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Abstract— In this paper, we propose a time consistent video
segmentation algorithm designed for real-time implementation.
Our segmentation algorithm is based on a region merging process
that combines both spatial and motion information. The spatial
segmentation takes benefit of an adaptive decision rule and a
specific order of merging. Our method has proven to be efficient
for the segmentation of natural images (flat or textured regions)
with few parameters to be set. Temporal consistency of the
segmentation is ensured by incorporating motion information
through the use of an improved change detection mask. This
mask is designed using both illumination differences between
frames, and region segmentation of the previous frame. By
considering both pixel and region levels, we obtain a particularly
efficient algorithm at a low computational cost, allowing its
implementation in real-time on the TriMedia processor for CIF
image sequences.

I. I NTRODUCTION

Segmentation of videos into homogeneous regions is an
important issue for many video applications such as region-
based motion estimation, image enhancement (since different
processing may be applied for different regions), 2D to 3D
conversion (segmentation can be used for depth estimation).
These applications require two main features from segmenta-
tion: accuracy of regions boundaries in the spatial segmenta-
tion and temporal stability of the segmentation from frame to
frame. Spatial segmentation can be classified into two main
categories, namely contour-based and region-based methods.
In the first category, edges are computed and connected
components are extracted [1]. The main drawback of such an
approach is that the computation of the gradient is prone to
large errors especially in noisy images. Moreover we cannot
take benefit of statistical properties of the considered image
regions. The second category of methods, i.e. region-based, is
less sensitive to noise. We are interested here in a bottom-up
segmentation approach. In these methods, two important points
must be considered: the first one is the order of merging and
the second one is the similarity criterion, see for example [2],
[3], [4]. When dealing with video segmentation, the temporal
dimension must be added. Various approaches have been
tested. Some authors consider video data as a volume [5],
while others take benefit of motion information, such as scene
change detection or motion field [6], [7]. Other works propose
the object tracking [8] which is beyond the topic of this paper.

In this paper, we propose a spatial segmentation that takes
benefit of both an adaptive decision rule and an original

order of merging. This method gives good results for spatial
segmentation with few parameters to be set. We use motion
information to improve the temporal consistency. Motion
estimation is a real bottleneck for real-time implementation,
so we rather propose to combine an improved Change De-
tection Mask (CDM ) with spatial segmentation in order to
improve the temporal consistency of our segmentation. By
making comparisons both at a pixel level and at a region
level, we obtain an efficient algorithm for video segmentation
at a low computational cost. Our method runs in real-time
on the TriMedia processor for CIF image sequences. More-
over, experimental results conducted on real video sequences
demonstrate a good temporal consistency.

The paper is organized as follows. The spatial segmentation
method is detailed in section II. The temporal consistency
improvement is detailed in section III. In section IV, we
discuss the implementation of the algorithm. Experimental
results and measures are given in section V.

II. SPATIAL SEGMENTATION

Let us consider an imageI, the notation|.| represents the
cardinal andI(p, n) the pixel intensity at positionp = (x, y)T

in the framen.
A region-based segmentation problem aims at finding

a relevant partition of the image domain inm regions
{S1, S2, .., Sm}. The algorithm of segmentation detailed here
uses an implicit encoding of the initial4 connected planar
sampling grid of pixels. It combines a specific order of fusion
with an adaptive threshold. Both steps are detailed thereafter.

A. ORDER OF MERGING

The order of merging is built on the edges weights as in
[9], [10]. The idea behind this order of merging is to merge
first similar regions rather than different ones. An edgee
denotes a couple of pixels(p, p′) in a 4-connectivity scheme.
The similarity between pixels is measured by computing the
distance between two pixel colors as follows:

w(p, p′, n) =

√

∑

I∈{Y,U,V }

(I(p, n)− I(p′, n))
2
. (1)

For our algorithm, we consider theY UV color space, since
this is the native color space of CIF sequences. The color space
(L∗a∗b∗) provides partitions with a little greater subjective
quality but with a higher computational cost.



The edges are sorted in increasing order of their weights and
corresponding couples of pixels are processed in this orderfor
merging. As far as the implementation is concerned, the image
is only scanned twice for this sorting: One time, in order to
compute the number of edges with same weights and store
this number in a table (edge weight histogram). Second, in
order to store each edge in the memory part corresponding to
its weight.

