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CONVERGENCE OF A FINITE VOLUME SCHEME FOR

COAGULATION-FRAGMENTATION EQUATIONS

JEAN-PIERRE BOURGADE AND FRANCIS FILBET

Abstract. This paper is devoted to the analysis of a numerical scheme for the coagu-
lation and fragmentation equation. A time explicit finite volume scheme is developed,
based on a conservative formulation of the equation. It is shown to converge under a sta-
bility condition on the time step, while a first order rate of convergence is established and
an explicit error estimate is given. Finally, several numerical simulations are performed
to investigate the gelation phenomenon and the long time behavior of the solution.
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1. Introduction

Coagulation and fragmentation processes arise in the dynamics of cluster growth and
describe the mechanisms by which clusters can coalesce to form larger clusters or break
apart into smaller pieces. In the simplest coagulation-fragmentation models the clusters
are usually assumed to be fully identified by their size (or volume, or number of particles).
The coagulation-fragmentation models we consider in this paper describe the time evolu-
tion of the cluster size distribution as the system of clusters undergoes binary coagulation
and binary fragmentation events. More precisely, denoting by Cx the clusters of size x
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with x ∈ R
+ = (0,∞), the basic reactions taken into account herein are

(1) Cx + Cx′

a(x, x′)

−→
Cx+x′ , (binary coagulation)

and

(2) Cx
b(x − x′, x′)

−→
Cx−x′ + Cx′ , (binary fragmentation),

where a and b denote the coagulation and fragmentation rates respectively, and are as-
sumed to depend only on the size of the clusters involved in these reactions.

The dynamics of the density function f = f(t, x) ≥ 0 of particles with mass x ∈ R
+,

at time t ≥ 0, subject to coagulation and fragmentation phenomena is governed by the
following equation

(3)
∂f

∂t
= Qc(f) −Qf(f),

where the coagulation and fragmentation terms are respectively defined by

Qc(f)(x) =
1

2

∫ x

0
a(x′, x − x′) f(x′) f(x − x′) dx′ −

∫ ∞

0
a(x, x′) f(x) f(x′) dx′

Qf(f)(x) =
1

2

∫ x

0
b(x′, x − x′) dx′ f(x) −

∫ ∞

0
b(x, x′) f(x + x′) dx′.

The coagulation coefficient, a = a(x, x′), characterizes the rate at which the coalescence of
two particles with respective volumes x and x′ produces a particle of volume x+x′, whereas
the fragmentation coefficient, b = b(x, x′), represents the rate at which the fragmentation
of one particle with volume x + x′ produces two particles of volume x and x′. Both
coefficients a and b are nonnegative symmetric functions and

(4) a, b ∈ L∞
loc

(

R
+ × R

+
)

.

For symmetric kernels, we observe that during the microscopic coagulation and frag-
mentation processes, as depicted in equations (1)-(2), the number of particles varies with
time while the total mass of particles is conserved.

In terms of f , the total number of particles and the total mass of particles at time t ≥ 0
are respectively given by

M0(t) :=

∫

R+

f(t, x) dx, M1(t) :=

∫

R+

x f(t, x) dx.

For some coefficients a and b, the total mass might not remain constant throughout time
evolution. More precisely, if a increases sufficiently rapidly compared to the fragmentation
kernel b for large x, x′, then the larger the particles are, the faster they merge. Then a
runaway growth takes place, producing particles with “infinite” mass in finite time which
are removed from the system. Unlike the local mass in the microscopic picture (1)-(2), the
total mass is thereby not conserved, that is, M1 starts to decrease, a phenomenon usually
called the occurrence of gelation.

Writing equation (3) in a “conservative” form, as proposed in [21, 22], enables to describe
precisely the time evolution of the total mass. Also, this formulation is particularly well
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adapted to a finite volume discretization which, in turn, is expected to give a precise
account of mass dissipation or conservation. Precisely, the coagulation and fragmentation
terms can be written in divergence form:



















xQc(f)(x) = −
∂C(f)

∂x
(x),

xQf(f)(x) = −
∂F(f)

∂x
(x),

where

C(f)(x) :=

∫ x

0

∫ ∞

x−u
u a(u, v) f(u) f(v) dvdu , x ∈ R

+,(5)

F(f)(x) :=

∫ x

0

∫ ∞

x−u
u b(u, v) f(u + v) dvdu , x ∈ R

+.(6)

Then, the coagulation-fragmentation equation reads










x
∂f

∂t
= −

∂ C(f)

∂x
+

∂ F(f)

∂x
, (t, x) ∈ (R+)2 ,

f(0, x) = fin(x), x ∈ R
+

(7)

and we assume that the initial datum fin satisfies:

(8) fin ∈ L1(R+) ∩ L1(R+, xdx) is a nonnegative function.

Here and below, the notation L1(R+, xdx) stands for the space of the Lebesgue measurable
real-valued functions on R

+ which are integrable with respect to the measure xdx.
The main purpose of this work is to present a numerical scheme to solve (5)-(7) built

upon an explicit Euler discretization with respect to the time variable t and a finite
volume discretization with respect to the volume variable x. The analysis of the so-
obtained scheme allows to prove the convergence of the discretized particle density towards
a solution to the continuous problem. An error estimate on the approximation is given
and the scheme is shown to give a first order accurate discretization of the coagulation-
fragmentation equation.

Before describing more precisely our results, let us recall that the coagulation and frag-
mentation equations (5)-(7) have been the object of several studies recently. On the one
hand, the relationship between discrete and continuous models has been considered by
some authors, see the survey paper [5] and [1]. Their analysis is either performed at a
formal level [1] or restricted to a particular fragmentation model (scaling technique [23]).
A rigorous setting for the formal analysis performed in [1] under general assumptions on
the coagulation and fragmentation coefficients has been given in [16]. Among the various
approaches for the approximation of coagulation and fragmentation models, we may dis-
tinguish between deterministic and Monte Carlo methods. We refer for instance to [7, 18]
for deterministic methods, [2, 6, 13] for stochastic methods, and the references therein.
However, there are few results concerning the convergence analysis of numerical methods
for coagulation and fragmentation models (see [17] for quasi Monte-Carlo methods).



4 JEAN-PIERRE BOURGADE AND FRANCIS FILBET

In Reference [16], the authors obtain as a by-product of their analysis a convergence re-
sult for an explicit time discretization. However, note that the main outcome of this study
is a deeper understanding of the link between the discrete and continuous Smoluchowski
equations, thanks to scaling methods, whereas the present paper is rather focused on the
discretization of the continuous Smoluchowski equation itself. To this aim, we use the
formulation in divergence form, which is more suitable to design a finite volume scheme,
and, unlike the discretization proposed in [16], this scheme is built on non-uniform meshes.
Also, while reference [16] gives an analysis for unbounded domains of admissible size val-
ues, one of our goals is to asses the reliability of non-conservative truncation methods.
Among other features established in this paper, these approximation methods prove to
give a faithful picture of long time behaviour as well as of occurence of gelation.

Indeed, the occurrence of gelation at finite time is a well-known feature of coagulation
and fragmentation processes. It has been theoretically established in [14] with a proba-
bilistic approach and in [8, 9] with deterministic arguments. Once gelation is known to
occur, a natural question is to determine the gelation time and to investigate the beha-
vior of f(t) at the gelation time, which still consitutes an open problem. In this context,
numerical simulations could give some clues on how to solve this problem and, in partic-
ular, non-conservative truncation methods of approximations may prove an efficient tool
to observe gelation with accuracy.

We now briefly outline the contents of the paper. In the next section, we introduce the
numerical approximation of (5)-(7) and state the convergence result which we prove in
Sections 3 & 4. In Section 5, we give some error estimates when the mesh is uniform. In
the final section (Section 6), some numerical simulations are performed with the numer-
ical scheme presented in Section 2. Long time behaviour and occurrence of gelation are
investigated.

2. Numerical scheme and main results

When designing the volume discretization of the coagulation and fragmentation terms,
one is confronted with two somewhat contradictory requirements. First, the coagulation
and fragmentation terms should be discretized so as to allow for the simulation of gelation
phenomena for instance. But occurrence of gelation depends on the behaviour of kernels
a and b for large values of the volume variable x. On the other hand, discretizing these
terms makes necessary to truncate the infinite integrals in formulae (5)-(6). But this
means restricting the domain of action of kernels a and b to a bounded set of volumes x,
that is, preventing coagulation to occur among particles with volume exceeding a fixed
value.

