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SUMMARY. In recent years, there has been an increased interest in studying the variability of a quantitative
life history trait across a set of species sharing a common phylogeny. However, such studies have suffered
from an insufficient development of statistical methods aimed at decomposing the trait variance with respect
to the topological structure of the tree. Here we propose, a new and generic approach that expresses the
topological properties of the phylogenetic tree via an orthonormal basis, which is further used to decompose
the trait variance. Such a decomposition provides a structure function, referred to as “orthogram,” which
is relevant to characterize in both graphical and statistical aspects the dependence of trait values on the
topology of the tree (“phylogenetic dependence”). We also propose four complementary test statistics to be
computed from orthogram values that help to diagnose both the intensity and the nature of phylogenetic
dependence. The relevance of the method is illustrated by the analysis of three phylogenetic data sets, drawn
from the literature and typifying contrasted levels and aspects of phylogenetic dependence. Freely available
routines which have been programmed in the R framework are also proposed.
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sition.

1. Introduction

In recent years, there has been considerable interest in an-
alyzing the variability of one or several life-history traits,
expressed as quantitative variables, across a set of species
sharing a common phylogeny. Such studies find their jus-
tification in the “comparative method” (Harvey and Pagel,
1991), which provides a renewed and enlarged vision of
an old and central paradigm of natural sciences. Compar-
ative studies have investigated the way in which two life-
history traits may correlate across a phylogenetic tree, as well
as the correlation between one trait and an environmental
variable. A serious statistical problem, affecting all these
studies, arises from the fact that species that are part of a
hierarchically structured phylogeny cannot be a priori con-
sidered as independent observations of a life-trait variable
(Felsenstein, 1985). Very often the presence of “phylogenetic
signal” (Blomberg, Garland, and Ives, 2003) also called “phy-
logenetic autocorrelation” (Gittleman and Kot, 1990) is to
be expected which means, for instance, that the difference in
trait values observed for a given pair of species is likely to
depend on their relative position in the phylogenetic tree.
The potential dependence of the values taken by the trait
in relation to the topological structure of the phylogenetic
tree, that is, “phylogenetic dependence,” deserves great in-
terest, not only because it may violate the main assumptions
on which current statistical tests are built, but also because a
proper characterization may provide valuable insights into the

processes and mechanisms that have shaped the data under
consideration. This has long been acknowledged (Gittleman
and Kot, 1990) in a trend analogous to the increased interest
for the study of temporal and/or spatial dependence that has
been observed in ecological sciences (Legendre, 1993).
However, concepts and methods originating from time-
series analysis and spatial statistics proved to be of a more
direct applicability to ecological data than to phyloge-
netic topics. Central to these methods are “structure
functions” (Legendre and Legendre, 1998), such as correlo-
gram, variogram, periodogram (Ripley, 1981; Cressie, 1991;
Wackernagel, 2003) or wavelet-based “scalograms” (Percival
and Walden, 2000), which are useful to describe models and
test spatial or temporal patterns. Graphic tools (e.g., more
or less sophisticated geographical maps) are also widely used
as complements of the summary provided by structure func-
tions. In contrast to this well-established, yet still burgeoning,
field developments addressing the description of phylogenetic
dependence have remained limited. Many tests dealing with
phylogenetic issues have been proposed (Blomberg, et al.,
2003), several of them addressing the significance of the
correlation between a trait variable and the phylogenetic
tree. But there is no method providing a satisfactory de-
scription of how the variance of a quantitative variable is
distributed along a phylogenetic tree. In particular, the appli-
cation of nested analysis of variance (Bell, 1989) cannot com-
pletely accommodate full phylogenetic information (Blomberg
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et al., 2003), while the only published structure function
is an extension to phylogeny of the correlogram concept
(Gittleman and Kot, 1990), which is far from having opti-
mal properties (Rohlf, 2001), just as the usual correlogram is
generally not the most relevant structure function to address
spatial or temporal dependence (Ripley, 1981). In addition,
the lack of graphical standards is blatant in the literature de-
voted to phylogeny, in which simultaneous displays of trait
values and of the reference phylogenic tree are very scarce.

