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Abstract  

This short account summarizes recent results obtained in the coordination chemistry of 

phosphinines and emphasizes their analogy with CO ligands. Reduced complexes can be 

easily assembled through the reaction of reduced 2,2’-biphosphinine dianions with transition 

metal fragments. Theoretical calculations were performed to establish the oxidation state of 

the metal in these complexes. Though many reduced complexes are available, phosphinines 

proved to be too sensitive toward nucleophiles to be used as efficient ligands in most catalytic 

processes. However, the high electrophilicity of the phosphorus atom can be exploited to 

synthesize phosphacylohexadienyl anions which exhibit a surprising coordination chemistry. 

When phosphino sulfide groups are incorporated as ancillary tridentate anionic SPS ligands 

can be easily produced. These ligands can bind different transition metal fragments such as 

M-X (M = group 10 metal, X = halogen), Rh-L (L = 2 electron donor ligand), Cu-X and Au-X 

(X = halogen). Palladium(II) complexes proved to be active catalyst in the Miyaura cross-

coupling reaction. Bidentate anionic PS ligands were also synthesized following a similar 

approach. Their Pd(II) (allyl) derivatives showed a very good activity in the Suzuki catalyzed 

cross-coupling process that allows the synthesis of biphenyl derivatives through the reaction 

of phenylboronic acid with bromoarenes. 

 

Keywords: Reduction, Catalysis, Complexes, Phosphorus Heterocycles, Macrocycles. 

 
I. Introduction 
 
 The “analogy” that exists between carbon and phosphorus in their low coordinated 

states slowly emerged as a significant field of investigation in the modern chemistry of main 

group elements.[1] Though, this analogy is limited, it clearly appears that molecules which 

feature doubly and triply bonded carbon-phosphorus systems behave as their carbon 
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counterparts in some organic transformations. Among numerous reactions, one of the most 

illustrative examples is given by the phospha-Wittig process that allows the formation of 

phosphaalkenes from the reaction phosphoranylidenphosphines 1 or their Horner-Emmons 

equivalents 2 with aldehydes (Scheme 1).[2] 
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 The coordinative abilities of doubly or triply bonded systems also attracted a lot of 

attention since the discovery of the first phosphametallocene by Mathey and co-workers in 

1975.[3] Since then, a considerable number of structures involving π-cordination of P=C or 

P≡C based systems have been reported and the domain rapidly expanded over the last ten 

years. Significant applications have also emerged especially in the area of homogeneous 

catalysis using complexes of aromatic phosphorus heterocycles such as phospholide 

anions.[4]  

All these developments have found their origin in the complementary nature of carbon 

and phosphorus. Indeed, though at first sight phosphorus and carbon could be considered as 

very different elements with regards to their coordination states, both elements exhibit a 

remarkable combination of σ and π electronegativity. In fact, even if phosphorus is less 

electronegative than carbon, its π-electronegativity was shown to be more important than that 

of carbon especially when both elements are involved in a doubly or triply bonded system. 

This specific electronic situation implies that ligands incorporating P=C systems present a 

close analogy with strong π-acceptor ligands such as carbonyl. Indeed, a simple molecular 

orbital diagram clearly shows that the LUMO of P=C ligands is closer to that of CO than to 

that of classical N=C based ligands. The main orbital coefficient is localized on the element 

which is directly bound to the metal. Obviously, P=C systems exhibit a weaker π-accepting 
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capacity since they essentially behave as monodimesional π-acceptor ligands (CO being 

considered as a bi-dimensional acceptor ligand because of its two available orthogonal π*-

orbitals) (Scheme 2). 

 

P C N CC O

Scheme 2  
II. Results and discussion 

II.1) Reduced phosphinine transition metal complexes. 

 The analogy between P=C systems and the carbonyl ligand has been partially explored 

and exploited so far. Pioneering works were achieved by the group of C. Elschenbroich and 

our group over the last decade. The discovery of the first homoleptic phosphinine complexes 

3-5 (Ni,[5] Fe,[6] Cr[7]) can really be considered as the starting point of this new facet of the 

