up

to a non-physical uniform phase). In 1D and 2D geometries

and in the absence of trapping, no true BEC can exist due t@ a precise condition for the validity of the perturbative apach will be
significant long-wavelength phase quctuatio@ [46]. Irsthi given later [see EqG)].
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Sinceu — 3gap2 = —2u, we are left with the equation & < oy, Changes to the potentiﬁl(r) for &€ > og. The poten-
) tial V(r) is a convolution of’(r) with a function which has
S () + S = _V(r)wo 7 @) a typical width¢ and thus corresponds taesareened potential

2 21 with an amplitude smaller thaWb:. In addition, if o; corre-

) ) sponds to the width of the correlation function of a random
wheres = N/\/2my is the healing length of the BEC. We potential, v, the correlation length of the screened random

straightforwardly find the solution of Eq.|(7), which reads potentiaI,I7, is of the order ofnax (&) [for details, see sec-

tion
/dr G(r ( WO , (8) Note that, fo < o, G(r) can be approximated By% (r)
in Eq. and/(r) ~ V(r). We thus recover the results of
whereG(r) is the Green function of Eq[|(7), defined as thesection{I 4, valid for the TF regime.
solution of The validity condition of the perturbation approach dihgct
) follows from Eq. [14):
[—v2 + 1} G(r) =69 (r), (9) _
2 V)< p. (16)
or equivalently, in Fourier space Note that if¢ > o, the potential can be significantly screened
€ R so that the above condition can be less restrictive thamthe
{§|k|2 + 1] G(k) =1/(2m)"/?, (10)  priori condition, V (r) < p.
The results of this section show that the potentidl;), can
be significantly screened in interacting BECs. We stresks tha
this applies to any kind of potentials provided thak L and
(r) < p. Inthe next section, we present an illustration of
the screening effect in the case of a random potential.

where,G(k) = W [ dr G(r)e~"®T is the Fourier trans-
form of G. In contrast to the case of single particles, the Gree
function,@(k), has no singularity point so that the perturba-
tive approach can be safely applied for any wavevektor

The explicit formula for the Green functio&, depends on
the dimension of the system. After some simple algebra, we

find [1l. APPLICATIONTO A TRAPPED INTERACTING
BOSE-EINSTEIN CONDENSATE IN A 1D RANDOM
. 1 H POTENTIAL
in1lD, G(z)= \/_—2§ exp _6/\/5 (11)
1 1| A. Trapped 1D Bose-Einstein condensatein arandom
in2D, G(p) = —Kp (—i——) (12) potential
¥ =g £/V2
in3D, G()= 1 exp < [r] ) . (13) In this section, we consider a 1D Bose gas subjected to a
212 E/V2 weak homogeneous random potentialz), with a vanishing

average value({/) = 0), a standard deviatiof¥z, and a spa-
tial correlation lengthgy, significantly smaller than the size
of the system. In addition, we assume that the gas is trapped
~ in a confining harmonic trepV;,(z) = mw?z2/2 as in almost
W(r) = o — V(r)yo (14)  all current experiments on disordered BEE{ [14, .,|:1|6 17].
2p We consider a situation such that < ngip < h*n?
i.e. the Bose gas lies in the meanfield regime, and |n the ab-
sence of disorder, the interactions dominate over the ikinet
/dr’ o energy. The situation mimics the experimental conditions of

where K is the modified Bessel function. Finally, up to first
order in the perturbation series, the BEC wavefunctionsead

with
"Wir-r'). (15)

Interestingly enough, the Green function in any dimension
shows a exponential decay, with a typical attenuation kengt © in contrast, for example in the case of a deterministic plcipotential,
¢, and is normalized to uniy [ dr G(r) = 1. Therefore, V/(2) = Vrcos (k2), the variation scalegs = 2/k, corresponds to the
G(r) can be seen asszreening functiomvith a typical width period of the potential, and we firld (z) = % The potential is
. Indeed, it should be noted that Em(14) is similar to Eq. (4) indeed screened as the amplitudé/ols smaller than that oF. Neverthe-
except that the potentidl (r) which is relevant in the case less, the period of the screened potentidlis the same as that of the bare
otential, V.
7 2” results also apply if there is no trapping. In this caskzaro-order
terms simply do not depend an
8 This corresponds to the usual TF regime for confined BECsdratisence
5 This property follows directly from the deflnlthlDlO) ofa@hGreen func- of disorder ] However, no restriction is imposed for tago or /€, SO
tion. Indeed,[ dr G(r) = (2m)4/2G(k = 0) = 1. that the BEC can be out of the TF regime as defined in seﬂtion l.