The main object of this article is to provide a canonical
procedure to decompose the variance of a life-trait variable
with respect to the topological structure of a phylogenetic
tree, and to propose a new structure function, called an
“orthogram,” to express such a decomposition on an orthonor-
mal basis constructed from the topology of the tree. Addition-
ally, we intend to provide some complementary nonparametric
test statistics derived from the orthogram, along with princi-
ples for a simultaneous graphical display of both trait values
and phylogeny. The effectiveness of the approach will be il-
lustrated and compared with the phylogenetic correlogram,
using examples drawn from the literature and showing con-
trasted patterns of phylogenetic dependence.

2. An Orthonormal Basis to Decompose Trait
Variance

2.1 Building an Orthonormal Basis from the Topological
Structure

Let us consider a life-history trait represented by a quantita-
tive variable x = (1, ..., z;)T measured on ¢ taxonomic units,
for which the topology of the phylogenetic tree is assumed to
be a priori fully determined. We will consider the following
terminology concerning the phylogenetic tree. The root is the
common ancestor to all the ¢ contemporary taxons (OTUs:
operational taxonomic units, also called “tips”) and to the
n hypothetical nodes (HTUs: hypothetical taxonomic units);
branches emanate from root and nodes, tracing the course of
evolution. Phylogenetic trees used by biologists are generally
“consensus trees” (Adams, 1972) or “super-trees” (Sanderson,
Purvis, and Henze, 1998) obtained by compiling phylogenies
established by distinct methods, which means that branch
lengths are often unknown or not accurate.

Even when data are from homogeneous origins, the esti-
mation of distances between tips from either fossil, morpho-
logical, or molecular data relies on the hypothesis that all
traits evolve at a steady rate along all branches. But evo-
lutionary rates are known to change with time (Svensson,
1997) while varying between branches of a phylogenetic tree
(Mindell and Thacker, 1996) and this often introduces a
substantial level of uncertainty around estimates of branch
lengths. Consequently, we will restrict ourselves to the most
general type of data for which only the topological structure of
the phylogenetic tree, that is, the relationships among nodes
and between nodes and tips, can be assumed to be known.

Each taxonomic unit of the tree (either tip or node) defines
a set made of its descendant tips. Thus, we can associate a
dummy variable u* = [u;]¥.,., to each taxonomic unit k (in-
cluding the root, 1 <k < n—+t+ 1), with uf = 1 if the tip i is
descended from that taxonomic unit k, and uf = 0 otherwise.
For example, the node N2 in Figure 1A defines a subset of tips
which is {L7, L8, L9, L10, L11, L12}, while the correspond-

= o)

el alvaltralralralratrale

L ] | FL1
L ] | B L2
| ] | L3
FL4
L5
L6
L7
L8
L9
FL10
FL11
FL12

rL1
rL2
rL3
L4
rLs
rLe
rL7
rL8
rLs
rL10
rL11
rL12

445

L AR |
n ]

[ENEEITE A ]

Figure 1. Illustration of the orthonormal basis construction
from a fictive phylogenetic tree featuring 12 tips and 7 nodes.
(A) Representation of ¢ — 1 dummy variables, associated to
nodes and tips, and ordered by decreasing values of np (names
of the dummy variables are labeled on the top of the table).
(B) Representation of the ¢ — 1 orthonormal vectors of the or-
thonormal basis B. For each node of the phylogeny, the labels
indicate which vectors account for the variance associated to
each node. The size of the squares is proportional to the val-
ues of the orthonormal vectors (white and black for negative
and positive values, respectively).

ing dummy variable is uT = (0,0, 0,0,0,0, 1,1, 1, 1, 1, 1).
For the subsequent analyses, we need to define a relative order
between dummy variables and, thus, between the correspond-
ing taxonomic units (TU). A reasonable quantitative criterion
to rank the TU is the number, np(k), of permutations between
descendants of a given node k that preserve the topological
structure of the subtree stemming from it. With such a cri-
terion, nodes are ranked according to the complexity of the
subtree they initiate. Let us now consider the table U = [u¥]
that contains the whole sets of the dummy variables.

