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Screening effect and delocalization of interacting Bose-Einstein condensates in random potentials

L. Sanchez-Palencia
Laboratoire Charles Fabry de I'Institut d'Optique, CNRSdabniversité Paris-Sud XI,
Campus Polytechnique, RD 128, F-91127 Palaiseau cedexlcﬂa
(Dated: 2nd September 2006)

We theoretically investigate the physics of interactings®dinstein condensates at equilibrium in a weak
(possibly random) potential. We develop a perturbationr@@gh to derive the condensate wavefunction for
an amplitude of the potential smaller than the chemicalm@kof the condensate and for an arbitrary spatial
variation scale of the potential. Applying this theory tealidered potentials, we find in particular that, if
the healing length is smaller than the latter, the condensssumes a delocalized Thomas-Fermi profile. In
the opposite situation where the typical variation scaléhefpotential is smaller than the healing length, we
show that the random potential can be significantly screemetj in the meanfield regime, the condensate
wavefunction can remain delocalized, even for very smalietation lengths of the disorder.

PACS numbers: 03.75.Hh;03.75.-b;79.60.Ht

I. INTRODUCTION taken into account and the exact BEC wavefunction usually
cannot be found analytically.
Ultracold atomic gases are currently attracting a lot @fratt ~ Besides a general interest, the question of determining the

tion from both experimental and theoretical viewpointsk-Ta BEC wavefunction for an arbitrary ratie. /£ has direct appli-
ing advantage of the recent progress in cooling and trappingations to the case whefé(r) is a random potential. The
of neutral atoms[[1], dilute atomic Bose-Einstein condézsa physics of quantum systems in the presence of disorder is
(BECs) [}] and degenerate Fermi gases (DFd) [B.[4, 5. 6] areentral in CM [2B,[24[ 5], owing to unavoidable defects in
now routinely produced at the laboratory. Using varioubtec ‘real-life systems’. One of the major paradigms of disoeder
niques, space-dependent potentials can be designed @mostquantum systems is due to Anderson who has shown that the
demand in these systems. For example, using optical meargigenstates of single quantum particles in arbitrary weak r
one can produce periodig [[4, 8], uasi-perioﬂqE,, bi], dom potentials can be localizeic. 1) shows an exponential
random potentialﬂﬂ 1ﬁ @ 17]. For these reasorfiecay at large distanc?e@]. Recent experiments have stud-
and due to unique control and analysis possibilities, citich ~ ied the onset of strong or weak localization effects of lght
gases constitute a favorite playground for revisitingdtad ~ waves [2l7,[28] and microwavef [29)] 30]. Ultracold matter-
problems of condensed matter physics (CM] [L8,[1p[20, 21]waves are also widely considered as promising candidates to
Most current experiments with BECs lie in the meanfieldinvestigate Anderson localization in randopn]|[$1] B2, 33] or
regime where the Bose gas is described by a single wavefunguasi-random structurep [1D,] 1] 34] and more generally to
tion, 1, governed by the (nonlinear) Gross-Pitaevskii equatiorinvestigate the effects of disorder in various quantumesyist
[23]. Due to the interplay between the kinetic energy teroh an (for a recent review, see Reff. [35] and references therttiis).
the interaction term, it is usually difficult to derive theagx  expected that the dramatic versatility of ultracold gasesld/
solution of this equation. The importance of interactioas ¢ allow us for a direct comparison with theoretical studies of
be characterized by theealing length ¢, which defines the quantum disordered systems.
typical distance below which the spatial variations/osig- A key peculiarity of BECs is that interactions usually can-
nificantly contribute to the energy of the BE@a the kinetic  not be neglected and interaction-induced delocalizatemm c
energyterm@]. Inthe Thomas-Fermiregime (Ti®,when  compete with disorder-induced localization effe [E, 1
¢ is significantly smaller than the typical variation scatg, @]. Generally, the interplay between the kinetic energg, t
of the potential}V (r), to which the BEC is subjected, the ki- interactions and the disorder is still a open question that h
netic term is negligible and the BEC density simply follows motivated many works[[3d, B1, B8,]3p,40]. It is clear from

the spatial variations of the potential Eq. (@) that, in the TF regimer{ > ¢), where the interaction
) forces the wavefunction to adapt to the random potential, a
[(x)[" o< p—V(r). (1) BEC will not localize. Indeed, it/ (r) is ahomogeneousan-

dom potential [B1], so is the BEC wavefunction), which
therefore, cannot decay at large distances. This has been co
firmed in recent experimentf [15,]16] 17]. The question thus