B. THE CRITERION OF MERGING

Given two regionsS1 and S2, we want to know if these
two regions have to be merged. A similarity criterion between
the two regions must then be chosen and evaluated. Couple of
adjacent regions will be considered as similar and merged if
their merging criterion is below a given threshold. The choice
of the corresponding threshold is often difficult. In this paper,
we propose an adaptive threshold for a similarity criterion
based on the means of the intensities of these two regions. This
adaptive threshold is justified using statistical inequalities as
in [9] but we here propose a simpler statistical interpretation
of the image which leads to a more adapted criterion for
real-time implementation. Such a predicate gives very good
segmentation results as shown in Fig.2.

1) Merging predicate:The mean of the intensities of the
regionSi is computed as follows:

Si =
1

|Si|

k=|Si|
∑

k=0

Ii(pk, n)

whereIi(pk, n) is the intensity of thekth pixel of regionSi.
The merging predicate is then :

P (S1, S2) =

{

true if (S1 − S2)
2 ≤ Qg2( 1|S1| +

1

|S2|
)

false otherwise
(2)

whereg is the maximum level ofI (g = 255 for grayscale
images). The parameterQ allows to tune the coarseness of the
segmentation. In the experiments, we chooseQ = 2 which
gives good results for CIF (Common Input Format= 352 ×
288) images.

2) Statistical justification of the predicate:Classically, the
imageI is considered to be an observation of a perfect image
I∗ and then pixel intensities are considered as observations of a
vector of random variable (r.v.) notedX = (X1, ..,Xn)T . The
merging predicate is based on the use of statistical inequalities
and especially the McDiarmid inequality as in [9].

Theorem 2.1: (The independent bounded difference in-
equality [11]) LetX = (X1,X2, ...,Xn) be a family ofn
independent r.v. withXk taking values in a setAk for each
k. Suppose that the real valued function f defined on

∏

k Ak
satisfies|f(x)− f(x′)| ≤ ck whenever vectorsx andx′ differ
only in thekth coordinate. LetE(f(X)) be the expected value
of the r.v.f(X), then for anyτ ≥ 0,

Pr(|f(X)− E(f(X))| > τ) ≤ 2 exp

(

−2τ2/
∑

k

c2k

)

(3)

When testing the deviation between two adjacent regions
S1, S2, we consider the following vector of random variables:

(X1, ...,Xn) =
(

I∗
1
(p1), ..., I

∗
1
(p|S1|), I

∗
2
(p1), ..., I

∗
2
(p|S2|)

)

whereIi(pj) is the intensity of thejth pixel of Si correspond-
ing to the observation of the random variableI∗i (pj). In this
case, the size of the random vector isn = |S1|+ |S2|. In order
to apply Theorem 2.1, we then choosef(x) =

(

S1 − S2
)

.
By inversion of the theorem, we have with a probability of at
least1− δ (0 < δ ≤ 1):

|(S1 − S2)− E
(

S1 − S2
)

| ≤ g

√

Q

(

1

|S1|
+
1

|S2|

)

whereQ = 1

2
∗ ln( 2

δ
), andE(S) is the expected value ofS.

If S1 andS2 belong to the same region inI∗, the expectation
E
(

S1 − S2
)

will be null and the predicate follows.

C. SEGMENTATION ALGORITHM

Our spatial segmentation could be divided in three steps. In
the first one, we compute the weights of edges and their his-
togram. In the second step we sort edges in an increasing way
of their weights. In the last step we merge pixels or regions
connected by edges following their order. The implementation
of this last step is given in section IV.

III. TIME CONSISTENCY IMPROVEMENT

In video segmentation, the quality of the spatial segmen-
tation is not the only requirement, time consistency is alsoa
very important one. If in two successive frames, one region
is segmented very differently because of noise, occlusion or
deocclusion, results of segmentation would be very difficult
to exploit for any application like image enhancement, depth
estimation and motion estimation. Many works, see for ex-
ample [7], use motion estimation to improve time consistency
in video segmentation. However, motion estimation is a real
bottleneck for real-time implementation and is even sometimes
unreliable. In this paper, we combine an improved Change
Detection Mask (CDM ) with spatial segmentation in order to
improve the temporal consistency of our segmentation.