The discretization we propose tries to overcome this conflict by using a non-conservative
truncation method for the coagulation term. The following truncation has been introduced
for the Smoluchowski coagulation equation in [3]. Given a positive real R, let

(9) CR
nc(f)(x) :=

∫ x

0

∫ R

x−u
u a(u, v) f(u) f(v) dvdu , x ∈ (0, R) .
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In that case, CR
nc(f)(R) ≥ 0 so that the total mass of the solution is now nonincreasing

with respect to time. This approximation is particularly well suited for reproducing the
gelation phenomenon [3, 4].

As regards the fragmentation term, the first idea would be to give a “non conservative”
truncation as for the coagulation term, according to

FR
nc(f)(x) :=

∫ x

0

∫ R

x−u
u b(u, v) f(u + v) dv du, x ∈ (0, R),

where R is, as above, a constant positive parameter. Obviously, if one only considers the
solution to the non conservative fragmentation equation, it leads to a time increasing mass
for the system. However, it is hard to conclude on the conservativity of the full model
when including the coagulation term −∂x C

R
nc since one should have to determine the sign

of

−CR
nc(t, R) + FR

nc(t, R), t ≥ 0,

which is not obvious (in particular, the first term is quadratical in f and depends on a,
whereas the second one is linear in f and depends on b).

Possibly the most meaningful truncation is therefore a conservative truncation on the
fragmentation term (while a non conservative truncation is performed on the coagulation
part). We introduce

(10) FR
c (f)(x) :=

∫ x

0

∫ R−u

x−u
u b(u, v) f(u + v) dv du.

Then, the conservative fragmentation operator satisfies exactly the conservation of total
mass, so that the following equation is indeed a non conservative coagulation and frag-
mentation equation:











x
∂fR

∂t
= −

∂CR
nc(fR)

∂x
(x) +

∂FR
c (fR)

∂x
(x) , (t, x) ∈ R

+ × (0, R) ,

f(0, x) = fin(x), x ∈ (0, R),

(11)

since
d

dt

∫ R

0
x fR(t, x) dx = −CR

nc(fR)(t, R) ≤ 0.

Convergence for large values of R has been thoroughly studied in the recent past. We
briefly mention some results for the coagulation equation (that is, with b = 0). These
results adapt easily to the coagulation-fragmentation equation but under different as-
sumptions on the kernels.

On the one hand, when a(x, x′)/(x x′) → 0 as x + x′ → +∞, convergence as R → +∞
of the solutions to (11) toward a solution of (5)-(7) can be proven by using the approach
developed in [16]. First, we observe that the previous growth assumption on a(x, x′)
does not exclude coagulation coefficients for which the occurrence of gelation takes place.
Second, when gelation does not take place, it can be shown that the solutions to (11)
converge toward a solution to (5)-(7) satisfying M1(t) = M1(0) for t ≥ 0 (we refer to
[11] for a rigorous proof). On the other hand, the convergence of the nonconservative
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approximation (11) to the solution of (5)-(7) is valid when a(x, x′) ∼ x x′ for large x, x′

[15]. Therefore, this approximation is well-suited for the description of both gelation and
mass conservation, despite the qualitatively important gap between these regimes.

Since the convergence of solutions to (11) towards solutions of (5)-(7) is well established
in rather general situations, this paper will only focus on the convergence of a sequence
built on a numerical scheme towards a solution to the equation (11) when the truncature
R is fixed. The works we have just mentioned fill in the gap to get a convergence result to
solutions to the original problem. In the remainder of the paper, for the sake of clarity, we
drop the subscript R and write f instead of fR for a solution of equation (11). Parameter
R being fixed, this should raise no confusion.

Now, we turn to the discretization of equation (11). Having reduced the computation
to a bounded interval, the second step is to introduce the time and volume discretizations.
To this end, let h ∈ (0, 1), Ih be a large integer, and denote by (xi−1/2)i∈{0,...,Ih} a mesh

of (0, R), where

x−1/2 = 0 , xi = (xi−1/2 + xi+1/2)/2 , ∆xi = xi+1/2 − xi−1/2 ≤ h ,

and Λh
i = [xi−1/2, xi+1/2) for i ≥ 0. Moreover, given two integers i and j such that

xi+1/2 − xj ≥ 0, we introduce integer γi,j ∈ {0, · · · , Ih} such that

xi+1/2 − xj ∈ Λh
γi,j

.

In the general case of a non uniform mesh, we denote by δh = min
i

∆xi and assume that

there exists a positive constant (independent of the mesh) K such that

(12)
h

δh
≤ K

or, if the mesh has to be excessively refined in some regions (usually close to the origin),
we assume that the mesh is increasing, that is

(13) ∆xi ≤ ∆xi+1, ∀ i ∈ { 0, ..., Ih − 1 }.

Remark 2.1. In the case of a uniform mesh (that is when ∆xi = h for all i), there holds:

xi− 1
2

= i h, γi,j = i − j.

In particular, whenever xj− 1
2

< x < xj+ 1
2

and j < i, we have

xi+ 1
2
− x ∈ Λh

i−j.

Let ∆t denote the time step and N be a large integer such that N∆t = T , where [0, T ]
is the time domain on which the equation is studied. We also define the time interval
τn = [tn, tn+1).

The discretization of the coagulation and fragmentation kernels will be detailed at the
end of this section. For the time being, we formally set

a(u, v) ≈ ah(u, v) = ai,j(14)

b(u,w − u) ≈ bh(u,w − u) = bi,k(15)
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for u in Λh
i , v in Λh

j and w in Λh
k , such that i, j ∈ {0, . . . , Ih} and k ∈ {i + 1, . . . , Ih} and

assume that this defines a suitable approximation of the kernels.
Let us now introduce the numerical scheme itself. For each integer i ∈ {0, · · · , Ih} and

each n ∈ {0, · · · , N − 1}, we define the approximation of f(t, x) for t ∈ τn and x ∈ Λh
i as

fn
i .
The sequence (fn

i )i,n is defined recursively by the following discretization of the coagulation-

fragmentation equation : for n ∈ {1, . . . , N − 1}, i ∈ {0, . . . , Ih}, we set

∆xi xi (fn+1
i − fn

i ) = −∆t
(

Cn
i+1/2 − Cn

i−1/2

)

+ ∆t
(

Fn
i+1/2 −Fn

i−1/2

)

,(16)

where the fluxes Cn
i+1/2 and Fn

i+1/2 are given by

Cn
i+1/2 =

i
∑

j=0

Ih
∑

k=γi,j

∆xj ∆xk xj aj,k fn
j fn

k ,(17)

Fn
i+1/2 =

i
∑

j=0

Ih
∑

k=i+1

∆xj ∆xk xj bj,k fn
k ,(18)

and the initial datum is approached by

fin
i =

1

∆xi

∫

Λh
i

fin(x) dx, i ∈ {0, . . . , Ih},(19)

whereas the fluxes at the boundary are

Cn
−1/2 = Fn

−1/2 = Fn
Ih+1/2 = 0, n ∈ {0, . . . , N − 1}.(20)

This discretization obviously relies on an explicit Euler time discretization and a finite
volume approach for the volume variable (see, e.g. [10, 19]). This will be even clearer
when the discretization of a and b will be given.

We denote by χA the characteristic function of a set A. The following function fh

defined on [0, T ] × [0, R] will be useful in the sequel.

(21) fh(t, x) =
N−1
∑

n=0

Ih
∑

i=0

fn
i χτn(t)χΛh

i
(x).

Note that this function depends on the time and volume steps and that

fh(0, · ) =
Ih
∑

i=0

χΛh
i
(· )fin

i

converges strongly to fin in L1(0, R) as h goes to 0.
We may now state our main result.

Theorem 2.2. Assume that the coagulation and fragmentation kernels satisfy (4) and
fin satisfies (8). Moreover, suppose that the volume mesh used in the numerical scheme
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is regular in the sense of assumptions (12) or (13) and that the time step satisfies there
exists a positive constant θ such that

(22) max (2,K + 1) CT,R ∆t ≤ θ < 1,

where K is given by (12) and

(23) CT,R := ‖a‖L∞ ‖fin‖L1 eR ‖b‖L∞ T + R ‖b‖L∞ .

Then, up to the extraction of a subsequence,

fh −→ f in L∞
(

0, T ; L1 (0, R)
)

,

where f is the weak solution to (11) on [0, T ] with initial datum fin. More precisely, f is
a nonnegative function satisfying

∫ T

0

∫ R

0
x f(t, x)

∂ϕ

∂t
(t, x) +

[

CR
nc

(t, x) − FR
c

(t, x)
] ∂ϕ

∂x
(t, x) dx dt

+

∫ R

0
x fin(x)ϕ(0, x) dx −

∫ T

0
CR
nc

(t, R)ϕ(t, R) dt = 0,(24)

for all continuously differentiable function ϕ compactly supported in [0, T ) × [0, R].