In the opposite situatior¢(> o%), the kinetic term should be

*URL:htt p: / / ww. at onoptic. f r|
1This is standard in the case of a harmonic confineméntr) =
mw?r? /2. Although, there is no intrinsic typical variation scaleeccan 2n 1D and 2D systems, all eigenstates are usually localizeitevin 3D,

defineor asmw?02/2 = p, i.e. or = Lr¢, the usual TF half size of they are localized below the so-callewbbility edge
the condensate and the validity of the TF regime reaes L. For pe- 3 In this context, the term ‘homogeneous random potentialamsethat all
riodic, quasi-periodic or random potentiats; is the spatial period or the local statistical properties of the random potential adependent of the

correlation length (see sectiE Il for details). position.
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arises as to understand whether, as a naive transcription of A. TheThomas-Fermi regime
the loffe-Regel criterion[[42] would suggest, localizatican
happen whem, < ¢. In the simplest situation, the healing length is much smalle

In this paper, we show that this criterion is actually notthan the typical length scale of the potentigk{ o). There-
sufficient for BECs at equilibrium if the interactions arenao  fore, the kinetic energy term in the GPB (2) is small and the
negligible {.e. if ¢ < L, whereL is the size of the system). BEC density,|+|?, simply follows the spatial modulations of
We indeed show that interaction-induced delocalizatidlh st the potential:
overcome localization effects even when> og. In fact, 5
due to thescreeningof the random potentia[ [#3], the effect of [W(@)" = [u—=V(r)]/gao  foru>V(r)
disorder turns out to be reduced whefw, increases. and [(r)|* =0 otherwise  (3)

In the following, we develop a general formalism basedrhis corresponds to the TF regime. Note thatifpr< 1, one
on perturbation theory (see sectlﬂn II) to determine the BEG, 55

wavefunction in any given weak potenti®r), for an arbi-
trary ratioo./¢. We find that the BEC densityy|?, is still W(2) ~ o V(r)vo @

given by Eq. [[), except that the potentid(r) has to be T

replaced by acreened potential’(r). We derive an exact with 1 = \/m being the BEC wavefunction af(r) =

formu!a for the screened potential up to first order in the PET Therefore, the BEC wavefunction itself follows the modu-
turbation series. We then apply our results to the case WherB

) ' : §tions of the potential (r).
V (r) is a 1D homogeneous random potential (see seftipn Il P (x)
and derive the statistical properties of the screened rando

potential,‘7(r). From this, we conclude that an interacting B. Beyond the Thomas-Fermi regime: the screening effect
BEC remains delocalized, even o> o (if £ < L).

The situation changes when the healing length is of the or-
der of, or larger than, the typical length scale of the pa&bnt
(¢ > or). Indeed, the kinetic contribution limits the smallest
Il. SCREENING EFFECT IN INTERACTING variation length of the spatial modulations of a BEC wave-
BOSE-EINSTEIN CONDENSATES function to a finite value of the order of the healing length
[@]. Therefore, the BEC can only follow modulations of the
potential on a length scale typically larger th@and Eq. K|3)
no longer holds.
For a weak amplitude of the potenfialve can use perturba-
n theory techniques. We thus write the BEC wavefunction
asy(r) = 1o + d1(r) where we assume thét) < 1, and
1) is the zero order solution of the GPEE (2):