“phosphorus-carbon analogy” (Scheme 3). 
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 Reasoning that the strong π-accepting capacity of ligand such as phosphinines could 

be employed to stabilize transition metal complexes in unusual negative oxidation states, we 

early launched a program aimed at developing the use of bi and polydentate ligands featuring 

phosphinines as binding sites.[8] One of the most famous ligand to be reported in this series 

was the 2,2’-biphosphinines 6 whose synthesis was achieved in 1991.[9] As expected from 

theoretical and electrochemical data, these bidentate ligands markedly differ from their 

nitrogen counterparts, the ubiquitous 2,2’-bipyridines. Whereas 2,2’-bipyridine are well 

adapted to the coordination of electron-deficient metal centers, 2,2’-biphosphinines clearly 

favor the coordination of very electron rich or electron excessive metal centers like CO. 
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Definitive evidences were given by the synthesis of a series of negatively charged 

biphosphinine complexes of different metals: dianionic homoleptic complexes of group 4 

metals 7 were synthesized,[10] monoanionic complexes of group 7 (M = Mn, Re) 8,[11] 

dianionic complexes of group 8 (M = Fe, Ru) 9,[12] monoanionic complexes of group 9 

metals (M = Co, Rh) 10,[13] and a 19 electron nickel(-1) complex 11 was characterized by 

EPR spectroscopy (Scheme 4).[14] These complexes were obtained using one of the two 

following methods : a first conventional method proceeds via reduction of preformed 

complexes with the appropriate number of electrons; a second approach relies on the prior 

synthesis of a mono radical anion of the biphosphinine or its dianion followed by 

complexation.[15] This last method, which had already proven to be very efficient in the 

coordination chemistry of sulfur and nitrogen ligands, could be extended to phosphorus and 

provided an access to a wide range of reduced complexes. 
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The existence of such reduced species obviously raises the question of the formal 

oxidation state of the metal. An interesting example was provided by the synthesis of formally 

d10 monoanionic (Co(-1) , Rh(-1)) and dianionic (Ru(-2)) complexes with two biphosphinine 

ligands. Group 9 complexes adopt a distorted tetrahedral geometry in the solid state and group 

8 complex adopts a square planar geometry. Recent theoretical studies [16] have shown that 

this particular situation is mainly due to the strong π-accepting properties of the biphosphinine 

ligands. It results in a small energy difference between the tetrahedral conformation (expected 

for a d10-ML4 complex) and the square planar conformation (expected for a d8
-ML4 complex). 
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In the absence of electrostatic interactions with the counter cation, a distorted tetrahedral 

geometry was actually found for the group 9 complexes. These calculations also revealed that 

the weak geometrical preference found for the tetrahedral conformation over the square planar 

one in the dianionic Ru(-2) complex (3 kcal.mol-1) is reversed when interactions with cations 

occurred. In agreement with the experimental observation, calculations on the sodium 

complex actually show that the square planar complex 12 is more stable than its tetrahedral 

isomer 13, the computed energy difference being equal to 19.5 kcal mol-1 (Scheme 5). 
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 Studies were not limited to biphosphinines and macrocyclic derivatives have also 

found interesting applications in the stabilization of electron rich metal centers. Thus, it has 

been shown that a silacalix-[4]-macrocycle could encapsulate a gold(I) center to afford 

complex 14. Most interestingly, reduction of this complex provided a monomeric gold(0) 15 

complex which proved to be stable up to 243 K. The fact that Au-CO decomposes at 70 K 

clearly suggests that phosphinine-based macrocycles can be considered as phosphorus 

equivalent of CO matrices.[17] Similarly, it has been showed that Rh(I) macrocyclic 

derivatives could be reversibly reduced to afford the corresponding Rh(0) and Rh(-1) 

complexes.[18] 
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II.2) Phosphinines in homogeneous catalysis. 

 Homogeneous catalysis is another important field where phosphorus analogs of the 

carbonyl ligand may find interesting applications. Though low coordinated phosphorus 

ligands such as kinetically stabilized 1,4-phosphabutadienes [19] and phosphaferrocenes 

already proved to be valuable systems,[20] only a little is known about the use of 

phosphinines. The most significant report was made by the group of Breit in collaboration 

with BASF in the hydroformylation of olefins process. Functional derivatives of the 2,4,6 

triphenylphosphinines such as 16 exhibited an interesting activity in the hydroformylation of 

styrene and cyclohexene.[21] Most importantly, in more drastic conditions, they also exhibit a 

significant activity in the hydroformylation of tetramethylethylene to afford 2,3-

dimethylbutanal through an isomerization process (Scheme 7) 
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 Unfortunately, if we exclude their use as π-ligands in the iron catalyzed 

cyclotrimerization of alkynes and nitriles to give pyridines,[22] phosphinines, once bound to a 

metal center, proved to be too sensitive toward nucleophilic attacks (like CO based analogous 

complexes) to be considered as potential ligands in metal-catalyzed processes involving 

nucleophilic reagents or bases. A representative example is provided by the hydrolysis of a 

[Pt(biphosphinine)ClMe] complex 17 which occurs when a dichloromethane solution of the 

complex is exposed to the presence of traces of water to afford compound 18 (Scheme 8). 