Moreover, when the mesh is uniform ∆xi = h, for all i ∈ {0, ..., Ih}, we get the following
error estimate

Theorem 2.3. Assume that the coagulation and fragmentation kernels satisfy

(25) a, b ∈ W 1,∞
loc

(

R
+ × R

+
)

.

We also assume that fin satisfies

(26) fin ∈ W 1,∞
loc (R+).

We consider a uniform volume mesh and require time step ∆t to satisfy condition (22).
Then, the following error estimate holds

‖fh − f‖L1 ≤ C(T,R) (h + ∆t),(27)

where f is the weak solution to (11) on [0, T ] with initial datum fin.

This implies the uniqueness of the limit, and, consequently, that the whole sequence fh

converges under these assumptions.
Of course, these results depend on the definition of a correct approximation of the

coagulation and fragmentation kernels. Equations (14) and (15) are now given a precise
meaning.

Unless otherwise specified, in the sequel kernels a and b are taken as in (4). On the one
hand, the kernel a is approached by a finite volume approximation ah(u, v) on each space
cell: for all (u, v) ∈ [0, R] × [0, R],

ah(u, v) =
Ih
∑

i=0

Ih
∑

j=0

ai,j χΛh
i
(u)χΛh

j
(v),
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where χA denotes the characteristic function of set A and

ai,j =
1

∆xi∆xj

∫

Λh
i ×Λh

j

a(x, y) dx dy.

This approximation method is well-known and yields strong convergence in the space of
integrable functions provided the kernel a is in L1((0, R)× (0, R)) , which is the case here
according to (4)

∥

∥

∥
ah − a

∥

∥

∥

L1
→ 0, as h → 0.

The fragmentation kernel b is discretized in a different way. Indeed, we first notice that b
need not be defined on the whole square [0, R] × [0, R] and that the kernel defined on the
compact set

Db := { (u, v) ∈ [0, R] × [0, R]; 0 ≤ u + v ≤ R }

can be used to compute the fragmentation term FR
c as given in (10). Therefore, all we

need is to give an approximation bh of the kernel b on the compact set Db. First, we define
the following finite volume approximation of b, for all (u, v) ∈ Db,

(28) b̃h(u, v) =
Ih
∑

i=0

Ih
∑

j=i+1

b̃i,j χΛh
i
(u)χΛh

j
(v + u),

with

(29) b̃i,j =
1

∆xi ∆xj

∫

Λh
i ×Λh

j

b(x, y − x) dy dx, 0 ≤ i < j ≤ Ih.

This sequence is particularly well suited to approach b(u, v − u) since, for all (u, v) ∈
[0, R] × [0, R] such that 0 ≤ u ≤ v ≤ R,

b̃h(u, v − u) =
Ih
∑

i=0

Ih
∑

j=i+1

b̃i,j χΛh
i
(u)χΛh

j
(v)

is obviously a finite volume approximation of b(u, v − u). Then, since b is symmetric, one
would expect that a good approximation bh of b should satisfy

bh(u, v) = bh(v, u),

which would translate on the sequence bi,j as:

(30) bi,j = bj−i,j.

However, this is not true in general and one can prove that, in the case of a more regular
kernel b satisfying condition (25) and for a uniform mesh, equality (30) holds true only up

to first order terms in h when bi,j = b̃i,j .
This motivates the following definition:

Definition 2.4. We define the approximate kernel bh such that
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(i) if the fragmentation b satisfies (4), then an approximation of b is defined by

bh(u, v) = b̃h(u, v), ∀(u, v) ∈ Db,(31)

where b̃h is given by (28) and (29);
(ii) if the fragmentation kernel b satisfies (25) and if the mesh is taken uniform, then

one introduces the following approximation of b,

bh(u, v) =
Ih
∑

i=0

Ih
∑

j=i+1

bi,j χΛh
i
(u)χΛh

j
(v + u), ∀(u, v) ∈ Db,(32)

where

bi,j =

{

1
2

(

b̃i,j + b̃j−i,j

)

, i ∈ {1, . . . ,Ih}, j ∈ {i + 1, . . . , Ih},

b̃0,j , i = 0, j ∈ {1, . . . , Ih}.
(33)

It will be useful to write, conventionally,

(34) b0,0 = 0.

Properties of these approximations are summarized in the following Lemma.

Lemma 2.5. The approximate kernel bh given either by (31) or by (32) satisfies the
following convergence properties.

(i) Let b satisfy (4), then equation (31) defines an approximation of b which converges
strongly in the L1 topology

∥

∥

∥
bh − b

∥

∥

∥

L1(Db)
→ 0, as h → 0.

(ii) Let b satisfy (25), and take a uniform mesh. Then the approximation of b given
by equation (32) converges in the strong topology of L1:

∥

∥

∥
bh − b

∥

∥

∥

L1(Db)
→ 0, as h → 0,

and the sequence bi,j defined in (33) satisfies

(35) bi,j = bj−i,j, i ∈ {1, . . . ,Ih}, j ∈ {i + 1, . . . , Ih}.

Proof: Strong convergence for the approximation (31) is classical: the proof is close to
the convergence proof of the finite volume approximation ah.

On the other hand, when the kernel b satisfies (25), we can perform a Taylor expansion
of b and easily prove that

∣

∣

∣b̃i,j − b̃j−i,j

∣

∣

∣ ≤ ‖b‖W 1,∞ h,

which means that up to a first order term with respect to h, the approximation (32) is
equal to the approximation (31). Therefore, strong convergence for (31) implies strong
convergence for (32) since the first order term in h vanishes asymptotically. 2
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Remark 2.6. It is worth mentioning that property (35) is used only in the proof of The-
orem 2.3 to estimate the error between the numerical scheme and the actual solution of
(11). In this case, we use approximation (32), take a uniform mesh and assume regularity
(25) for b. In contrast, Theorem 2.2 can be proven without appealing to symmetry property
(35) and, therefore, can be established under the weaker assumption (4), using approxi-
mation (31). Of course, it also holds true under assumption (25) and with approximation
(32).

In the convergence analysis of the numerical scheme, it will be useful to consider point-
wise convergence for the coagulation and fragmentation kernels. These convergences hold
true up to the extraction of subsequences. Namely, there exists a subfamily of the fam-
ily R

+
∗ of indices h such that, for almost every (u, v) ∈ [0, R] × [0, R] and almost every

(x, y) ∈ Db,

ah(u, v) → a(u, v), bh(x, y) → b(x, y)

as h goes to 0. In the remainder of this paper, all sequences will be indexed on this
subfamily of indices, so that these almost everywhere convergences can be used.

3. A priori estimates

In this section, our goal is to prove that the sequence of functions (fh)h converges in
some sense to a function f as h and ∆t go to 0. First, we prove that the solution fh to the
scheme (16)-(19) enjoys properties similar to those of function f given by (11) which we
gather in Proposition 3.1 below. Next, we prove the weak convergence of fh to a function
f in L1(0, R).

The midpoint approximation of a point x is denoted by Xh(x), i.e. Xh(x) = xi for
x ∈ Λh

i , see section 4 for further details.

Proposition 3.1. Assume the time step satisfies (22). Then, the distribution function
fh is a nonnegative function such that

∫ R

0
Xh(x) fh(t, x) dx ≤

∫ R

0
Xh(x) fh(s, x) dx, 0 ≤ s ≤ t ≤ T

and, for all t ∈ [0, T ],

∫ R

0
fh(t, x) dx ≤ ‖fin‖L1 eR ‖b‖L∞ t.(36)

Proof: We proceed by induction and first notice that fh(0) is nonnegative and belongs
to L1(0, R). Assume next that the function fh(tn) is nonnegative and

∫ R

0
fh(tn, x) dx ≤ ‖fin‖L1 eR ‖b‖L∞ tn .(37)
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We start by proving that fh(tn+1) is nonnegative, and first take i = 0 since it involves
boundary conditions,

x0 fn+1
0 = x0 fn

0 −
∆t

∆x0
Cn

1/2 +
∆t

∆x0
Fn

1/2,

≥



1 − ∆t

Ih
∑

k=0

∆xk a0,k fn
k



 x0 fn
0 .

Then, using condition (22) on the time step with (37), we conclude to the nonnegativity
of fn+1

0 . For i ≥ 1, we have

xi f
n+1
i = xi fn

i −
∆t

∆xi

(

Cn
i+1/2 − Cn

i−1/2

)

+
∆t

∆xi

(

Fn
i+1/2 −Fn

i−1/2

)

.