Consider a low-temperature Bose gag idimensions with
contact atom-atom interactiongpd(? (r), wheregyp is the
d-dimensional interaction parameter. The Bose gas is as:
sumed to be subjected to a given potenfi&lr), with a typ- 1o
ical amplitudeV; and a typical variation scale;. Possibly,
the potential,V (r), may have various length scales. In this
case, we assume thag is the smallest. Assuming weak in- R _, 5
teractionsj.e. n2/4~! > mgyp/h%, wherem is the atomic o = *%V Yo + gan¥y - )
mass andr the mean densit 4:|45], we treat the BEC in __ )
the mean-field approach J22] and we use the Gross-PitaevskfiNce the BEC is homogeneous at zero order, one/has

equation (GPE): 1/ gap. Then, the first order term of the perturbation series
is given by
*ﬁQVQ 9 h2
pab(r) = { o T V(r) + gap |t (r)] ] P(r), (2 —%VQ(W) — (1= 3gap¥3] 60 = =V (r)o . (6)
Sinceu — 3gapé = —2u, we are left with the equation

where is the BEC chemical potential. Note thatmini- )

mizes the N-body energy functional so thais necessary a ~SV2(5y) + 0y = _V(I‘Wo @
real function (up to a non-physical uniform phase). In 1D 2 2u

and 2D geometries and in the absence of trapping, no true

BEC can exist due to significant long-wavelength phase ﬂuc\-Nhere§ = h//2my is the healing length of the BEC. We

tuations [4B]. In this case, no macroscopic wavefunction, straightforwardly find the solution of Eq](7), which reads
can be defined. However, because density fluctuations are V(')

i i i S(r) = — [ d' Glr —r')—— 8
strongly suppressed in the presence of interactions, tise Bo Y(r)=— [ d'G(r—1') ST (8)
gas forms aquasicondensat@] and the densityp, can be
treated as a classical field. It turns out thé4t is governed
by Eq. (:]2). Therefore, even though we only refer to BEC
Wave_funCtionS in the fOHOWing,_OUV formalism also apply to 4 A precise condition for the validity of the perturbative apach will be
quasicondensates, after replacing@y /n. given later [see EqG)].
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whereG(r) is the Green function of Eq[|(7), defined as the Note thatif¢ > o, the potential can be significantly screened

solution of so that the above condition can be less restrictive thamthe
9 priori condition, V (r) < p.
[—EVQ + 1} G(r) = 6D (r), (9) The results of this section show that the poteniigk), can
be significantly screened in interacting BECs. We stresks tha
or equivalently, in Fourier space this applies to any kind of potentials provided thak L and
) V(r) < p. Inthe next section, we present an illustration of
[%“{lz n 1] @(k) _ 1/(2ﬂ.)d/2 : (10) the screening effect in the case of a random potential.
where,G(k) = e J dr G(r)e'~ is the Fourier trans-
form of G. In contrast to the case of single particles, the Green !lI. APPLICATION TO A TRAPPED INTERACTING

BOSE-EINSTEIN CONDENSATE IN A 1D RANDOM

function, G(k), has no singularity point so that the perturba- POTENTIAL

tive approach can be safely applied for any wavevektor
The explicit formula for the Green functio6;, depends on o .
the dimension of the system. After some simple algebra, we A. Trapped 1D Bose-Einstein condensatein arandom

find potential
: 1 . . . .
in1D, G(z)=—exp (— 12 ) (11) In this section, we consider a 1D Bose gas subjected to a
V2¢ £/V2 weak homogeneous random potentia(z), with a vanishing
, 1 |p] average value({’) = 0), a standard deviatio;, and a spa-
n2b, Gl = 7T—52K0 (+ E/\/ﬁ) (12) tial correlation lengthg, significantly smaller than the size
1 Ie] of the system. In addition, we assume that the gas is trapped
in3D,  G(r) = s—5— exp < ) . (13) inaconfining harmonic trépV;(z) = mw?22/2 as in almost
2mE?|r| ¢/V2 all current experiments on disordered BEE [14,[15] T, 17].