Interestingly the addition occurs onto the ring which is trans to the less electron donating 

ligand.[23]  
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II.3) Phosphacyclohexadienyl anions and their related ligands. 

 Exploiting the high electrophilicity of the phosphorus atom allowed us to circumvent 

this limitation. Thus phosphacyclohexadienyl anions 19 which are readily obtained through 

the reaction of nucleophiles with phosphinines exhibit a surprising reactivity towards metal 

fragments allowing the synthesis of unusual complexes. Four lithium complexes of these 

anions, such as complex 20, were characterized by X-ray crystallography.[24] When no 

cryptand is used, coordination of the lithium occurs through the π-system of the ring. In good 

agreement with this result, DFT calculations showed the negative charge to be mostly 

localized on the α-carbon atoms of these anions. An analysis of the charge distribution 

revealed that the electronic structure of these anions is closer to that of classical pentadienyl 

anions than to that of their analogs, the cyclohexadienyl anions. Interestingly a Natural Bond 

Orbital Analysis (NBO) and the analysis of Wyberg bond indices revealed that no 

delocalization takes place between the carbocyclic part of the ring and the phosphorus atom. 

In such systems, the hydridization of the phosphorus atom lone pair is close to that of classical 

tertiary phosphines (Scheme 9).[24] 
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 Reactions of these anions with transition metal precursors clearly depend on both the 

nature of the metal fragment and the substitution scheme of the ring. Whereas [MLnX] metal 

fragments react with anions to yield π-complexes such as the rhodium derivative 21,[25] 

reaction with [MLnX2] metal fragments (group 10 metals) yield η2-complexes such as 22 in 

which coordination occurs through the P-C bond (Scheme 10).[26] The solid state structure of 

22 is not wholly retained in solution. Dynamic behavior of the [M(PPh3)Cl] (M = Pd, Pt) 
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fragment is apparent from the systematic changes observed in the variable temperature 1H 

NMR data. DFT calculations on model complexes were performed to determine the structure 

of the transition state 23 in the case of the palladium complex. As can be seen in scheme 10, 

this transition state involves a η1-coordination of the [Pd(PPh3)Cl] fragment onto the 

phosphorus atom, the interconversion between the two enantiomeric complexes resulting from 

a simple rotation of the fragment (or the ligand) around the Pd-P bond axis in 23. A good 

agreement was found between theoretical (30.2 kJ.mol-1) experimental (43.7 kJ.mol-1) ∆G# 

values.[26] 
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 Interestingly, the presence of ancillary peripheral ligands at the α-carbon atoms of the 

ring was found to be determinant in the synthesis of η1-P coordinated complexes. Thus, 

reaction of phosphinine 24 with n-BuLi afforded anion 25 which in turn was trapped with 

[M(COD)Cl2] (M = Pd, Pt) to afford the corresponding complexes 26, 27 in which the anion 

behaves as a tridentate ligand. These group 10 complexes were found to be remarkably 

resistant toward moisture and air oxidation (Scheme 11).[27-29] 
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 The preference for η1-coordination can be easily rationalized by considering a simple 

perturbation diagram of these phosphacyclohexadienyl anions MOs. In such systems, the 

HOMO is a π-orbital featuring important coefficient on the Cα and Cγ carbon atom and the 

HOMO-1 mainly describes the lone pair at phosphorus. Introduction of two ancillary groups 

possessing lone pairs result in a combination of these two orbitals with the in-phase 

combination of the two lone pairs. This results in a repulsive interaction that strongly 

destabilizes the HOMO-1 (more important overlap). Therefore, in such tridentate SPS anionic 

ligands, the HOMO features an important contribution of the lone pair at phosphorus as well 

as a significant participation of the two lone pairs at the ligand this favoring σ-coordination at 

phosphorus (Scheme 12). 
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 Further studies showed that other synthetic strategies could be employed to synthesize 

group 10 square planar complexes. Thus, reaction of phosphinine 24 with [Pd(COD)Cl2] 

affords the chloro-P chloropalladium complex 28 which can in turn be functionalized at 

