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Abstract—In this paper, we propose a time consistent video order of merging. This method gives good results for spatial
segmentation algorithm designed for real-time implementation. segmentation with few parameters to be set. We use motion
Our segmentation algorithm is based on a region merging process information to improve the temporal consistency. Motion

that combines both spatial and motion information. The spatial timation i | bottl K f I-ti imol fi
segmentation takes benefit of an adaptive decision rule and a €stimation is a real bottleneck for real-time implemeuwtati

specific order of merging. Our method has proven to be efficient SO We rather propose to combine an improved Change De-
for the segmentation of natural images (flat or textured regiony tection Mask C'DM) with spatial segmentation in order to

with few parameters to be set. Temporal consistency of the ijmprove the temporal consistency of our segmentation. By
segmentatlon IS ensureq by |ncorporat|ng mothn |nf0rmat|0r! making Comparisons both at a pixel level and at a region
through the use of an improved change detection mask. This level, we obtain an efficient algorithm for video segmeitati
mask is designed using both illumination differences between ! . 4 :
frames, and region segmentation of the previous frame. By at @ low computational cost. Our method runs in real-time
considering both pixel and region levels, we obtain a particularly on the TriMedia processor for CIF image sequences. More-
efficient algorithm at a low computational cost, allowing its over, experimental results conducted on real video se@senc
!mplementatlon in real-time on the TriMedia processor for CIF demonstrate a good temporal consistency.
IMage sequences. The paper is organized as follows. The spatial segmentation
method is detailed in section Il. The temporal consistency
improvement is detailed in section Ill. In section IV, we
Segmentation of videos into homogeneous regions is discuss the implementation of the algorithm. Experimental
important issue for many video applications such as regioresults and measures are given in section V.
based motion estimation, image enhancement (since differe
processing may be applied for different regions), 2D to 3D IIl. SPATIAL SEGMENTATION
conversion (segmentation can be used for depth estimation)Let us consider an imagg, the notation|.| represents the
These applications require two main features from segmeng&rdinal and/(p, n) the pixel intensity at positiop = (x, )"
tion: accuracy of regions boundaries in the spatial segarenin the framen.
tion and temporal stability of the segmentation from frame t A region-based segmentation problem aims at finding
frame. Spatial segmentation can be classified into two madnrelevant partition of the image domain im regions
categories, namely contour-based and region-based nsethdé1, Sz, .., Sm }. The algorithm of segmentation detailed here
In the first category, edges are computed and conneck&es an implicit encoding of the initial connected planar
components are extracted [1]. The main drawback of such $@mpling grid of pixels. It combines a specific order of fusio
approach is that the computation of the gradient is prone Wth an adaptive threshold. Both steps are detailed thtereaf
large errors especially in noisy images. Moreover we canngt ORDER OF MERGING
take benefit of statistical properties of the consideredgi&na . . ) _
regions. The second category of methods, i.e. region-bised 1€ order of merging is built on the edges weights as in

less sensitive to noise. We are interested here in a botpmlgl [10]. The idea behind this order of merging is to merge

segmentation approach. In these methods, two importantspoifi'St Similar regions rather than different ones. An edge
flgnotes a couple of pixelg, p’) in a 4-connectivity scheme.

must be considered: the first one is the order of merging a - G _ ] -

the second one is the similarity criterion, see for exampje [ | "€ Similarity between pixels is measured by computing the

[3], [4]. When dealing with video segmentation, the tempor4liStance between two pixel colors as follows:

dimension must be added. Various approaches have been , 2

tested. Some authors consider video data as a volume [5], w(p,p'sn) = > Upn)—I,n)" @)

while others take benefit of motion information, such as scen fe(x.uvy

change detection or motion field [6], [7]. Other works progpos For our algorithm, we consider tHEUV color space, since

the object tracking [8] which is beyond the topic of this papethis is the native color space of CIF sequences. The colmespa
In this paper, we propose a spatial segmentation that takKésa*b*) provides partitions with a little greater subjective

benefit of both an adaptive decision rule and an originguality but with a higher computational cost.