Ref. [1%,[17]. The presence of the harmonic confinement inexponential
troduces a low-momentum cut-off for the phase fluctuations

so that the 1D Bose gas forms a true condensate at low tem- PV (2)] = exp[—(V(2) + Vi) / Vil if V() > 1
peratures|[44, 45]. In this case, the BEC wavefunction is V&l Ve
and P[V(z)] =0 otherwise, (20)
Yo =V 1o(2)/91p 17)

corresponding to the average valié) = 0 and the standard
wherepg(z) = u — mw?2%/2 is the local chemical potential. deviationAl — /([V(z) — (V)]2) = |Vi|. Second, the spa-
This corresponds to an inverted parabolic density profita wi tia| correlations are characterized by the autocorretdtioc-
a half-size,L. = \/2u/mwi, where the chemical potential tion C'(Az) = (V(Az)V(0)) which correlation length is de-
. _  he (3Nmawl 22 I = oA notedo, and can be chosen at will |1[7,|47]. For the numerical
Sp= HTF 2 ( 2nt  with [ = h/mw b(?lng the calculations, we numerically genlglat@a 1D speckle patigrn
extension of the ground state of the harmonic oscillator. ing a method similar to the one described in REf] [48] in 1D

As Ly > (£, 0r), itis legitimate to use the local density ap- and corresponding to the correlation function

proximation (LDA) ], i.e. in a region significantly smatl
than L, the quantities)y and o can be considered as uni- C(Az) = V2
form. We can thus directly apply the results of sec I1B. R
From Egs.[(14){(@7), we immediately find that

2

singV3Az/V20q)| (21)

where sin¢x) = sin(z)/z. For the sake of simplicity, it is

v useful to approximat€’(z) to a Gaussian function (see for
(2)
n(z) ~no(z) — , (18)
gip
1
where a)
ex L ) T PPy | |
Vi(z) = /dz’ MV(:& -2, (19 zZ .6k MNU | WW\IW’V " i
V260 () o Mw /“ | \M‘W
is the screened potential, with(z) = h/+/2muo(z) being 504 o | ‘(M‘
the local healing length. The density profile of the BEC is 02 L @A \J b \/\v\
thus expected to follow the modulations cd@eened random MM \
potential o L4l : : : '
Note that the total number of condensed atom#Vis= - 05 0 05 !
Jdz|\/no(z)+09]? ~ [dz (no(z) - V(z)/gw) up to first 2
N ~ 1
order inV/u. Since(V) = 0, one hasN) ~ [dz ng(z), b) %R
owing to the assumed self-averaging property of the paknti 08 - ]
[&1]. In addition, we have: = ;. zZ o6l
We now compare our predictions to the exact solutions of o AT
the GPE [P) as obtained numerically. For the sake of concrete % 04 bk /“ ¥
ness, we consider a speckle random ot47 similar to ~ A
the one used in the recent experimeé [14,]16] 16, 17] (see o2 |
Fig. fl). Briefly, a speckle pattern consists in a random inten
sity distribution and is characterized by its statisticadper- 0
ties. First, the single-point amplitude distribution iseative ' 21 Ly
Z Figure 2: (color online) Density profiles of a BEC confined in
5 a combined harmonic plus random potenti&k (= 0.1y, or =
. 7.5x 1073 Lr¢). The solid (red online) line corresponds to the numer-
S ically computed BEC wavefunction; the dashed (green opline is
3 the TF profile in the absence of disorder; and the black dditteds
> 1 a plot of the disordered TF profile [E(ﬂ (3)]. a) Case wherehidai-
0 ing length at the trap centef, is smaller than the correlation length
_1 of the random potentiabs /¢ ~ 10. In this case, the density profile
> ) ) ) follows the modulations of the random potential accordmgq. [:IB).