On the one hand, from the nonnegativity of fh(tn), we show that

−
Cn

i+1/2 − Cn
i−1/2

∆xi
= −xi f

n
i

Ih
∑

k=γi,i

∆xk ai,k fn
k +

i−1
∑

j=0

γi,j−1
∑

k=γi−1,j

∆xk

∆xi
fn

k ∆xj aj,k xj fn
j

≥ −





Ih
∑

k=0

∆xk ai,k fn
k



 xi fn
i .(38)

On the other hand, still using the nonnegativity of fh(tn), we get for the discrete frag-
mentation operator

Fn
i+1/2 −Fn

i−1/2

∆xi
=

Ih
∑

k=i+1

∆xk xi bi,k fn
k −

i−1
∑

j=0

∆xj bj,i xj fn
i

≥ −





Ih
∑

k=0

∆xk bk,i



 xi f
n
i .(39)

Then gathering the two inequalities (38) and (39), we get

xi f
n+1
i ≥



1 − ∆t





Ih
∑

k=0

∆xk ai,k fn
k +

Ih
∑

k=0

∆xk bk,i







 xi f
n
i .

Using condition (22) on the time step and the L1-estimate (37) on fh(tn), we finally prove
that fh(tn+1) is nonnegative.

Next, the time monotonicity of the total mass with respect to time follows at once from
the nonnegativity of fh by summing (16) with respect to i

Ih
∑

i=0

∆xi xi f
n+1
i ≤

Ih
∑

i=0

∆xi xi f
n
i − ∆t Cn

Ih+1/2 ≤
Ih
∑

i=0

∆xi xi f
n
i .
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Now, let us prove that fh(tn+1) enjoys a similar estimate as (37). It follows from (16)
that

Ih
∑

i=0

∆xi f
n+1
i =

Ih
∑

i=0

∆xi f
n
i − ∆t

Ih
∑

i=0

Cn
i+1/2 − Cn

i−1/2

xi
+ ∆t

Ih
∑

i=0

Fn
i+1/2 −Fn

i−1/2

xi
.

Of course the coagulation term decreases the number of particles (Ci+1/2 ≥ 0, for all i)

−
Ih
∑

i=0

Cn
i+1/2 − Cn

i−1/2

xi
≤ −

Ih
∑

i=0

Cn
i+1/2

(

1

xi
−

1

xi+1

)

≤ 0.

For the fragmentation term, we observe that

Ih
∑

i=0

Fn
i+1/2 −Fn

i−1/2

xi
≤

Ih
∑

i=0

∆xi

Ih
∑

k=i+1

∆xk bi,k fn
k ,

and using the assumption (4) on the kernel b, we finally get

Ih
∑

i=0

∆xi f
n+1
i ≤ ( 1 + R ‖b‖L∞ ∆t )

Ih
∑

i=0

∆xi f
n
i .

Thus, using estimate (37) at step n,

Ih
∑

i=0

∆xi f
n+1
i ≤ ‖fin‖L1 eR ‖b‖L∞ tn+1

.

2

We also remark that fh(0, ·) is an approximation of fin, with strong convergence in
L1(0, R). Moreover, the initial datum fin is in L1(0, R), hence, by the La Vallée Poussin
theorem, there exists a nonnegative and convex function Φ continuously differentiable on
R

+ with Φ(0) = 0, Φ′(0) = 1, such that Φ′ is concave,

Φ(r)

r
−→ +∞, as r → ∞

and

(40)

∫ R

0
Φ

(

fin
)

(x)dx < +∞.

Let us now recall an inequality on convex functions.

Lemma 3.2. Let Φ ∈ C1(R+) be convex and such that Φ′ is concave, Φ(0) = 0, Φ′(0) = 1,
and Φ(r)/r → +∞ as r → +∞. Then, for all (x, y) in R

+ × R
+,

xΦ′(y) ≤ Φ(x) + Φ(y).(41)

Next, the following result holds.
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Proposition 3.3. Let fin ∈ L1(0, R) be nonnegative, and fh be defined for all h and
∆t by (16)-(21) where ∆t satisfies (22). Then the family (fh)(h,∆t) is weakly relatively

sequentially compact in L1((0, T ) × (0, R)).

Proof: Based on estimate (40), one can prove a similar estimate on the function fh,
uniformly in h. First, the integral of Φ(fh) is clearly related to the sequence fn

i through

∫ T

0

∫ R

0
Φ

(

fh(t, x)
)

dxdt =

N−1
∑

n=0

Ih
∑

i=0

∆t ∆xi Φ(fn
i ).

From the discrete equation (16), together with the convexity of the function Φ and the
nonnegativity of Φ′, it follows

Ih
∑

i=0

∆xi

[

Φ(fn+1
i ) − Φ(fn

i )
]

≤
Ih
∑

i=0

∆xi

(

fn+1
i − fn

i

)

Φ′(fn+1
i )

≤ ‖a‖L∞ ∆t

Ih
∑

i=0

i−1
∑

j=0

∆xjf
n
j

γi,j−1
∑

k=γi−1,j

∆xk fn
k Φ′(fn+1

i )

+ ‖b‖L∞ ∆t

Ih
∑

i=0

Ih
∑

k=i+1

∆xi ∆xk fn
k Φ′(fn+1

i ),

where we have used assumption (4) and the fact that xj/xi ≤ 1 whenever j ≤ i. Then the
convexity of Φ together with (41), entails

‖a‖L∞ ∆t

Ih
∑

i=0

i−1
∑

j=0

∆xj fn
j

γi,j−1
∑

k=γi−1,j

∆xk fn
k Φ′(fn+1

i )

≤ ‖a‖L∞ ∆t

Ih
∑

i=0

i−1
∑

j=0

∆xj fn
j

γi,j−1
∑

k=γi−1,j

∆xk

[

Φ(fn
k ) + Φ(fn+1

i )
]

= ‖a‖L∞ ∆t

Ih
∑

j=0

∆xj fn
j

Ih
∑

i=j+1

γi,j−1
∑

k=γi−1,j

∆xk

[

Φ(fn
k ) + Φ(fn+1

i )
]

,

and still applying (41) to the fragmentation term, it yields

Ih
∑

i=0

∆xi

[

Φ(fn+1
i ) − Φ(fn

i )
]

≤ ‖a‖L∞ ∆t

Ih
∑

j=0

∆xj fn
j

Ih
∑

i=j+1

γi,j−1
∑

k=γi−1,j

∆xk

[

Φ(fn
k ) + Φ(fn+1

i )
]

+ ‖b‖L∞ ∆t
Ih
∑

i=0

∆xi

Ih
∑

k=i+1

∆xk

[

Φ(fn
k ) + Φ(fn+1

i )
]

.
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On the one hand, we have

(42)
Ih
∑

i=j+1

γi,j−1
∑

k=γi−1,j

∆xk Φ(fn
k ) =

γ
Ih,j

−1
∑

k=γj,j

∆xk Φ(fn
k ) ≤

Ih
∑

k=0

∆xk Φ(fn
k ).

On the other hand, observing that

γi,j−1
∑

k=γi−1,j

∆xk = xγi,j−1/2 − xγi−1,j−1/2

and since xγi,j−1/2 and xγi−1,j−1/2 are defined as left point approximations of xi+1/2 − xj

and xi−1/2 − xj respectively, it gives

xγi,j−1/2 − xγi−1,j−1/2 =
(

xγi,j−1/2 − xi+1/2

)

−
(

xγi−1,j−1/2 − xi−1/2

)

+ ∆xi

=
(

xi−1/2 − xj

)

− xγi−1,j−1/2 −
(

(

xi+1/2 − xj

)

− xγi,j−1/2

)

+ ∆xi

≤
(

xi−1/2 − xj

)

− xγi−1,j−1/2 + ∆xi.

Either assumption (12) or assumption (13) holds, and we get, accordingly,
(

xi−1/2 − xj

)

− xγi−1,j−1/2 ≤ h

or
(

xi−1/2 − xj

)

− xγi−1,j−1/2 ≤ ∆xi.

The latter inequality is a consequence of the fact that the mesh is increasing. In the former
case, however, the regularity of the mesh is such that, by (12), one has

h ≤ K∆xi.

Finally, both cases yield

xγi,j−1/2 − xγi−1,j−1/2 ≤ M∆xi

with M = 1 + K or M = 2. Therefore,

Ih
∑

i=j+1

γi,j−1
∑

k=γi−1,j

∆xkΦ(fn+1
i ) ≤ M

Ih
∑

i=0

∆xi Φ(fn+1
i ).

Consequently, this result and inequality (42) lead to

Ih
∑

i=0

∆xi

[

Φ(fn+1
i ) − Φ(fn

i )
]

≤ ∆t ‖a‖L∞





Ih
∑

j=0

∆xj fn
j





Ih
∑

i=0

∆xi

[

M Φ(fn+1
i ) + Φ(fn

i )
]

,
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which entails, as ‖a‖L∞

∑

∆xjf
n
j is bounded by CT,R according to (23) and (36)

Ih
∑

i=0

∆xi

[

Φ(fn+1
i ) − Φ(fn

i )
]

≤ ∆t M CT,R

Ih
∑

i=0

∆xi Φ(fn+1
i )

+ ∆t CT,R

Ih
∑

i=0

∆xi Φ(fn
i ).