I. INTRODUCTION




The edges are sorted in increasing order of their weights awthen testing the deviation between two adjacent regions
corresponding couples of pixels are processed in this doder S;, .53, we consider the following vector of random variables:
merging. As far as the implementation is concerned, the émal . . . "
is only scanned twice for this sorting: One time, in order t s Xn) = (@) I Bs) B (1), B (P1s2)
compute the number of edges with same weights and stevkerel;(p;) is the intensity of thg*" pixel of S; correspond-
this number in a table (edge weight histogram). Second, img to the observation of the random variatifg(p;). In this
order to store each edge in the memory part correspondingctise, the size of the random vectonis= |S;|+|S2|. In order
its weight. to apply Theorem 2.1, we then choogéx) = (51— S2).

By inversion of the theorem, we have with a probability of at
B. THE CRITERION OF MERGING

leastl —6 (0 < <1):

Given two regionsS; and S,, we want to know if these
two regions have to be merged. A similarity criterion betwee |$ST ~S)—E (Si o 5*2) | <g./Q (1 + 1)
the two regions must then be chosen and evaluated. Couple o - |S1] |82
adjacent regions will be considered as similar and merged i 1 9 = —=
their merging criterion is below a given threshold. The ckoi wLereQ = 3 *In(5), and E(S) is the expected value &.
of the corresponding threshold is often difficult. In thigppg If S and S5, bglong to the same region T, the expectation
we propose an adaptive threshold for a similarity criterioff (51 — 52) will be null and the predicate follows.
based on the means of the intensities of these two regioiis. TB. SEGMENTATION ALGORITHM
adaptive threshold is justified using statistical inedi@ias oy spatial segmentation could be divided in three steps. In
in [9] but we here propose a simpler statistical interpietat e first one, we compute the weights of edges and their his-
of the image which leads to a more adapted criterion f@§gram. In the second step we sort edges in an increasing way
real-ime implementation. Such a predicate gives very gogf their weights. In the last step we merge pixels or regions

segmentation results as shown in Fig.2. N connected by edges following their order. The implemeotati
1) Merging predicate:The mean of the intensities of theys tnis |ast step is given in section IV.

region S; is computed as follows:

S [1l. TIME CONSISTENCY IMPROVEMENT

T 1 Z I( In video segmentation, the quality of the spatial segmen-
T — i\DPk» TL) . . . . . .
|S;] = tation is not the only requirement, time consistency is a@so
very important one. If in two successive frames, one region
whereI;(py, n) is the intensity of the:*" pixel of regionS;. is segmented very differently because of noise, occlusion o
The merging predicate is then : deocclusion, results of segmentation would be very difficul
P RY 2/ 1 1 to exploit for any application like image enhancement, dept
P(S1,85) = {tme It (5= %)" < Q9" (s7+ m1)  estimation and motion estimation. Many works, see for ex-
ample [7], use motion estimation to improve time consisgenc
. . ) in video segmentation. However, motion estimation is a real
where g is the maximum level off (g = 255 for grayscale \qjeneck for real-time implementation and is even somes
images). The paramet€y allows to tune the coarseness of th,\ .aliable. In this paper, we combine an improved Change

sggmentation. In the experiments, we chogse= 2 which  petection Mask ¢ D M) with spatial segmentation in order to
gives good results for CIF (Common Input Format352 X jynrove the temporal consistency of our segmentation.

288) images. _ . The CDM is designed using both illumination differences
. 2) Ste}t|st|cal_Justn‘lcatlon of the predlgate(SIassmaIIy, the between frames and region segmentation of the previous
image is considered to be an observation of a perfect imageme e first detect changing pixels using the frame dif-
I* and then pixel intensities are considered as obserTvati‘cms Perence. Then, we take benefit of the region segmentation of
vector of random variable (r.v.) noteXi = (X1, .., X)". The he previous frame in order to classify the pixels not onlpat
merging predicate is based on the use of statistical in@®sal ixe| level but also at a region level. Given the current feam
and especially the McDiarmid inequality as in [9]. I(:,n) and the previous oné(:,n — 1), the frame difference
Theprem 2.1: (The independent bounded dlf_ference 'PD is given by FD(p) = |I(p,n) — I(p,n — 1)|. Classically,
equality [11]) LetX = (X, X5,.., X,,) be a family ofn g p is thresholded in order to distinguish changing pixels from
independent r.v. withX;, taking values ina seAk for each 5ise. A pixelp, with L(p) = 1 is denoted a changing pixel.
k. Suppose that th? real valued function f defmed]/_{)g.\Ak We then use the previous segmentation in order to convert the
satisfies f(z) — f(z')| < ex whenever vectors anda” differ o pas from the pixel level to a region level which is more