-1 -0.5 0 0.5 1 b) Opposite situationyr/¢ ~ 0.5. In this case, the BEC density pro-
2/ L file, obtained numerically, significantly differs from Eﬂ) but can
hardly be distinguished from EchS) [also plotted in R|b) 2s a
Figure 1: (color online) Example of the realization of a gpecan-  dotted (purple online) line]. The inset shows a magnificatib the
dom potential withrg ~ 1072 L. plot in a very small region of the BEC.



example sectio@B). Up to second ordeix /o, we have  potential, (ii) the average value ofvanishes,
C(Az) =~ V2 exp(—Az2/20y).

Numerical solutions of the GP@ (2) are presented in |Eig. 2 <‘7>
for two values of the rati@, /¢, where¢ is the BEC healing
length at the trap center. In the first case (Fﬂg. 2a), we have ) ] ~
¢ < g, and the density simply follows the modulations of @nd (iii) the correlation function d¥’ is given by
the bare random potential, according to E@1 (3). In the sec-
ond case (Figﬂ 2b), we hage> o, and as expected, the BEC
wavefunction does not follow the modulations of the bare ran
dom potentialV (z) but actually follows smoother modula-
tions of the screened potentidl z). Figure[Pb (and the inset) whereC(Az) = (V(Az)V(0)) is the correlation function of
shows that the numerically computed density can hardly béhe bare potentidl’ andG. (u) is given by Eq.[(d]1) witlt re-
distinguished from Eq[(18). This supports the validity afo  placed by, (z). In the following, we assume thédtz < L
approach. so thatG, ~ G,+a. and we omit the subscripts. Assuming
for simplicity a Gaussian correlation function for the beae-
dom potentialC'(Az) ~ VZ2exp(—Az%/202), we find after
some algebra

(22)

C.(Az) = /dudv ClAz+ (v—u)]|G,(w)G ia-(v), (23)

B. Statistical propertiesof the screened random potential

It is useful to compute the statistical properties of the ~ 9 or Az
~ . . . Az) = Y| —,— 24
screened random potentigl z) as they will be imprinted on ClAz) =V, & &) 24
the BEC density profile according to Ef.{18). From Eq} (15),
we immediately find that, (i)’ (z) is a randonhomogeneous with
|
——2
_ _ Az
Y(Gr, AZ) = Tlexp (— 252 )
_ — 252 +2 Az
LV (1 952 2 Az) exp (Eﬁ V2 Az) erfc <L‘”> (25)
4 20k
—2 N
+ Y5 (1- 202 + VA RS exp (2 — VI B2) erfc<w>
4 20k
|
where o, = og/é, Az = Az/& and  V2%(0w/&,0). It follows that (V) is an increasing func-
erfc (z) = %ff dt e~ is the complementary er- tion of o,/ and that(V2) < V2. This is consistent with the

ror function. The correlation functioR (%, %) is plotted
in Fig. 8.

This functionX clearly decreases with /&y, indicating the
onset of an increasing screening effect. 24 = 0, we have
a simple asymptotic expression fay > &:

s (%)
0r/&0,0) ~ 1 , 0> &0 .

ORr

(26)

So, as expected;(ox/&p,0) — 1 asog/&H — oo, i.e. the
random potential is hardly screened. ber< &:

VT O
2 &’
So, ¥(0r/&0,0) — 0 asox/& — 0, i.e. the amplitude of

E(UR/§05 0) A or K & - (27)

idea of ascreeningof the random potential.

In addition, the correlation lengtla,, of the screened ran-
dom potential,f/, is given by the width at/+/e of the func-
tion Az — X(dr/&0, Az/&0). At or > &, the screening is
weak ando, ~ or. Foroz < &, the screening is signifi-
cant, so thaty, saturates afi; ~ &, as expected. Roughly
speaking, we have, ~ max(o, &) [see Fig[B].