. o . . . i At 72
where K, is the modified Bessel function. Finally, up to first Ye consider a situation such that < ngip < h*n”/m,

order in the perturbation series, the BEC wavefunctionsead -€- the Bose gas lies in the meanfield regime, and in the ab-
sence of disorder, the interactions dominate over the ikinet

V(r)vo energy. The situation mimics the experimental conditions of
(r) = 3o — Tou (14)  Retf. [13.[1]]. The presence of the harmonic confinement in-
troduces a low-momentum cut-off for the phase fluctuations
with so that the 1D Bose gas forms a true condensate at low tem-
_ peratures|[44, 45]. In this case, the BEC wavefunction is
V(r) = /dr’ G V(r—1'). (15)

Yo =V 1o(2)/ 91D (7)

Interestingly enough, the Green function in any dimension

shows a exponential decay, with a typical attenuation kengt _ 5 9 e . .
¢, and is normalized to unify [ dr G(r) — 1. Therefore, wherepug(z) = p — mw?2*/2 is the local chemical potential.

((r) can be seen asszreening functiomith a typical width This corresponds to an inverted parabolic density profita wi
¢. Indeed, it should be noted that Ef](14) is similar to . (4) 2 half-size,Lr = /2u/mw?, where the chemical potential

. . n . 2/3
except that the potentidl (r) which is relevant in the case s =y, = b W#gml / , With [ = \/h/mw being the

§ < ow, changes to the potentill(r) for £ > ow. The poten-  extension of the ground state of the harmonic oscillator.
tial V_(r) is_a convolution ofV(r) with a function which has As Ly > (€, 0w), itis legitimate to use the local density ap-
a_typ|cal W|dt_h§ and thus corresponds tcsqre_ened potential proximation (LDA) ],i.e. in a region significantly smaller
with an amplitude smaller thali, and a variation scale of the 5 L+, the quantities), and o can be considered as uni-
order ofmax(oe,). . form. We can thus directly apply the results of sectjon] Il B.
Note that, fol < o5, G(r) can be approximated B (r)  From Egs.[@4)[(A7), we immediately find that
in Eq. and/ (r) ~ V(r). We thus recover the results of
section/ 1l A, valid for the TF regime.
The validity condition of the perturbation approach dihgct n(z) ~no(z) — , (18)
follows from Eq. [1}): g1p

Vi) < p. (16)

6 All results also apply if there is no trapping. In this cask zaro-order
terms simply do not depend an
7 This corresponds to the usual TF regime for confined BECsdrabisence
5 This property follows directly fromAthe definitiOIDlO) ofa@hGreen func- of disorder ] However, no restriction is imposed for tago or /¢, SO
tion. Indeed,f dr G(r) = (27)%/2G(k = 0) = 1. that the BEC can be out of the TF regime as defined in seﬂtion l.



where 7
6
—1| 5
~ exp
Vi(z) = /dzf Mv(z —Z),  (19) L 4
V260(2) 2 3
8 2
is the screened potential, with(z) = h/+/2muo(z) being !
the local healing length. The density profile of the BEC is 0
thus expected to follow the modulations a$@reened random :; , , ,
potential -1 -0.5 0 05 1
Note that the total number of condensed atom#&Vis= z/Lye

dz |4/ + o2~ [d Ve .0 ) Up to first
f 2 [Vno(z) 409 f : (no(z) (2)/9 ) P Figure 1: (color online) Example of the realization of a dgecan-

order inV/u. Since(V) = 0, one hagN) ~ [dz ng(z),  dom potential withrg ~ 102 Ly
owing to the assumed self-averaging property of the paknti
[B3]. In addition, we havex = pir,.

We now compare our predictions to the exact solutions of 1
the GPE [R) as obtained numerically. For the sake of concrete

ness, we consider a speckle random potertial [47] similar to '
the one used in the recent experimeé 14,[15] 16, 17] (seg, 46

o

=)
T
=
=

f i
Fig. [l). Briefly, a speckle pattern consists in a random inten = M"/ M‘“ﬂ
sity distribution and is characterized by its statisticadper- I o4l ﬂ’ﬂ | WW -
ties. First, the single-point amplitude distribution iseative M"U } \“\
exponential 02 ‘”ﬂ f A\ i
; \
./V\“NJ 1 1 1 H
_ 0
|VR| Ve z/ Ly
and P[V(z)] =0 otherwise, (20) 1
corresponding to the average valié) = 0 and the standard 08 - .