only in thek" coordinate. LetF(f(X)) be the expected value gjiaple. For each region in the previous segmentafignwe
of the r.v. f(X), then for anyr > 0, computer(S;) which represents the ratio of changing pixels in
the regionsS;. We haver(S;) = % whereN; changing
Pr(|f(X) — E(f(X))| > 7) < 2exp (27'2/ Z«i) (3) is the number of changing pixels in the regiSp Pixels are
k then classified using three categories:

false otherwise



@) (b) © (d) -
Fig. 1. (a) Segmentation of a frame n-1. (b) CDM computed from the “

segmentation of the frame n-1 and frame difference between frathand
frame n. (c) Segmentation of the frame n with@aiD M. (d) Segmentation
of the frame n withCD M.

0 if (7(Si) < tra). s el
CDM(p) =1 if (r(S:) > trs) and (L(p) =1).  (4) N Sl
2 if ((S:) > tra) and (L(p) = 0). el s Ag
wheretr, is a positive constant. In the experiments, we take , _
tro = 0.01 (i.e. a region is a moving region when it containg'%: dz. A':?S“';f] do&siglme“ta“on of frames from the sequertesis,
at least1% of moving pixels). The value of the threshold is riage, Ao oe
chosen so that we don’t miss any moving region. P——
Every pixel of regions qualified as static are labelled using — curen o) cigecumigh ang || || MeERE | O
CDM (p) = 0. The two other labels concern pixels within it bitogram iges loop
moving regions. Depending on the value of the frame differ- TCDM
ence, the pixel is qualified as a changing o6&\ (p) = 1) Change detedion
or a no changing one({D M (p) = 2). Such a classification Sy rmsk computing |
is then used to segment the current frame. Firstly, static
regions are kept as they were segmented in the previous
frame. Secondly we apply a connected component labelling
(CCL) algorithm [12] to extract connected component of
pixels with CDM (p) = 2. This second step builds seeds o ) ) ) ]
from the segmentation of the previous frame. These sed$@ disjoint regions into one region, and the FIND function
link the current segmentation to the previous one in a tinjgentifies the regions a certain pixel belongs to.
consistent way. Thirdly, we apply the spatial segmentation/APart from this merging loop, all other functions access
only on edges(p,p’) connecting changing pixels, and thos@iXels data in a predictable way (for example from top to
connecting changing pixels with seeds built in the secoepl. st Pottom left to right). The cache memory benefits from this reg
We show here an example of segmentation results with ai@'ity, since it exploits spatial and temporal locality ddta,
without time consistency in Fig.1(d) and 1(c). In Fig.l(b)","”d consequently causes less cache misses. In the merging
the different labels (i.e. values af'DM) are given using loop, the UNION-FIND data structure is unpredictable, and

three values of intensity (black faf' DM (p) = 0, gray for consequently causes an importal_wt dat:_i cache stalls_. Toergdu
CDM (p) = 2 and white forCDM (p) = 1). the data cache stalls cycles, we investigate two optinuaafi

In section V, we propose the computation of an objectiy¥hich are independent of the cache memory type (size,
measure for temporal consistency. The results show a r8§PPing, block size, replacement algorithm...).
improvement for time consistency for different sequences.The fl_rst o_ptlmlza_t|0n concerns the organization qf the data
Moreover, the way we exploit th€ DM decreases also theEach pixel in the image could be a representative of one
amount of computation of the algorithm since the edgdgdion so the data are stored with an artdyof size ||,
in static area are not reconsidered, and those linking Héere each elemend(p) stores the mean colorg’,U, V)
changing pixels in moving area are simply processed byagd the cardinalS| of the region whose representativeps
CCL algorithm.