C. Ontheeffect of disorder in interacting Bose-Einstein
condensates

We finally discuss the properties of the BEC wavefunction
in the presence of disorder. It follows from EEl(lS) that the
BEC density follows the modulations of a random potential

the screened random potential is significantly reduced comV. In the TF regime{ < oz), V ~ V, while when¢é > oy,
pared to the amplitude of the bare random potential. Genv is screened. Sinc¥ is a homogeneous random potential,

erally speaking, from Eq.[(P4), we hay®2) = C(0) =

there is no decay of the wavefunction. In particular, Ander-
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Figure 3: (color online) Left: Plot of the correlation furmt X (%5, %) Right: Width at1/+/e of the normalized correlation function

led Az led
> (5_5 E) /S (E—g,o).

son localization does not occur, even for> o;. In the 0.18
case wherf > o, it turns out that the BEC density is ac- 0.16 ° ° -
tually less affected by the random potential than in the TF 0.14 l'\'/'F;'='Ol'2'0ii'""""“-é‘_ .
regime € < og). This is in striking contrast with the case of -~ o012 | e .
non-interacting particles where localization effectsiaeally > 01f -
stronger at low energy [#1]. < o008 o -
More quantitatively, using the statistical propertiesioét — 006 - VR=0.10u L.
screened random potentidl,, one can easily compute the 0.04 *’mf\n—ﬂww,,,,,em,% 7
fluctuationsAn(z) = /([n(z) — no(z)]?) of the BEC den- 002 e
sity around the average valug(z) = [ — mw?2*/2]/gi. O T T T,
From Eq. [1B), we find\n? ~ C(0)/g2. Note thatAn? de- Elog

pends on the displacement from the trap center through the
dependence df, on z. At the trap center, we find
Figure 4: (color online) Amplitude of the fluctuations of tB&EC

Ve density at the trap centef\nc, in the combined harmonic plus ran-
Ang = 7V ¥(0r/&,0) . (28)  gom potential as a function of the ratio of the healing lertgtthe

correlation length of the disorder for several amplitudethe ran-
We recall thatt = & (0) = A/ /2myu is the BEC healing dom potential. The dots correspond to exact numerical teButhe
length in the trap center. Gross-Pitaevskii approach [Eﬁl (2)] and the lines showtibertetical
We have numerically extracted the fluctuations of the denPrediction [Eq. @)1
sity in the trap center, according to the formulen, ~

\/Lé/z fLLTTFF//f dz [n(z) — no(2)]>. This provides a good
estimate ofAn. aséy(z) changes by less th&¥; in the range

[—L+e/4, +Lr/4]. As shown in Fig[}4, the numerical results
perfectly agree with Eq.|__¢8) over a large range of the ra
tio £/os. The numerical calculations are performed for the
speckle potential described in sectII B and no fitting pa
rameter has been used. In addition, note that we have us

a single realization of the random potential for each paint i . ; )
Fig. 4. Averaging over disorder turned out to have little im_smaller than the size of the systet)( but whithout restric-

portance, since the random potential is almost self-auegag tion fortI_’1e ratlog/a?. In particular, we have shown that when
in the range— Lr/4, 1 Lr/4], if 0w < L the healing length is larger than the space scale of the poten

AR i tial, the BEC is sensitive to screened potentiavhich can be
determined within our framework.

IV. CONCLUSION

_ In summary, we have presented an analytical technique,

based on the perturbation theory, to compute the staticwave

function of an interacting BEC subjected to a weak potential
is applies to the case where both the healing length of the
C (¢) and the spatial scale of the potential) are much

Finally, we find from Eq. [(16) that the perturbative ap-
proach that we have performed is valid wheneter < nq,

i e. whenever Applying these results to the case_of alD rand_or_n potent_ial,
we have shown that the wavefunction of a static interacting
Vi/E(0n/60,0) < pi . (29) BEC is delocalized, similarly as in the TF reginje][15]. This

is confirmed by numerical calculations. The results of this
Note that this effect is more restrictive in the trap centeere  analysis show that, for an interacting BEC at equilibriuine t
&o IS minimum. larger the healing length, the smaller the perturbationded



by the disorder. It is worth noting that the conclusions & th negligible interactions can modify the usual picture ofdbc
present work hold fostaticBECs in themeanfield regimand  ization [1%,[1}[33].