The CDM is designed using both illumination differences
between frames and region segmentation of the previous
frame. We first detect changing pixels using the frame dif-
ference. Then, we take benefit of the region segmentation of
the previous frame in order to classify the pixels not only ata
pixel level but also at a region level. Given the current frame
I(:, n) and the previous oneI(:, n− 1), the frame difference
FD is given byFD(p) = |I(p, n)− I(p, n− 1)|. Classically,
FD is thresholded in order to distinguish changing pixels from
noise. A pixelp, with L(p) = 1 is denoted a changing pixel.
We then use the previous segmentation in order to convert the
CDM from the pixel level to a region level which is more
reliable. For each region in the previous segmentationSi, we
computeτ(Si) which represents the ratio of changing pixels in
the regionSi. We haveτ(Si) =

Ni,changing
|Si|

whereNi,changing
is the number of changing pixels in the regionSi. Pixels are
then classified using three categories:



(a) (b) (c) (d)

Fig. 1. (a) Segmentation of a frame n-1. (b) CDM computed from the
segmentation of the frame n-1 and frame difference between framen-1 and
frame n. (c) Segmentation of the frame n withoutCDM . (d) Segmentation
of the frame n withCDM .

CDM(p) =











0 if (τ(Si) ≤ tr2).

1 if (τ(Si) > tr2) and (L(p) = 1).

2 if (τ(Si) > tr2) and (L(p) = 0).

(4)

wheretr2 is a positive constant. In the experiments, we take
tr2 = 0.01 (i.e. a region is a moving region when it contains
at least1% of moving pixels). The value of the threshold is
chosen so that we don’t miss any moving region.
Every pixel of regions qualified as static are labelled using
CDM(p) = 0. The two other labels concern pixels within
moving regions. Depending on the value of the frame differ-
ence, the pixel is qualified as a changing one (CDM(p) = 1)
or a no changing one (CDM(p) = 2). Such a classification
is then used to segment the current frame. Firstly, static
regions are kept as they were segmented in the previous
frame. Secondly we apply a connected component labelling
(CCL) algorithm [12] to extract connected component of
pixels with CDM(p) = 2. This second step builds seeds
from the segmentation of the previous frame. These seeds
link the current segmentation to the previous one in a time
consistent way. Thirdly, we apply the spatial segmentation
only on edges(p, p′) connecting changing pixels, and those
connecting changing pixels with seeds built in the second step.

We show here an example of segmentation results with and
without time consistency in Fig.1(d) and 1(c). In Fig.1(b),
the different labels (i.e. values ofCDM ) are given using
three values of intensity (black forCDM(p) = 0, gray for
CDM(p) = 2 and white forCDM(p) = 1).

In section V, we propose the computation of an objective
measure for temporal consistency. The results show a real
improvement for time consistency for different sequences.
Moreover, the way we exploit theCDM decreases also the
amount of computation of the algorithm since the edges
in static area are not reconsidered, and those linking no
changing pixels in moving area are simply processed by a
CCL algorithm.

IV. I MPLEMENTATION CONSIDERATIONS

In this section, we propose to describe optimizations that
have been made to allow a real time treatment. The whole
algorithm of video segmentation is summarized in figure 3.
The algorithm1 describes more particularly the merging loop
which is the critical part for a real time implementation. The
term Ne represents the number of edges within the image
I in the 4-connectivity. In the merging process, we use the
UNION-FIND data structure [13]. The UNION function fuses

Fig. 2. Results of segmentation of frames from the sequencesParis,
Bridge, Akiyo andMobile.

Fig. 3. The general diagram of video segmentation

two disjoint regions into one region, and the FIND function
identifies the regions a certain pixel belongs to.

Apart from this merging loop, all other functions access
pixels data in a predictable way (for example from top to
bottom left to right). The cache memory benefits from this reg-
ularity, since it exploits spatial and temporal locality ofdata,
and consequently causes less cache misses. In the merging
loop, the UNION-FIND data structure is unpredictable, and
consequently causes an important data cache stalls. To reduce
the data cache stalls cycles, we investigate two optimizations,
which are independent of the cache memory type (size,
mapping, block size, replacement algorithm...).