All these dummy variables are obviously not linearly in-
dependent. The most obvious reason is that the dummy vari-
ables corresponding to the direct descendants of a given node,
k, sum to the dummy variable, u®. This problem can be easily
resolved by suppressing for each node, k, the dummy variable
corresponding to its direct descendant displaying the lowest
np value. This means eliminating n + 1 dummy variables (the
root is considered as a node) among the n + ¢ 4+ 1 possible,
that is, retaining only ¢ of them. The next step is a rowwise
concatenation of these t dummy variables to form a ¢ X ¢ ma-
trix, V (Figure 1A). The QR decomposition (Harville, 1997)
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of matrix V yields a t X ¢ matrix, Q, whose columns are
the orthogonal vectors obtained by applying Gram—Schmidt
orthogonalization to the columns of V.

The orthonormal basis B associated with the phylogeny
is defined from the orthogonal basis Q. We eliminate the
first vector 1, corresponding to the dummy variable attached
to the root and we standardize by t'/2 to obtain ¢t — 1 or-
thonormal vectors (Figure 1B). Orthonormality guarantees
that %BTB = I,_;. The vectors of B are linear combinations
of the dummy variables, and the Gram—Schmidt orthogonal-
ization guarantees that each of these vectors is ranked in ac-
cordance with the initial ranking of the dummy variables.
Consequently, the first vectors will characterize interspecific
variance among dissimilar species (two species are all the more
dissimilar that the np value of their first common ancestor is
high) and reciprocally. This enables an interpretation of the
successive vectors in terms of decreasing phylogenetic dissim-
ilarity between tips.

2.2 Decomposition and Reconstruction of the Life-Trait
Variable

From the orthonormal basis B, we can compute a vector
r=(ry,...,7:1)T of the transform coefficients of the centered
and standardized variable xo, as r = }B”x,. Centering and
standardizing are carried out using the uniform weighting of
tips. Standardization allows us to have cumulated orthogram
values between 0 and 1 thereby facilitating comparisons be-
tween examples.

Transform coefficients allow one to reconstruct the variable
using xy = Br, while squared-transform coefficients provide a
decomposition of its variance: [|xo|| = }x§xo = ;r"BTBr =
rTr. Squared coefficients, that is, (1?)1<i<; 1, as well as cumu-
lative squared coefficients, can be plotted against i € {1,...,
t — 1} yielding two graphical tools, that we will call or-
thogram and cumulative orthogram, respectively. The sign of
coeflicients can also be mentioned for orthogram values (see
Figures 2-4). Both types of orthograms provide a means to
display the variance decomposition for the trait while enabling
several tests for phylogenetic dependence. As we will see in
the examples, the ordering of orthonormal vectors by decreas-
ing np values of the corresponding dummy variables enhances
the interpretability of orthogram results.

3. Testing for Phylogenetic Dependence

We consider as null hypothesis (Hj) the complete absence of
phylogenetic dependence (Bloomberg et al., 2003) and, thus,
that the t observed tip values are exchangeable irrespective
of the topological structure of the tree. This means that the
observed decomposition of the trait variance is to be com-
pared with decompositions obtained from a sample of the ¢!
permutations defined on the elements of x = [z;]1<;<;, and
for which the orthogram is expected to have uniform values.
To carry out such a comparison, we introduced four statistics
computed from the variance decomposition on which tests
of the null hypothesis are based. The four tests are comple-
mentary in the sense that they may have different relevance
and power in the presence of distinct alternatives to Hy (see
below).
A first test is built on the statistic,