when the interaction energy dominates over the kineticggner

in the absence of disorder, i.e. when the healing lengtlyis si

nificantly smaller than the BEC half siz€ (< L). Going We are indebted to G. Shlyapnikov, A. Aspect, M. Lewen-
beyond the meanfield regime, it is interesting to study the instein, D. Gangardt, and P. Bouyer for many stimulating dis-
terplay of interactions, disorder and kinetic energy in &80 cussions. We thank D. Clément and P. Lugan for discussions
gas for interactions ranging from zero (where localizai®n and useful comments on the manuscript. This work was sup-
expected) to the TF regime (where the BEC is delocalized aported by the Centre National de la Recherche Scientifique

shown in this work). This question is addressed in Hel. [49]. (CNRS), the Délégation Générale de I'Armement, the riage
Finally, we note that the transport properties of a BEC carNationale de la Recherche (contract NTOR-4-42586), the Eu-

show significantly different physics. For instance, lozali
tion has been studied in matterwave bea
expansion of an interacting BEE ]15,]16,[17].

ropean Union (grants IST-2001-38863 and MRTN-CT-2003-

[33] and in thB05032), and INTAS (Contract 211-855). The Atom Optics
In the lat-group at LCFIO is a member of the Institut Francilien de

ter two cases, localization indeed does occur although norRecherche sur les Atomes Froids (IFRAF).

[1] S. Chu, Rev. Mod. Phy#0, 685 (1998); C. Cohen-Tannoudji,
ibid. 70, 707 (1998); W.D. Phillipsibid. 70, 721 (1998).

[2] E.A. Cornell and C.E. Wieman, Rev. Mod. Phy#, 875
(2002); W. Ketterlejbid. 74, 1131 (2002).

[3] A.G. Truscott, K.E. Strecker, W.l. McAlexander, G.B.rPa
tridge, and R.G. Hulet, Scien@91, 2570 (2001).

[4] F. Schreck, L. Khaykovich, K.L. Corwin, G. Ferrari, T. Bo
del, J. Cubizolles, and C. Salomon, Phys. Rev. 183t080403
(2001).

[5] Z. Hadzibabic, C.A. Stan, K. Dieckmann, S. Gupta,
M.W. Zwierlein, A. Gorlitz, and W. Ketterle, Phys. Rev. ltet
88, 160401 (2002).

[6] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, PhysvRe
Lett. 89, 150403 (2002).

[7] G. Grynberg and C. Robilliard, Phys. Reh5, 335 (2000).

[8] P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudj, J
Y. Courtois, and G. Grynberg, Phys. Rev. Lé8, 3861 (1992).

[9] L. Guidoni, C. Triché, P. Verkerk, and G. Grynberg, Phiggv.
Lett. 79, 3363 (1997).

[10] L. Sanchez-Palencia and L. Santos, Phys. Re¥2A053607
(2005).
[11] T. Schulte, S. Drenkelforth, J. Kruse, W. Ertmer, J.tArl

[22] L.P. Pitaevskii and S. StringarBose-Einstein Condensation
(Clarendon press, Oxford, 2004).

[23] Y. Nagaoka and H. Fukuyama (EdsAnderson Localization
Springer Series in Solid State Sciences 39 (Springer, mBerli
1982).

[24] T. Ando and H. Fukuyama (Eds.Anderson Localization
Springer Proceedings in Physics 28 (Springer, Berlin, 1988

[25] B. van Tiggelen, inMave Diffusion in Complex Medigectures
notes at Les Houches 1998, edited by J. P. Fouque, NATO Sci-
ence (Kluwer, Dordrecht, 1999).

[26] P. W. Anderson, Phys. Rel09, 1492 (1958).

[27] D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. RighiNa-
ture 390, 671 (1997).

[28] G. Labeyrie, F. de Tomasi, J.-C. Bernard, C.A. Miller,
Ch. Miniatura, and R. Kaiser, Phys. Rev. L&8, 5266 (1999).

[29] R. Dalichaouch, J.P. Amstrong, S. Schultz, P.M. Plaapand
S.L. McCall,Nature354, 53 (1991).