Finally, it appears that if the time step satisfies (22), a discrete version of Gronwall’s
lemma gives

∫ R

0
Φ(fh(t, x)) dx ≤ e

CT,R(1+M)

1−θ
t
∫ R

0
Φ(fin(x)) dx, ∀t ∈ [0, T )

and this estimate allows to conclude to the compactness of the sequence (fh)h thanks to
the La Vallée Poussin theorem. Indeed, the exponent is uniformly bounded with respect
to h and ∆t as long as (22) holds true. 2

Remark 3.4. Proposition 3.3 implies that there exist a function f in L1((0, T ) × (0, R))
and a subsequence of (fh)

h
such that fh ⇀ f as h → 0. By a diagonal procedure, one can

extract subsequences of (fh)
h
, (ah)

h
and (bh)

h
such that

fh ⇀ f, in the weak topology of L1((0, T ) × (0, R)), as max{h,∆t} → 0

and

ah(u, v) → a(u, v), for almost every (u, v) ∈ (0, R) × (0, R), as h → 0,

bh(u, v) → b(u, v), for almost every (u, v) ∈ Db, as h → 0.

In the sequel, these diagonally extracted subsequences are considered implicitely, unless
otherwise specified.

Thus, Proposition 3.3 gives enough information to study the asymptotic behaviour of
all terms in equation (16). However, the following lemma recalls a classical tool that will
be needed afterwards.

Lemma 3.5. Let Ω be an open subset of R
m and let there exist a constant κ > 0 and two

sequences (vn)n∈N and (wn)n∈N such that (vn)n∈N ∈ L1(Ω), v ∈ L1(Ω) and

vn ⇀ v, weakly in L1(Ω), as n → ∞,

(wn) ∈ L∞(Ω), w ∈ L∞(Ω), and for all n ∈ N, |wn| ≤ κ with

wn → w, almost everywhere in Ω, as n → ∞.

Then, lim
n→∞

‖vn (wn − w)‖L1(Ω) = 0, and

vn wn ⇀ v w, weakly in L1(Ω), as n → ∞.
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Proof: The proof of this classical result in measure theory is based on the Dunford-Pettis
and Egorov theorems. 2

All the material required for the convergence proof is now gathered. The following
Proposition gives, under additional assumptions on the kernels and on the mesh, some
estimates which will prove useful to estimate the error in view of Theorem 2.3.

Proposition 3.6. Let the coagulation kernel a and fragmentation kernel b satisfy property
(4) and let the mesh be regular in the sense of (12) or (13), the time step ∆t also satisfies
(22).

Assume that the initial datum fin is bounded in L∞
loc(R

+). Then, the approximate

solution fh and the exact solution f to (11) are essentially bounded in (0, T ) × (0, R)

‖fh‖L∞((0,T )×(0,R)) ≤ C(T,R), ‖f‖L∞((0,T )×(0,R)) ≤ C(T,R).

Moreover, if the kernels a and b satisfy (25) and the initial datum fin satisfies the
smoothness condition (26). Then, there exists a positive constant C(T,R) such that

(43) ‖f(t)‖W 1,∞(0,R) ≤ C(T,R),

where f is the exact solution to (11).

Proof: We prove a priori boundedness for the solution f to the continuous equation (11)
only. The proof in the discrete case is similar to the one for the nonnegativity of fh.
Integrating equation (11) with respect to time gives

f(t, x) = fin(x) +

∫ t

0
−

1

x

∂ CR

∂x
(s, x) +

1

x

∂ FR

∂x
(s, x) ds

≤ fin(x) +
1

2

∫ t

0

∫ x

0
a(x′, x − x′) f(s, x′) f(s, x − x′) dx′ ds

+

∫ t

0

∫ R

x
b(x′ − x, x) f(s, x′) dx′ ds

≤ fin(x) + ‖b‖L∞‖f‖∞,1 t +
‖a‖L∞

2
‖f‖∞,1

∫ t

0
sup

y∈(0,R)
f(s, y) dx,

where ‖f‖∞,1 denotes the norm of f in L∞(0, T ; L1(0, R)). Then, Gronwall’s lemma
enables to conclude the proof.

We turn to the proof of estimate (43). First, we integrate equation (11) with respect
to time, divide it by x and next differentiate it with respect to volume variable x (using
formulae (9) and (10) for the coagulation and fragmentation terms). Then, taking the



18 JEAN-PIERRE BOURGADE AND FRANCIS FILBET

maximum value over all possible values of x, it yields
∥

∥

∥

∥

∂f

∂x
(t)

∥

∥

∥

∥

L∞

=

∥

∥

∥

∥

∂fin

∂x

∥

∥

∥

∥

L∞

+
{3

2
‖a‖W 1,∞ ‖f‖∞,1 ‖f‖L∞ +

1

2
‖a‖L∞ ‖f‖2

L∞

+
3

2
‖b‖L∞ ‖f‖L∞ + ‖b‖W 1,∞

(

‖f‖∞,1 +
1

2
R‖f‖L∞

)

}

t

+
3

2
(‖a‖L∞ ‖f‖∞,1 + ‖b‖L∞)

∫ t

0

∥

∥

∥

∥

∂f

∂x
(s)

∥

∥

∥

∥

L∞

ds

and, again Gronwall’s lemma allows to conclude. 2

Note that, in this proof, f ∈ L∞(0, T ; L1(0, R)) has been extensively used. Indeed,
Theorem 2.2 gives this information under the same (or weaker) assumptions as those made
in Proposition 3.6. We underline that, of course, Theorem 2.2 is proven independently of
this Proposition.

4. Convergence of the numerical solution

Proving Theorem 2.2 is achieved by interpreting the sequence fn
i built from the numer-

ical scheme as a sequence of step functions fh depending on the mesh size h and on ∆t.
Properties (in particular weak compactness) of this sequence have been stated in details
in the previous section. The proof is now reduced to writing the discrete coagulation and
fragmentation operators in terms of fh and proving (weak) convergence for these expres-
sions towards the continuous coagulation and fragmentation operators (5)-(6). This is
provided by Lemma 4.1 below. Then usual finite volumes techniques allow to conclude.

The following notations will be used throughout the analysis of the numerical scheme.
First, several point approximations are defined:

Xh : x ∈ (0, R) → Xh(x) =
Ih
∑

i=0

xi χΛh
i
(x), (midpoint approximation)

Ξh : x ∈ (0, R) → Ξh(x) =
Ih
∑

i=0

xi+1/2 χΛh
i
(x), (right endpoint approximation)

ξh : x ∈ (0, R) → ξh(x) =

Ih
∑

i=0

xi−1/2 χΛh
i
(x), (left endpoint approximation)

and

Θh : (x, u) ∈ (0, R)2 → Θh(x, u) =

Ih
∑

i=0

i
∑

j=0

xγi,j χΛh
i
(x)χΛh

j
(u).

At this stage, note that (Xh)
h
, (Ξh)

h
and (Θh)

h
converge pointwisely: for all x ∈ (0, R),

Xh(x) → x, Ξh(x) → x,
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as h → 0 and for all (x, u) ∈ (0, R)2, we have
{

Θh(x, u) → x − u if x ≥ u,
Θh(x, u) → 0 if x ≤ u.

Then, the proof of Theorem 2.2 is based on the following Lemma.

Lemma 4.1. Let us define the approximations of the coagulation and fragmentation terms
according to:

Ch(t, x) =

∫ R

0

∫ R

0
χ[0,Ξh(x)](u)χ[Θh(x,u),R](v)Xh(u) ah(u, v) fh(t, u) fh(t, v) dv du

Fh(t, x) =

∫ R

0

∫ R

0
χ[0,Ξh(x)](u)χ[Ξh(x)−u,R−u](v)Xh(u) bh(u, v) fh(t, u + v) dv du.

There exists a subsequence of (fh)
h
, such that

Ch ⇀ CR
nc

in L1((0, T ) × (0, R)), as h → 0,

Fh ⇀ FR
nc

in L1((0, T ) × (0, R)), as h → 0.

In addition, Ch(·, R) converges weakly to CR
nc

(·, R) in L1(0, T ).