R2Max (x) = max (Tf, e ,7‘;{1) ,
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Figure 2. Analysis of the adult life expectancy for 18

species of procellariiformes (Bried et al., 2003). (A) Phylo-
genetic tree (on the left) with dotplot of the life expectancy
variable (center) and species names (on the right). (B) Or-
thogram and cumulative orthogram plots. Orthogram plot:
the bars are proportional to the squared coefficients (white
and gray bars stand for positive and negative coefficients, re-
spectively). The dashed line is the upper confidence limit at
5%, deduced from 999 Monte Carlo permutations (mean value
indicated by the horizontal solid line). Cumulative orthogram
plot: circles represent observed values of cumulated squared
coefficients, expected values under H, are along the straight
line, and dashed lines stand for the bilateral confidence
interval.
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Figure 3. Analysis of the adult female body weight (afbw)

of 18 species of ungulates (Pélabon et al., 1995). (A) Phy-
logenetic tree (on the left) with dotplot of the adult fe-
male body weight (center) and species names (on the right).
(B) Orthogram and cumulative orthogram plots (see the leg-
end of the Figure 2 for explanations).
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Figure 4. Analysis of the age at maturity (years) of 49
species of teleost fishes (Rochet et al., 2000). (A) Phyloge-
netic tree (on the left) with dotplot of the age at maturity
(center) and species names (on the right). (B) Orthogram and
cumulative orthogram plots (see the legend of the Figure 2
for explanations).
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which is expected to peak when a unique vector of the basis
accounts for a large share of the trait variance. This would
mean that a significant change in the life trait appeared at
one node of the phylogenetic tree while being conserved in the
deriving branches. This test is likely to be of limited relevance
in the presence of a diffuse dependence, that is, when several
nodes are prominent to explain the trait variance and when
the orthogram is, therefore dominated by several large values
instead of a unique sharp peak. In an analogy with what has
been proposed to test smooth periodograms (Bartlett, 1954),
we derived a second statistic from the cumulative orthogram,
namely,

m

dor

i=1

9 m

max Zit—il

Dmax (x) =

1<m<t—1

It corresponds exactly to the Kolmogorov—Smirnov statis-
tic used to test whether the vector [Y"" 7?]i<;<¢—1 may be
an ordered random sample from the uniform distribution on

(0, 1). The third test is built on the statistic,
t-1
SKR2k (x) = » _ir?,
i=1
which assesses to what extent the variance distribution across

the phylogenetic tree is rather skewed to the root or to the
tips. The last test corresponds to the statistic,

t—1
SCE(x) =Y (r2-12,),
i=1

which measures the average local variation of the orthogram
values.

For all four statistics, confidence envelopes are built from
a relevant number of Monte Carlo randomizations of the z;
values. All computations and graphical displays involved in
the preparation of this article were carried out using R (Thaka
and Gentleman, 1996), with both pre-programmed and per-
sonal routines. These routines will be incorporated in the ade4
package available at http://cran.r-project.org/, and in
the meantime are available by a simple request to the first
author. The computer code is available at the Biometrics web-
site http://www.tibs.org.

4. Applications

Phylogenetic examples came from several papers that stud-
ied the degree to which phylogenetic history has shaped the
evolution of phenotypic characters or life traits. We retained
three examples that typify contrasted levels and aspects of
phylogenetic dependence. For each example we compared the
results provided by the orthogram with the results yielded by
the only other proposed structure function, namely the phy-
logenetic correlogram (Gittleman and Kot, 1990). The cor-
relogram corresponding to each example is constructed by
computing Moran’s I coefficients (Cliff and Ord, 1981), for
successive classes of phylogenetic distance (Figure 5). Detailed
procedures for computing correlogram values and their corre-
sponding confidence intervals are provided by Gittleman and
Kot (1990).

Exploratory analyses of life-trait evolution should start
with meaningful displays of the variation of the focal trait
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Figure 5. Phylogenetic correlograms with respectively six,

five, and seven successive Moran’s I coefficients (solid
squares). The straight line indicates the expected value under
Hy and dashed lines the bilateral confidence interval at 5%,
deduced from 999 Monte Carlo permutations.

along the phylogenetic tree, just as most quantitative studies
of spatially structured phenomena usually start with a visual
analysis using geographical maps of the variables under study.
But such displays are still greatly lacking in phylogenetic lit-
erature and we have, therefore, proposed a simple graphical
method. We represent the tree in front of the dotplot of the
variable (Figure 2A). This graphical representation takes a
leaf out of Cleveland’s book (1994) for it was he who defined
the dotplot “as a graphical method for measurements that
have labels.” As for geographical maps in the spatial domain,
this graphical representation will help to give a first idea about
the nature of the patterns, while enhancing the interpretation
of quantitative results.