[30] A.A. Chabanov, M. Stoytchev, and A.Z. Genad¥ature 404,
850 (2000).

[31] B. Damski, J. Zakrzewski, L. Santos, P. Zoller, and Mwee-
stein, Phys. Rev. Letf1, 080403 (2003).

[32] U. Gavish and Y. Castin, Phys. Rev. L&, 020401 (2005).

K. Sacha, J. Zakrzewski, and M. Lewenstein, Phys. Rev. Lett[33] T. Paul, P. Leboeuf, N. Pavloff, K. Richter, and P. Sghiack,

95, 170411 (2005).

[12] P. Horak, J.-Y. Courtois, and G. Grynberg, Phys. Re\b8A
3953 (1998).

[13] G. Grynberg, P. Horak, and C. Mennerat-Robilliard, &plrys.
Lett. 49, 424 (2000).

[14] J.E. Lye, L. Fallani, M. Modugno, D.S. Wiersma, C. Femd
M. Inguscio, Phys. Rev. Letd5, 070401 (2005).

[15] D. Clement, A.F. Varon, M. Hugbart, J.A. Retter, P.5er,

Phys. Rev. A72, 063621 (2005).

[34] R. Roth and K. Burnett, Phys. Rev.68, 023604 (2003).

[35] V. Ahufinger, L. Sanchez-Palencia, A. Kantian, A. Samapand
M. Lewenstein, Phys. Rev. A2, 063616 (2005).

[36] T. Giamarchi and H.J. Schulz, Phys. Re\3B 325 (1988).

[37] M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.%her,
Phys. Rev. B10, 546 (1989).

[38] O.N. Dorokhov, Sov. Phys. JETA, 360 (1990).

L. Sanchez-Palencia, D.M. Gangardt, G.V. Shlyapnikov, and[39] D.L. Shepelyansky, Phys. Rev. LeT8, 2607 (1994).

A. Aspect, Phys. Rev. Letf5, 170409 (2005).

[16] C. Fort, L. Fallani, V. Guarrera, J.E. Lye, M. Modugno,
D.S. Wiersma, and M. Inguscio, Phys. Rev. L&6, 170410
(2005).

[17] D. Clement, A.F. Varon, J.A. Retter, L. Sanchez-Raia,
A. Aspect, and P. Bouyer, New J. Ph$s165 (2006).

[18] J.R. Anglin and W. Ketterle, Nature (Londo#}6, 211 (2002).

[19] D. Jaksch and P. Zoller, Ann. Phy&i5, 52 (2005).

[20] T. Giamarchi, cond-mat/0605472.

[21] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, AnSe
(De), U. Sen, cond-mat/0606771.

[40] R. Graham and A. Pelster, cond-mat/0508306.

[41] I.M. Lifshits, S.A. Gredeskul, and L.A. Pastuntroduction to
the Theory of Disordered SysteliWiley and sons, New York,
1988).

[42] A.F. loffe and A.R. Regel, Progress in Semiconductyr&37
(1960).

[43] Note that screening effects have also been discusskzdtice
Bose gases with uncorrelated random potentials by D.K.K. Le
and J.M.F. Gunn, J. Phys.: Condens. Maer753 (1990).

[44] D.S. Petrov, G.V. Shlyapnikov, and J.T.M. Walraveny®tRev.
Lett. 85, 3745 (2000).



[45] D.S. Petrov, D.M. Gangardt, and G.V. Shlyapnikov, y$tV in Laser Speckle and Related PhenomedaC. Dainty ed.
(France)116, 5 (2004). (Springer-Verlag, Berlin, 1975).

[46] V.N. Popov, Theor. Math. Phy41, 565 (1972)Functional In- [48] J.M. Huntley, Appl. Opt28, 4316 (1989).
tegrals in Quantum Field Theory and Statistical PhyqiRgi- [49] P. Lugan, D. Clement, P. Bouyer, A. Aspect, M. Leweste
del, Dordrecht, 1983). and L. Sanchez-Palencia, cond-mat/0610389.

[47] J.W. GoodmanStatistical Properties of Laser Speckle Patterns