deviationAV = /([V (z) — (V))]?) = |Vi|. Second, the spa- 06
tial correlations are characterized by the autocorreidtioc- '
tion C(Az) = (V(Az)V(0)) which correlation length is de-
noteds, and can be chosen at will [117,]47]. For the numerical
calculations, we numerically generate a 1D speckle patigrn 02
ing a method similar to the one described in R [48] in 1D
and corresponding to the correlation function

=
w
s

4

9 z/ Ly

, (21)

C(Az) = V2 sindV3Az/V20%)

Figure 2: (color online) Density profiles of a BEC confined in

where sin¢x) = sin(z)/x. For the sake of simplicity, it is a combined harmonic plus random potentibh (= 0.1y, o —

useful to app_roxmaté‘(z) to a Gaussian function (see for 7.5 x 107* L). The solid (red online) line corresponds to the nu-
example SegtIO@B).2Up to second orderi /o, we have merically computed BEC wavefunction; the dashed (greemepl
C(Az) =~ Vg eXP(fAZ /20%). . . lineisthe TF profile in the absence of disorder; and the biftied
Numerical solutions of the GPI] (2) are presented in [fig. Jine is a plot of the disordered TF profile [Efl] (3)]. a) Caseeventhe
for two values of the rati@,/¢. In the first case (Figﬂ 2a), healing lengthe is smaller than the typical length scale of the ran-
we haveé¢ < oy, and the density simply follows the mod- dom potential:or/¢ =~ 10. In this case, the density profile follows
ulations of the bare random potential, according to . (3)the modulations of the random potential according to fa.tBDp-
In the second case (Fi. 2b), we have> o, and as ex- p_osi_tg situatio_n:aR/§ ~ 0.5. In this case, th_e BEC density p_rofile
pected, the BEC wavefunction does not follow the modulaSignificantly differs from Eq/[§3). showing evidence of theeening
tions of the bare random potentiél(z) but actually follows ~ €fect

smoother modulations of the screened poterfigd).

the BEC density profile according to Efj.{18). From Ed} (15),

B. Statistical properties of the screened random potential we immediately find that, (i)/(z) is a randomhomogeneous
potential, (ii) the average value &f vanishes,

It is useful to compute the statistical properties of the
screened random potentigl z) as they will be imprinted on (Vy=(Vy=0, (22)
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Figure 3: (color online) Left: Plot of the correlation furmt X (%, %) Right: Width at1/+/e of the normalized correlation function

fed Az o
w(g22) /2 (8.0).
and the correlation function of is given by

C.(Az) = /dudv ClAz+ (v—u)]|G,(w)G ia.(v), (23)

for simplicity a Gaussian correlation function for the beae-
dom potentialC'(Az) ~ V.2exp(—Az%/202), we find after
some algebra

whereC(Az) = (V(Az)V(0)) is the correlation function of C(Az)=V2Y <57 &) 7 (24)
the bare potentidl’ andG., (u) is given by Eq.[(@J1) witt re- S o
placed bygy(z). In the following, we assume thatz < L
so thatG, ~ G,1a, and we omit the subscripts. Assuming with
|
——2
Y(Fr, Az) = T2exp 3723
—2 N
+ﬁER (1 — 252 — \/55) exp (Eﬁ + \/55) erfc M (25)
4 20
_ S 262 — V2 Az
+ﬁER (1 — QEg +2 Az) exp (Eg —V2 Az) erfc O-Rf\/_z
4 20
|
where o, = ox/b0, Az = Az/& and  So0,X(0r/&,0) — 0 asox/& — 0, i.e. the amplitude of
erfc (z) = %fx“ dt et is the complementary er- the screened random potential is significantly reduced com-

ror function. The correlation functioR (%, %) is plotted
in Fig. B.

This functionX clearly decreases with /&y, indicating the
onset of an increasing screening effect. 2 = 0, we have
a simple asymptotic expression fay > &:

-]
(UR/€050)—1_ - y ORr >>§0

Or

(26)

So, as expected;(or/&0,0) — 1 asor/& — oo, i.e. the
random potential is hardly screened. ber< &:

E(UR/§OaO) s g%, or K & - (27)

pared to the amplitude of the bare random potential. Gen-
erally speaking, from Eq[ (24), we hay&?) = C(0) =
V2% (0r/0,0). It follows that (V2) is an increasing func-
tion of 0 /£, and that{V2) < V2. This is consistent with the
idea of ascreeningf the random potential.