Proof: We consider the sequences (fh)
h
, (ah)

h
and (bh)

h
extracted according to the

procedure sketched in Remark 3.4. Then, obviously for all (t, x) ∈ (0, T ) × (0, R) and
almost all (u, v) ∈ (0, R) × (0, R), the sequence Xh(.) ah(., v) is bounded in L∞(0, R) and

χ[0,Ξh(x)](u)χ[Θh(x,u),R](v)Xh(u) ah(u, v) → χ[0,x](u)χ[x−u,R](v)ua(u, v),

as h goes to 0. Thus, applying Lemma 3.5, it yields
∫ R

0
χ[0,Ξh(x)](u)χ[Θh(x,u),R](v)Xh(u) ah(u, v) fh(t, u) du

→

∫ x

0
χ[x−u,R](v)ua(u, v) f(t, u) du(44)

for each t, x, and almost every v. The same argument is used to prove the pointwise
convergence of Ch. Indeed, for each x and t and for almost every v (44) holds true, and
since fh converges weakly, Lemma 3.5 applies again and gives:

Ch(t, x) → CR
nc(t, x)

for every (t, x) ∈ [0, T ] × [0, R]. This pointwise convergence obviously implies weak con-
vergence for Ch and for the boundary value Ch(·, R).

The convergence study of Fh is similar to that of Ch, observing that

Fh(t, x) =

∫ R

0

∫ R

0
χ[0,Ξh(x)](u)χ[Ξh(x),R](v)Xh(u) bh(u, v − u) fh(t, v) dv du

and recalling that bh(u, v − u) converges to b(u, v − u) for almost every 0 ≤ u ≤ v ≤ R. 2

To make the importance of this Lemma clear, it may be useful to mention that Ch(t, x)
(resp. Fh(t, x)) actually coincide with Cn

i (resp. Fn
i ) whenever t ∈ τn and x ∈ Λh

i . This
will be proven in the sequel.
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Now, we turn to the proof of Theorem 2.2. We consider a test function ϕ ∈ C1([0, T )×
[0, R]), which is compactly supported. On the one hand, we observe that, for ∆t small
enough, the support of ϕ with respect to the time variable satisfies Supptϕ ⊂ [0, tN−1].
On the other hand, we define the finite volume (in time) and left endpoint (in space)
approximation of ϕ on τn × Λh

i by

ϕn
i :=

1

∆t

∫ tn+1

tn

ϕ(t, xi−1/2)dt.

Then, multiplying equation (16) by ϕn
i and summing over n ∈ {0, .., N − 1} and i ∈

{0, .., Ih}, yields by a discrete integration by parts

N−1
∑

n=0

Ih
∑

i=0

∆xi xi fn+1
i

(

ϕn+1
i − ϕn

i

)

+

N−1
∑

n=0

Ih−1
∑

i=0

∆t
[

Cn
i+1/2 −Fn

i+1/2

]

(

ϕn
i+1 − ϕn

i

)

+

Ih
∑

i=0

∆xi xi fin
i ϕ0

i −

N−1
∑

n=0

∆t Cn
Ih+1/2 ϕn

Ih = 0,(45)

where the boundary and initial value properties (19)-(20) have been used. The first and
third terms in the left hand side of equation (45) can be written in terms of function fh:

N−1
∑

n=0

Ih
∑

i=0

∆xi xi fn+1
i

(

ϕn+1
i − ϕn

i

)

+

Ih
∑

i=0

∆xi xi fin
i ϕ0

i

=

N−1
∑

n=0

Ih
∑

i=0

∫

τn+1

∫

Λh
i

Xh(x) fh(t, x)
ϕ

(

t, ξh(x)
)

− ϕ
(

t − ∆t, ξh(x)
)

∆t
dx dt

+

Ih
∑

i=0

∫

Λh
i

Xh(x) fh(0, x)
1

∆t

∫ ∆t

0
ϕ

(

t, ξh(x)
)

dt dx

=

∫ T

∆t

∫ R

0
Xh(x) fh(t, x)

ϕ
(

t, ξh(x)
)

− ϕ
(

t − ∆t, ξh(x)
)

∆t
dx dt

+

∫ R

0
Xh(x) fh(0, x)

1

∆t

∫ ∆t

0
ϕ

(

t, ξh(x)
)

dt dx(46)

We first treat the last term of the former equality. On the one hand, Xh(x) converges
pointwise in [0, R] whereas fh(0, ·) is a finite volume approximation of fin and, henceforth,
converges strongly in L1(0, R). On the other hand, since ϕ is continuously differentiable
with compact support, its derivatives are bounded and, therefore, the following conver-
gence is uniform with respect to t, x as max{h,∆t} goes to 0:

1

∆t

∫ ∆t

0
ϕ

(

t, ξh(x)
)

dt → ϕ(0, x).
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Consequently, it first yields

∫ R

0
Xh(x) fh(0, x)

1

∆t

∫ ∆t

0
ϕ

(

t, ξh(x)
)

dt dx →

∫ R

0
x fin(x)ϕ (0, x) dx,

as max{h,∆t} goes to 0.
To deal with the first term in (46), a Taylor expansion of the smooth function ϕ is

performed, which finally yields

ϕ
(

t, ξh(x)
)

− ϕ
(

t − ∆t, ξh(x)
)

∆t
→

∂ϕ

∂t
(t, x)

uniformly as max{h,∆t} goes to 0, while χ[∆t,T ](t)Xh(x) converges pointwise to χ[0,T ](t)x.
Applying Lemma 3.5, together with Proposition 3.3, entails that the first term on the right
hand side of (46) converges to

∫ T

0

∫ R

0
x f(t, x)

∂ϕ

∂t
(t, x) dx dt

as max{h,∆t} goes to 0.
Consider now the coagulation and fragmentation terms. As mentioned above, the ap-

proximations Ch and Fh coincide with the discrete coagulation and fragmentation terms.
Indeed, on the one hand, for t ∈ τn and x ∈ Λh

i ,

Ch(t, x) =

∫ xi+1/2

0

∫ R

Θh(x,u)
Xh(u) ah(u, v) fh(t, u) fh(t, v) dv du

=

i
∑

j=0

∫

Λh
j

du

Ih
∑

k=γi,j

∫

Λh
k

dv xj aj,k fn
j fn

k

= Cn
i+1/2,

where we have used that, for x ∈ Λh
i and u ∈ Λh

j , Θh(x, u) = xγi,j . On the other hand, for
the fragmentation operator

Fh(t, x) =

∫ xi+1/2

0

∫ R

xi+1/2

Xh(u) bh(u, v − u) fh(t, v) dv du

=

i
∑

j=0

∫

Λh
j

du

Ih
∑

k=i+1

∫

Λh
k

dv xj bj,k fn
k

= Fn
i+1/2.
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Consequently, it is straightforward to write the second and fourth terms of the left hand
side of equation (45) in terms of Ch and Fh:

N−1
∑

n=0

Ih−1
∑

i=0

∆t
[

Cn
i+1/2 − Fn

i+1/2

]

(

ϕn
i+1 − ϕn

i

)

−

N−1
∑

n=0

∆t Cn
Ih+1/2 ϕn

Ih

=
N−1
∑

n=0

Ih−1
∑

i=0

∫

τn

∫

Λh
i

[

Cn
i+1/2 − Fn

i+1/2

] 1

∆xi

(

ϕ
(

t, xi+1/2

)

− ϕ
(

t, xi−1/2

))

dx dt

−

N−1
∑

n=0

∫

τn

Cn
Ih+1/2 ϕ (t, R − ∆xIh) dt

=

∫ T

0

∫ R−∆x
Ih

0

[

Ch(t, x) − Fh(t, x)
] ∂ϕ

∂x
(t, x) dx dt

−

∫ T

0
Ch(t, R)ϕ (t, R − ∆xIh) dt.

Therefore, the weak compactness result given by Lemma 4.1 implies the convergence of
the right hand side of the latter equality to the corresponding terms in (24), as expected.

5. Error estimates on the numerical solution

The error estimate is performed by giving a priori estimates on the difference fh − f ,
where fh is built thanks to the numerical scheme and f is the exact solution to (11).
The difference fh − f is obviously a solution to the difference of equations (16) and (11)
respectively divided by xi and x. A mere integration by parts enables to give to equation
(11) divided by x a convenient form. Lemma 5.1 shows that summations by parts can
yield a similar result in the discrete case. Then, estimating the difference fh − f is easy
thanks to Proposition 3.6.

When the mesh is uniform, that is ∆xi = h for all i ∈ {0, ..., Ih}, the discrete coagu-
latation and fragmentation terms read

−
Cn

i+ 1
2

− Cn
i− 1

2

h
= h

i−1
∑

j=0

xj aj,i−j−1 fn
j fn

i−j−1 − h
Ih
∑

j=0

xi ai,j fn
i fn

j ,(47)

Fn
i+ 1

2

−Fn
i− 1

2

h
= −h

i−1
∑

j=0

xj bj,i f
n
i + h

Ih
∑

j=i+1

xi bi,j fn
j .(48)

The following Lemma gives a simplified expression of these variation rates.