phosphorus through nucleophilic substitution.[27] Another interesting method involves the 

oxidative addition of a P-Cl bond of a λ5-P-dichloro-phosphinine 29 onto a Pd(0) fragment to 

give complex 30.[28] Most surprisingly, even P-oxide derivatives of 1,2-dihydrophosphinines 

such as 31 proved to be valuable precursors of tridentate SPS–based complexes such as 32 

featuring a central P-OH group as ligand (Scheme 13). 
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 All these σ-complexes can be regarded either as a λ5-metallated phosphinine (form I) 

or as a classical σ-complex of a phosphacyclohexadienyl anion (form II). Though both forms 

very likely contribute in the bonding, preliminary calculations suggest that form II is probably 

predominant (Scheme 14). DFT calculations and charge decomposition analysis (CDA) 

suggest that a delocalization takes place within the carbocyclic part of the ligand and that the 

central phosphorus atom behaves as a classical tertiary phosphorus atom.[28] 
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 Other sigma complexes were prepared according to the same synthetic strategy. The 

most significant results were obtained in studying the chemistry of group 9 metals. Thus, 

reaction of anion 33 with the [Rh(COD)Cl]2 dimer yielded the very stable 18 electron 

complex 34 whose structure remains unknown. However, displacement of the COD ligand 

from 34 afforded the highly reactive square planar 16 electron complex 35 which was 

structurally characterized. Complex 35 proved to be highly reactive toward small molecules 

such as O2, CO2, CS2 and SO2. Whereas reaction with O2, CO2 and CS2 yielded trigonal 

bipyramidal Rh(III) complexes in which the SPS ligand caps one face of the bipyramid such 

as in the η2-O2 complex 36, reaction with SO2 afforded a Rh(I) complex 37 which adopts a 

pyramidal geometry. Interestingly, in all cases, attack of the incoming ligand has taken place 

on the syn face of the complex (Scheme 15).[30] Calculations are currently underway in our 

laboratories to determine the origin of this facial discrimination. 
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II.2) Mixed SP and SPS ligands and their complexes in catalysis. 

 The flexibility of the SPS ligand was also evidenced in a recent study dealing with the 

coordination chemistry of Cu(I) and Au(I) derivatives. An insoluble oligomeric copper 

complex 38 was obtained by reacting the anionic ligand 34 with CuI in THF at room 

temperature. Reaction of 38 with two electron-donor ligands such as 2,6-

dimethylphenylisocyanide, t-butylisocyanide, PPh3, P(OPh)3 and pyridine afforded the 

expected tetrahedral Cu(I) complexes 39 in which the ligand caps three binding sites (Scheme 

16).[31] 
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 The catalytic activity of palladium (II) complexes of these SPS ligands was tested in 

different processes. In the Heck-coupling between methyl-acrylate and iodobenzene, methyl 

trans-cinnamate was produced in a quantitative yield with a TON of 10 000. A quite 

promising result was obtained in the Miyaura cross-coupling reaction which allows the 

formation of boronic esters from halogenoarenes and pinacolborane.[27] Whereas no reaction 

was observed with arylchlorides, catalyst 26 proved to be sufficiently reactive to convert iodo 

and bromo derivatives in dioxane at reflux in good yields. With aryliodides TON up to 76 500 

were recorded (Scheme 17).  
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 Importantly, we recently found that bidentate PS ligands could also be produced in a 

similar way by reacting alkyllithium derivatives with phosphinine 40. Here again, 

coordination occurs through the phosphorus atom lone pair the sulfur ligand serving as a 

second binding site. Ru(II) cymene 41 and the Pd(II) allyl 42 complexes were easily produced 
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and characterized by X-ray crystallography. Though the ruthenium complex exhibited a 

moderate activity in the transfer hydrogenation of ketones using isopropanol as a proton 

source, complex 42 showed an interesting activity in the Suzuki coupling process that 

furnishes functional biphenyl derivatives through the reaction of phenylboronic acid with 

bromoarenes (TON up to 799 000 with 4-bromoacetophenone as substrate) (Scheme 18). 
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In conclusion, it appears that, despite their high sensitivity which usually precludes 

their use as ligands in catalysis, phosphinines proved to be a valuable source of new 

heterocyclic ligands and complexes. Further studies will now focus on the systematic study of 

the binding properties of these new bidentate SP and tridentate SPS ligands in coordination 

chemistry and catalysis.  
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