The first optimization concerns the organization of the data.
Each pixel in the image could be a representative of one
region so the data are stored with an arrayA of size |I|,
where each elementA(p) stores the mean colors(Y ,U, V )
and the cardinal|S| of the region whose representative isp.

Algorithm 1 The merging loop
for i := 1 to Ne do

Read theith edge:(p1, p2);
S1 = FIND(p1);
S2 = FIND(p2);
if P (S1, S2) = True then
UNION(S1, S2)

end if
end for



We verify that this approach reduces the number of data cache
stalls. The second optimization concerns the UNION-FIND
data structure. It is encoded separately thanks to an arrayF
of size |I|, whereF (p) stores the address of the father of
p. Each region is thus encoded by a tree using such father-
child relationships. The alternative solution, which consists in
storing both the labels and the data in the same structure,
would induce the storage of useless data within the cache
during the FIND operations.

We experimented these optimizations on the TriMedia
processor [14]. The cache memory of this particular TriMedia
is 128 KByte, 4 way associative, with block of128 Byte.
The replacement algorithm used isLRU . We get a reduction
of 3 MCycles per frame. Notice that these optimizations are
useful for many segmentation algorithms that use the UNION-
FIND data structure.

There is an important amount of DLP (data level paral-
lelism) in our algorithm (computation of edge’s weight, frame
difference, classification of pixels inCDM ). This allows to
increase the throughput (i.e. amount of pixels processed per
unit time), by processing data in parallel when it is possible.
The core of TriMedia is a VLIW architecture with 5 issues
slots. Each slot has some functional unit, and each functional
unit could process 4 bytes in parallel (SIMD mode). The ILP
(Instruction Level Parallelism) is extracted by the compiler,
while the DLP could be exploited through the use of custom
operations, loop unrolling, and grafting. So we use these
optimizations to exploit the DLP available in our algorithm.

V. EXPERIMENTAL RESULTS

In this section we present experimental results of our algo-
rithm run on TriMedia with many very knownCIF sequences.
The table I shows the following measures:

1) We use a classical measure to evaluate time consistency.
Given the segmentation of previous frameSEG(n− 1)
and the segmentation of the current oneSEG(n), we
find the correspondence between regions inSEG(n −
1) andSEG(n). Two regions(Si,n−1 ∈ SEG(n − 1)
andSj,n ∈ SEG(n) correspond if they have the most
overlapping areaOverlap(i, j) = |Si,n−1 ∩ Sj,n|. We
sum the number of pixels in the overlapping areas of
corresponding regions over the image. The consistency
measure is the percentage of this number to the size of
the image.

2) We give the number of Mcycles the algorithm takes
on TriMedia. The exploitation of theCDM reduces
the computational cost. This reduction depends on the
correlation between two successive frames. Since the
execution of spatial segmentation withoutCDM is the
critical case of our algorithm, we show the number of
Mcycles corresponding to this critical case.

When enforcing consistency through theCDM , time con-
sistency is higher, and visually, segmentation is more stable
from frame to frame and still fit very well regions boundaries
as shown in Fig.2. With a450MHz TriMedia, we are able to

TABLE I

EXPERIMENTAL MEASURES OF OUR ALGORITHM

Sequence Akiyo Tennis Table Paris Mobile
Time Consistency
(without CDM ) 0.88 0.73 0.89 0.84

Time Consistency
(with CDM ) 0.98 0.92 0.97 0.92

Mcycles per frame
(without CDM ) 15.68 15.84 16.59 16.20

process more than25 frames per second, which is sufficient
for real-time execution.

VI. CONCLUSION

Designing usable algorithms for video processing requires
low computational methods. Directed by this constraint,
we propose here an efficient time consistent algorithm for
video segmentation. This method gives accurate results with
high temporal consistency. It is based on a statistical spatial
segmentation and on the computation of an improved change
detection mask. It runs in real-time on only one processor.
Experimental results demonstrate the applicability of this
method.
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