h 4

Fig. 3. The general diagram of video segmentation

IV. IMPLEMENTATION CONSIDERATIONS A|gor|thm 1 The merging |Oop

In this section, we propose to describe optimizations that for i:=1 tO.tJ}Ye do
have been made to allow a real time treatment. The whole  Read thei"™™ edge:(p1,p2);

algorithm of video segmentation is summarized in figure 3.  S1 = FIND(p1);

The algorithml describes more particularly the merging loop Sy = FIND(p2);

which is the critical part for a real time implementation.eTh if P(S1,S52) =True then
term N, represents the number of edges within the image UNION(S1, S2)

I in the 4-connectivity. In the merging process, we use the  end if
UNION-FIND data structure [13]. The UNION function fuses___end for




TABLE |
EXPERIMENTAL MEASURES OF OUR ALGORITHM
We verify that this approach reduces the number of data cache

stalls. The second optimization concerns the UNION-FIND Sequence AKiyo || Tennis Table]| Paris || Mobile

data structure. It is encoded separately thanks to an dfray | Time Consistency

of size |I|, where F(p) stores the address of the father of | {(WithoutCDM) || 0.88 0.73 0.89 || 084
. . . Time Consistency

p. Each region is thus encoded by a tree using such father- (with cpm) 0.98 0.92 0.97 0.92

child relationships. The alternative solution, which detssin Mcycles per frame

storing both the labels and the data in the same structure, WithoutCDM) || 15.68 15.84 16.59 || 16.20

would induce the storage of useless data within the cach
during the FIND operations. b

We experimented these optimizations on the TriMed|fr§\)r real-time execution.
VI. CONCLUSION

processor [14]. The cache memory of this particular TriNedi
is 128 K Byte, 4 way associative, with block of28 Byte. Designing usable algorithms for video processing requires
The replacement algorithm used isRU. We get a reduction o computational methods. Directed by this constraint,
of 3 MCycles per frame. Notice that these optimizations arge propose here an efficient time consistent algorithm for
useful for many segmentation algorithms that use the UNIONideo segmentation. This method gives accurate results wit
FIND data structure. high temporal consistency. It is based on a statisticalialpat
There is an important amount of DLP (data level parakegmentation and on the computation of an improved change
lelism) in our algorithm (computation of edge’s weight,ffra  detection mask. It runs in real-time on only one processor.

e . -
rocess more tha5 frames per second, which is sufficient

difference, classification of pixels i’ DM). This allows to  Experimental results demonstrate the applicability ofs thi
increase the throughput (i.e. amount of pixels processed pgethod.

unit time), by processing data in parallel when it is possibl
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unit could process 4 bytes in parallel (SIMD mode). The ILP
(Instruction Level Parallelism) is extracted by the corepil
while the DLP could be exploited through the use of custonft]
operations, loop unrolling, and grafting. So we use these
optimizations to exploit the DLP available in our algorithm [2]

V. EXPERIMENTAL RESULTS

. . : &3]
In this section we present experimental results of our algo-
rithm run on TriMedia with many very know@'I F' sequences.

The table | shows the following measures: [4]

1) We use a classical measure to evaluate time consistency.

Given the segmentation of previous fra&G(n —1) [
and the segmentation of the current afi€G(n), we
find the correspondence between regionsS®G(n —  [6]

1) and SEG(n). Two regions(S; ,—1 € SEG(n — 1)
andS;, € SEG(n) correspond if they have the most
overlapping aredOverlap(i,j) = |Sin-1 N S;jn|. We [7]
sum the number of pixels in the overlapping areas of
corresponding regions over the image. The consistenqg]
measure is the percentage of this number to the size of
the image.

We give the number of Mcycles the algorithm takes[g]
on TriMedia. The exploitation of the&’ DM reduces

the computational cost. This reduction depends on tHé!
correlation between two successive frames. Since the
execution of spatial segmentation withallD M is the [11]
critical case of our algorithm, we show the number of
Mcycles corresponding to this critical case. [12]

When enforcing consistency through tbe&D M, time con-
sistency is higher, and visually, segmentation is morelestalm]
from frame to frame and still fit very well regions boundaries
as shown in Fig.2. With 450 M H z TriMedia, we are able to [14]

2)
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