Lemma 5.1. Assume that a and b satisfy (4) and (25) respectively and consider a uniform
mesh, that is, ∆xi = h for all i. We also assume that the initial datum fin is bounded in
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L∞(R+). Let (s, x) ∈ τh
n × Λh

i , with n ∈ {0, . . . , N − 1}, i ∈ {0, . . . , Ih}. Then

−
Cn

i+ 1
2

− Cn
i− 1

2

xi h
=

1

2

∫ ξh(x)

0
ah(x′, x − Ξh(x′)) fh(s, x′) fh(s, x − Ξh(x′)) dx′(49)

−

∫ R

0
ah(x, x′) fh(s, x′) dx′ fh(s, x) + εh

c (x)

Fn
i+ 1

2

−Fn
i− 1

2

xi h
= −

1

2

∫ ξh(x)

h
bh(x′, x − x′) dx′ fh(s, x)(50)

+

∫ R

Ξh(x)
bh(x, x′ − x) fh(s, x′) dx′ + εh

f (x),

where εh
c and εh

f denote first order terms with respect to h in the strong L1 topology:

‖εh
c ‖L1 ≤

R

4
‖fh‖2

L∞ ‖a‖L∞ h(51)

‖εh
f ‖L1 ≤

(

R

2
‖fh‖L∞ + ‖fh‖∞,1

)

‖b‖L∞ h.(52)

Proof: First, the variation rates have to be written in such a way that the volume xi

is factored out. To this aim, we consider for instance the fragmentation term: since the
mesh is uniform, there holds xi+ 1

2
− xj = xi−j and we have, for i ≥ 1,

−h
i−1
∑

j=1

xj bj,i f
n
i = h

i−1
∑

j=1

xi−j bj,i f
n
i − xi+ 1

2
h

i−1
∑

j=1

bj,i f
n
i

= h
i−1
∑

j=1

xj bi−j,i f
n
i − xi+ 1

2
h

i−1
∑

j=1

bj,i f
n
i .

Thus, using the symmetry property (35) of bi,j

−h

i−1
∑

j=1

xj bj,i f
n
i = h

i−1
∑

j=1

xj bj,i f
n
i − xi+ 1

2
h

i−1
∑

j=1

bj,i f
n
i ,

which finally gives

h

i−1
∑

j=1

xj bj,i f
n
i =

h

2
xi+ 1

2

i−1
∑

j=1

bj,i f
n
i ,

and for (48)

Fn
i+ 1

2

−Fn
i− 1

2

hxi
= h



−
x0

xi
b0,i f

n
i −

xi+ 1
2

xi

1

2

i−1
∑

j=1

bj,i f
n
i +

Ih
∑

j=i+1

bi,j fn
j





= h



−
x0

xi
b0,i f

n
i −

h

4xi

i−1
∑

j=1

bj,i f
n
i −

1

2

i−1
∑

j=1

bj,i f
n
i +

Ih
∑

j=i+1

bi,j fn
j
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since xi+ 1
2

= xi + h
2 . We have used convention (34), so that b0,i is equal to zero whenever

i = 0. We define

εh
f (x) = −h

x0

xi
b0,i fn

i −
h2

4xi

i−1
∑

j=1

bj,i f
n
i

and then get (50). Moreover, estimating the x integral of this term is equivalent to
estimating the following sum

h

Ih
∑

i=0

∣

∣

∣

∣

∣

∣

h
x0

xi
b0,i f

n
i +

h2

4xi

i−1
∑

j=1

bj,i f
n
i

∣

∣

∣

∣

∣

∣

.

The first term in this sum is bounded if one remarks that x0/xi ≤ 1 while the second one
is bounded by noting that

h2

4xi

i−1
∑

j=1

bj,i ≤ h ‖b‖L∞

(i − 1)h

4xi
≤

h

4
‖b‖L∞ .

Hence, applying Proposition 3.6, the approximate solution is bounded in L∞ and estimate
(52) easily follows.

Now, turning to equation (47) and remarking that xi− 1
2
− xj = xi−j−1, we similarly

prove that

−
Cn

i+ 1
2

− Cn
i− 1

2

xi h
=

xi− 1
2

2xi
h

i−1
∑

j=0

aj,i−j−1 fn
j fn

i−j−1 − h

Ih
∑

j=0

ai,j fn
i fn

j ,

which gives expression (49) by setting

εh
c (x) = −

h2

4xi

i−1
∑

j=0

aj,i−j−1 fn
j fn

i−j−1

and the estimate (51) is obtained in the same way as (52). 2

Therefore, both terms (51) and (52) have to be compared to the explicit formulation of
the continuous coagulation and fragmentation terms

−
1

x

∂ CR

∂ x
(t, x) =

1

2

∫ x

0
a(x′, x − x′)f(t, x′)f(t, x − x′)dx′(53)

−

∫ R

0
a(x, x′)f(t, x′)dx′ f(t, x),

1

x

∂ FR

∂ x
(t, x) = −

1

2

∫ x

0
b(x′, x − x′)dx′ f(t, x) +

∫ R

x
b(x, x′ − x)f(t, x′)dx′.(54)
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Using formulae (49), (50), (53) and (54), equation (11) and the scheme (16), we easily get
for t ∈ τn,

∫ R

0

∣

∣

∣fh(t, x) − f(t, x)
∣

∣

∣ dx ≤

∫ R

0

∣

∣

∣fh(0, x) − fin(x)
∣

∣

∣ dx

+

4
∑

α=1

[

Eh
c,α + Eh

f,α

]

+ Eh
t,n + ‖εh

c ‖L1 + ‖εh
f ‖L1 ,(55)

where
(

Eh
c,α

)

α=1,..,4
are error terms related to the coagulation operator

Eh
c,1 =

1

2

∫ t

0

∫ R

0

∫ ξh(x)

0

∣

∣

∣
ah(x′, x − Ξh(x′)) fh(s, x′) fh(s, x − Ξh(x′))

− a(x′, x − Ξh(x′)) f(s, x′) f(s, x − Ξh(x′))
∣

∣

∣ dx′ dx ds

Eh
c,2 =

1

2

∫ t

0

∫ R

0

∫ ξh(x)

0

∣

∣

∣
a(x′, x − Ξh(x′)) f(s, x′) f(s, x − Ξh(x′))

− a(x′, x − x′) f(s, x′) f(s, x − x′)
∣

∣

∣ dx′ dx ds

Eh
c,3 =

1

2

∫ t

0

∫ R

0

∫ x

ξh(x)
a(x′, x − x′) f(s, x′) f(s, x − x′) dx′ dx ds

and

Eh
c,4 =

∫ t

0

∫ R

0

∫ R

0

∣

∣

∣
ah(x, x′) fh(s, x) fh(s, x′) − a(x, x′) f(s, x) f(s, x′)

∣

∣

∣
dx′ dx ds,

whereas
(

Eh
f,α

)

α=1,..,4
are error terms related to the fragmentation operator

Eh
f,1 =

1

2

∫ t

0

∫ R

0

∫ ξh(x)

h

∣

∣

∣bh(x′, x − x′) fh(s, x) − b(x′, x − x′) f(s, x)
∣

∣

∣ dx′ dx ds

Eh
f,2 =

1

2

∫ t

0

∫ R

0

∫

[0,h]∪[ξh(x),x]
bh(x′, x − x′) fh(s, x) dx′ dx ds

Eh
f,3 =

∫ t

0

∫ R

0

∫ R

Ξh(x)

∣

∣

∣
bh(x, x′ − x) fh(s, x′) − b(x, x′ − x) f(s, x′)

∣

∣

∣
dx′ dx ds

and

Eh
f,4 =

∫ t

0

∫ R

0

∫ Ξh(x)

x
bh(x, x′ − x) fh(s, x′) dx′ dx ds.
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Finally, Eh
t,n is the error due to the time discretization:

Eh
t,n =

∫ t

tn

{

∫ R

0

[

1

2

∫ ξh(x)

0
ah(x′, x − Ξh(x′)) fh(s, x′) fh(s, x − Ξh(x′)) dx′

+

∫ R

0
ah(x, x′) fh(s, x) fh(s, x′) dx′ + εh

c (x) +
1

2

∫ ξh(x)

h
bh(x′, x − x′) fh(s, x) dx′

+

∫ R

Ξh(x)
bh(x, x′ − x) fh(s, x′) dx′ + εh

f (x)

]

dx

}

ds.