1. Absence of phylogenetic dependence

We first analyzed data provided by Bried, Pontier, and
Jouventin (2002), about the adult life expectancy of 18 species
of procellariiformes (Figure 2A). Phylogenetic relationships
were compiled from various information sources available
for Procellariiformes (see Bried et al., 2002 for details).
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Table 1
Observed values and p-values (just below) for the four test
statistics (999 Monte Carlo permutations of tip values)

R2Max SkR2k Dmax SCE
Procellariiformes 0.22 9.28 0.12 0.09

p=027 p=05 p=05 p=0.12
Ungulates 0.47 8.35 0.25 0.28

p=001 p=03 p=0.16 p=0.33
Teleost fishes 0.15 15.4 0.3 2.14

p=0.13 p=10.001 p=0.005 p=0.001

Because divergence times between species are far from certain
(Pontier, personal communication), lengths of branches are
considered as unknown. The trait variable of life expectancy
has been square root transformed prior to analysis so as to
make its distribution more symmetric and normal. None of
our four tests rejected the null hypothesis of a uniform dis-
tribution of orthogram values, because the observed values of
the four corresponding statistics were all exceeded by results
of many Monte Carlo randomizations (Table 1). Furthermore,
values of the cumulated orthogram remained within the con-
fidence envelopes (Figure 2B). All these results pointed to an
absence of phylogenetic dependence for that life-history trait.
The phylogenetic correlogram of observed data (Figure 5) also
indicated an absence of phylogenetic dependence whatever the
distance class. Thus, this example supports the idea that not
all traits are correlated to their phylogenetic history. Indeed,
there exist specific evolutionary scenarios (Blomberg et al.,
2003) under which correlation between a trait and its phylo-
genetic history is likely to be low. Although testing for the
absence of phylogenetic dependence could appear trivial, it is
a first and unavoidable step to study the relationship between
a life trait and a phylogeny, as shown by this example.

2. Importance of a particular node

For this example, we analyzed a data set from Pélabon et al.
(1995) relating to the adult female body weight of 18 species
of Ungulates, using their tip data and the joint phylogeny
(Figure 3A). Because the phylogenetic relationships are un-
known for ungulates (Gaillard, personal communication), a
taxonomy-based phylogeny with unknown branch lengths has
been used. The trait has been log-transformed prior to anal-
ysis. Only the test based on R2Max was significant (Table
1). Moreover, the plot of orthogram values highlighted the
prevalence of the fourth vector of the basis, which corre-
sponds to the node highlighted by an arrow on the Figure 3B.
The simultaneous representation of that score and trait values
(Figure 3A) clearly confirmed the presence of an important
evolutionary event that appeared at node w10 and conserved
until present. Such an evolutionary pattern generates a kind
of phylogenetic dependence that appeared hard to detect by
three of the test statistics (SkR2k, DMax, and SCE), by the
cumulative orthogram, and also by the phylogenetic correlo-
gram (Figure 5). Only the multiple tests on individual values
of the orthogram and the test statistic R2Max proved able to
indicate a significant departure from phylogenetic indepen-
dence.

3. Diffuse phylogenetic dependence

The last example analyzed deals with the age at matu-
rity (years) of 49 species of teleost fishes (Figure 4A). Data
have been provided by Rochet et al. (2000) who compiled
the most recent information available for teleost fishes to es-
tablish phylogenetic relationships. Partial phylogenetic trees
based on morpho-anatomical characters and on molecular
traits were collated to yield a consensus tree summarizing
present knowledge about teleost interrelationships. As data
were obtained from different sources and methods, estimates
of branch lengths are not available or comparable. The life
trait was log-transformed prior to the analysis. This trait can
be considered as shaped by phylogenetic history because three
test statistics (SkR2k, DMax, and SCE) revealed a significant
departure from H, (Table 1) while the cumulative orthogram
had most of its values outside the confidence envelopes
(Figures 4B). This pattern of phylogenetic dependence is rad-
ically different from the preceding pattern. In this example,
the values of the orthogram and, thus, the portions of inter-
specific variance, decreased regularly as a function of the com-
plexity value, np, of the nodes. The phylogenetic correlogram
(Figure 5) confirmed the existence of a “phylogenetic gradi-
ent”: there was a monotonic decrease of coefficients in relation
to phylogenetic distance. This profile indicated that closely re-
lated species tend to have similar trait values and that such
a similarity decreases with phylogenetic distance.