In addition, the correlation lengtl, of the screened ran-
dom potentialV/, is given by the width at /./e of the func-
tion Az — X(ar/&0,Az/&). At o > &, the screening is
weak ando, ~ 0. Forop < &, the screening is signifi-
cant, so thabty saturates at, ~ ¢£;, as expected. Roughly
speaking, we havé, ~ max(o, &) [see Fig[B].
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C. Ontheeffect of disorder in interacting Bose-Einstein Finally, we find from Eq. @6) that the perturbative ap-
condensates proach that we have performed is valid wheneter < ny,
i.e. whenever

We finally discuss the properties of the BEC wavefunction
in the presence of disorder. It follows from EE](lS) that the
BEC density follows the modulations of a random potential Vev/2(0r/60,0) < . (29)
V. Inthe TF regimeq < o), V ~ V while when¢ > o,
V' is screened. Sinc¥ is a homogeneous random potential, Note that this effect is more restrictive in the trap centeeve
there is no decay of the wavefunction. In particular, Ander-¢, is minimum.
son localization does not occur, even for> og. In the
case wherf > o, it turns out that the BEC density is ac-
tually less affected by the random potential than in the TF
regime € < o). This is in striking contrast with the case of
non-interacting particles where localization effectsuseally
stronger at low energml].

More quantitatively, using the statistical properties o t

screened random potentidl,, one can easily compute the  |n summary, we have presented an analytical technique,
fluctuationsAn(z) = /([n(z) — no(2)]?) of the BEC den-  based on perturbation theory, to compute the static wagefun
sity around the average valug(z) = [u — mw®2?/2]/gi.  tion of an interacting BEC subjected to a weak potential & th
From Eq. ), we find\n? ~ C(0)/g%. Note thatAn? de-  case where the healing length is much smaller than the size of
pends on the displacement from the trap center through thiéae system. This applies to an arbitrary variation spacke sca

IV. CONCLUSION

dependence d, on z. At the trap center, we find of the potential. In particular, we have shown that when the
healing length is larger than the latter, the BEC is seresitiv
Ane = 4 S(0w/E,0) (28) to ascreened potentialhich can be determined within our
9o framework.

where¢ = £/(0) = h//Zmyp is the BEC healing length in Applying these results to the case of a 1D random poten-
the trap center. tial, we have shown that the wavefunction of a static interac

As shown in Fig[J4, numerical calculations of the fluctua-"N9 BEC is delocalized, similarly as in the TF reginje] [15].

tions of the density in the center of the BEC perfectly agreeThis is confirmed by numerical calculations. The results of

with Eq. @) over a large range of the rafigo,. The nu- this analysis show that, for an interacting BEC at equilibrj
merical calculations are performed for the speckle paaenti the larger the healing length, the smaller the perturbatien

described in sectiof B and no fitting parameter has beefuced by the disorder. It is worth noting that this conclasio
holds forstatic BECs in themeanfield regimend when the

used. interaction energy dominates over the kinetic energy in the
0.18 absence of disorder,e. when the healing length is signifi-
016 @ o | cantly smaller than the BEC half sizé & L). In contrast,
014 L Va=020p i Anderson localization can be expected in very weakly inter-
012 | ® e i acting static BECs or in the transport of interacting BEQw. F
g o1t i example, localization has been studied in matterwave beams
E oo S _ [B3] and in the expansion of an interacting BEC|[[L, [1§, 17].
0.06 |- Vr=0-101 o ] In the latter two cases, localization indeed does occuoatih
0.04 te o . o non-negligible interactions can modify the usual picture
0.02 |- VR=0-051 e o - calization [3B[4p].
0 PR | L L PR | L L PR
01 1 10 We are indebted to G. Shlyapnikov, A. Aspect, M. Lewen-
§/0r stein, D. Gangardt, and P. Bouyer for many stimulating dis-

cussions. We thank D. Clément and P. Lugan for discus-
sions and useful comments on the manuscript. This work
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Figure 4: (color online) Amplitude of the fluctuations of tB&EC
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