5. Discussion

The above examples demonstrate that orthonormal transform
is a relevant approach to diagnose different degrees and types
of phylogenetic dependence in both small and large phyloge-
nies, as well as with different types of phenotypic characters.
The approach is all the more relevant in that modern com-
puter technology with its high-power graphic screens display-
ing multiple, linkable windows allows one to consider dynamic
simultaneous views on the phylogenetic data and on the dis-
tributions of the values taken by the structure functions and
test statistics.

Characterizing phylogenetic dependence using an orthonor-
mal transform comprises two main steps, namely (i) the def-
inition of an orthonormal basis B, which ensures a canonical
description of the tree topology and (ii) the variance decom-
position on the basis that yields the structure functions called
orthograms. Such a strategy is generic in the sense that it
does not necessitate any assumption on the structure of the
tree and therefore contrasts with several ad hoc methods that
have been previously proposed. Furthermore, the principle of
orthonormal transforms obviously surpasses the study of phy-
logenetic data. Indeed, in the spatial and/or temporal domain,
the Fourier transform as well as several kinds of wavelet trans-
forms (Percival, 2002) also rely on specific orthonormal bases
(Percival and Walden, 2000). Furthermore, all the canonical
bases associated with linear and bidimensional supports such
as the eigenvectors of a graph matrix (Cvetkoviv, Doob, and
Sachs, 1979) could be used to calculate spatial and temporal
orthograms. Thus, the eigenvectors of a matrix of inter-tips
phylogenetic distances (sensu Rohlf, 2001) can provide an al-
ternative way to compute a phylogenetic orthogram.

Consequently, the four tests statistics we have used can
also be applied to structure functions that are analogues of
the orthogram. Statistics R2Max and Dmax have long been
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proposed for the Fourier periodogram (Bartlett, 1954; Diggle,
1990), but they are obviously relevant in regards to wavelet
decompositions using an orthonormal basis. This is also true
with respect to the third and the fourth statistics whose use in
relation to structure functions is new to our knowledge. There
are, indeed, many extensions of this work, which should be
examined in the future. As with so many tests aimed at pat-
tern detection, no information on power is yet available. The
three examples we did provide as illustrations cannot claim to
encompass all the diversity of phylogenetic patterns, though
they clearly illustrate that the different statistics and struc-
ture functions are likely to be of varying pertinence and power
when facing contrasted alternatives to phylogenetic indepen-
dence (see in Figures 3 and 5 the limited power of both phy-
logenetic correlogram and cumulative orthogram with respect
to the second example). The orthogram provides a very rich
account of variance decomposition because there are as many
values as tips (minus 1) in the tree, while the correlogram
only gives averaged results for a limited number of classes
of phylogenetic distances. This is analogous to the limitation
encountered in the temporal/spatial domain with the correl-
ogram (or the closely related Moran’s Index, Cliff and Ord,
1981), when compared with a wavelet decomposition that can
also provide results for individual observations.

In the future, the different properties of structure func-
tions and test statistics could be useful to identify which kind
of phylogenetic dependence is present (e.g., diffuse vs. struc-
tured by particular nodes) by considering which particular
tests reject the null hypothesis and those which do not. How-
ever, in order to do so on a properly established basis it is still
necessary to study and assess the power of these tests with
regards to phylogenetic data, simulated under various models
of evolutionary change, and having contrasted characteristics
in terms of branch lengths and divergence time. Moreover, the
ultimate goal of most comparative studies being the analysis
of the evolutionary patterns of several life traits (Felsenstein,
1985), a multivariate extension of our orthonormal basis ap-
proach is, obviously, the next step to consider in the near
future.
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