On the one hand, the error given by Eh
c,2 is estimated from the smoothness of the kernel

a and of the solution f to (11). Indeed, since in this section a is taken in W 1,∞
loc , we have

for all x ∈ (0, R) and x′ ∈ Λh
i

∣

∣a(x′, x − xi) − a(x′, x − x′)
∣

∣ ≤ ‖a‖W 1,∞ h

and applying Proposition 3.6, the W 1,∞ estimate (43) on f gives
∣

∣f(t, x − xi) − f(t, x − x′)
∣

∣ ≤ ‖f(t, .)‖W 1,∞ h

Thus, it yields

(56) Eh
c,2 ≤

R2

4
‖f‖∞

(

‖a‖W 1,∞ ‖f‖∞ + ‖a‖L∞ ‖f‖L∞(W 1,∞)

)

t h.

On the other hand, we consider the terms Eh
c,3, E

h
f,2 and Eh

f,4 which are all integrals on a

domain of size t R h. Then L∞ bounds on f and fh give

Eh
c,3 ≤ ‖a‖L∞ ‖f‖2

L∞ t R h(57)

and

Eh
f,2 + Eh

f,4 ≤ 2 ‖b‖L∞ ‖fh‖L∞ t R h.(58)

The error due to the time discretization is treated similarly and it is easily seen that

Eh
t,n ≤ 2

{

R2 ‖fh‖2
L∞ ‖a‖L∞ + R2 ‖fh‖L∞ ‖b‖L∞ + ‖εh

c ‖L1 + ‖εh
f ‖L1

}

∆t(59)

since |t − tn| ≤ ∆t.
Finally, we turn to the estimation of terms Eh

c,1, E
h
c,4, E

h
f,1 and Eh

f,3. A detailed calculation

is given for Eh
c,1. Estimations for the other terms are obtained by using similar arguments

and details are left to the reader to check. First we perform a change of variable x → y =
x − Ξh(x′) and split Eh

c,1 into three parts:

Eh
c,1 ≤

1

2

∫ t

0

∫ R

0

∫ R

0

∣

∣

∣ah(x′, y) − a(x′, y)
∣

∣

∣ f(s, x′) f(s, y) dx′ dy ds

+
1

2

∫ t

0

∫ R

0

∫ R

0
ah(x′, y)

∣

∣

∣
fh(s, x′) − f(s, x′)

∣

∣

∣
f(s, y)dx′dy ds

+
1

2

∫ t

0

∫ R

0

∫ R

0
ah(x′, y)fh(s, x′)

∣

∣

∣
fh(s, y) − f(s, y)

∣

∣

∣
dx′ dy ds.
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Thus, it yields,

Eh
c,1 ≤

(

t R2 ‖f‖2
L∞ ‖a‖W 1,∞

) h

2

+
R

2
‖a‖L∞

(

‖fh‖L∞ + ‖f‖L∞

)

∫ t

0
‖fh(s) − f(s)‖L1 ds.(60)

Similarly,

Eh
c,4 ≤

(

t R2 ‖f‖2
L∞ ‖a‖W 1,∞

) h

2

+
R

2
‖a‖L∞

(

‖fh‖L∞ + ‖f‖L∞

)

∫ t

0
‖fh(s) − f(s)‖L1 ds.(61)

and

Eh
f,1 + Eh

f,3 ≤ 2
(

t R2 ‖f‖L∞ ‖b‖W 1,∞

)

h

+ 2R ‖b‖L∞

∫ t

0
‖fh(s) − f(s)‖L1 ds.(62)

Finally, using (55) and gathering estimates (56)-(62), we conclude thanks to Gronwall’s
lemma that

‖fh − f‖L∞(0,T ;L1(0,R)) ≤ C(T,R)
{

‖fh(0, ·) − fin‖L1(0,R) + (h + ∆t)
}

.

To get estimate (27), one only has to remember that fin is taken in W 1,∞
loc , so that the

finite volume approximation of the initial datum by fh(0, ·) is actually of order 1 in L1

with respect to h.

6. Numerical simulations

This section is devoted to the numerical study of two different phenomena: the conver-
gence to equilibrium under the detailed balance condition and the gelation phenomenon,
that is, the possible loss of matter during time evolution.

6.1. Detailed balance kernels and convergence to equilibrium. We assume that
the coagulation and fragmentation coefficients fulfil the detailed balance condition: there
exists a nonnegative function M ∈ L1

1(R
+ × R

+), such that

(63) a(x, x′)M(x)M(x′) = b(x, x′)M(x + x′), (x, x′) ∈ R
+ × R

+.

Observe that this condition implies that M is a stationary solution to (7), usually refered
to as an equilibrium. An additional and interesting consequence of the detailed balance
condition (63) is the existence of a Lyapunov functional H given by

H(f) :=

∫

R+

f(t, x)

(

log

(

f(t, x)

M(x)

)

− 1

)

.
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Indeed, any positive solution f of the coagulation-fragmentation equation satisfies

d

dt
H(f) = −

1

2

∫

R+×R+

(

a(x, x′) f(t, x) f(t, x′) − b(x, x′) f(t, x + x′)
)

(

log(a(x, x′)f(t, x) f(t, x′)) − log(b(x, x′) f(t, x + x′))
)

dx dx′

≤ 0.

Since any such solution f decays the Lyapunov functional, convergence of f towards the
equilibrium state M is expected. The first series of results proposed in this section is
concerned with the observation of this trend to equilibrium. We choose kernels a and b as
follows:

a(x, x′) = b(x, x′) = (xx′)1/2,

so that

M(x) = exp(−x), x ∈ R
+.

As an initial datum, we take

fin(x) =

{

2, if 0 ≤ x ≤ 1,
0, else.

with R = 30, ∆t = 0.004.
From a numerical point of view, some care is needed to compute the small x-behavior

of the stationary state, taking into account that it also depends on its values for large
x. Therefore, it is important to consider a suitable mesh in order to obtain an accurate
numerical solution when x is small but also for large x. We construct the following mesh:

xi−1/2 =











e−6+ 7 i
N for 0 ≤ i ≤ N,

e + (R − e)

(

i − N

N

)3/2

for N + 1 ≤ i ≤ 2N,

with N = 25, 50, 100 and 200. This mesh satisfies the condition (13) and is extremely
refined in the region close to the origin in order to describe with a lot of accuracy the
solution in this region. On the other hand, the mesh ∆xi is increasing for large x in order
to use a large enough truncature R = 30 with few points.

In Figure 1, we report the evolution of the total number of particles M0, the second
moment of f , the Lyapunov functional H(f) and the behavior of the asymptotic profile
f(+∞, x). As expected, the total mass M1(t) remains constant throughout time evolu-
tion and the moments stabilize to a fixed value. As regards the asymptotic profile, our
numerical results are in fair agreement with the equilibrium M(x) = exp(−x), even when
using few points (N = 25). Moreover, in view of the comparison between the exact steady
state and the numerical solution for large time, we observe that using a non uniform mesh
allows to get a very good approximation in the region close to zero.

6.2. Occurrence of gelation. As already mentioned in the introduction, when the co-
agulation coefficient a increases sufficiently rapidly for large x, x′, a runaway growth takes
place and leads to the formation of a particle of “infinite mass” in finite time. Since no
such particle is taken into account in (7), some matter escapes from the system of particles
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Figure 1. Evolution of the total number of particles M0, the second mo-
ment of f , the functional H(f) and the stationary distribution f(x) in log
scale.

described by the density distribution function f . As a consequence, the total mass M1

decreases with time, and the gelation time Tgel is defined by

(64) Tgel := inf

{

t ≥ 0 ,

∫ ∞

0
x f(t, x) dx <

∫ ∞

0
x f(0, x) dx

}

∈ [0,+∞] .

Then we say that gelation occurs if Tgel < +∞.
An elementary proof that Tgel < +∞ was given in [20] when a(x, x′) = xx′, and a

central issue in the physical literature in the eighties was to figure out for which coagulation
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coefficients a the gelation time Tgel is finite. We restrict our discussion here to the model
case

(65) a(x, x′) = xµ (x′)ν + xν (x′)µ , b(x, x′) = (x + x′)γ , (x, x′) ∈ (R+)2 ,

with 0 ≤ µ ≤ ν ≤ 1 and γ ∈ R. Putting λ = µ + ν, it follows from [9, Theorem 3.1] that
there is a mass-conserving solution to (7) for any initial datum with a finite first order
moment when γ > λ− 2. On the other hand, when γ ∈ ( (λ− 3)/2 , λ− 2 ), it is proven in
[9, Thoerem 1.2] that gelation occurs when the initial first moment M1 is large while there
should be mass-conserving solutions when M1 is small enough. Finally, gelation should
occur for every non-zero solution when γ < (λ − 3)/2 [9, Section A.1].

We have first performed several computations to confirm the fact that the non con-
servative truncation allows to approximate as well mass-conserving solutions (γ > λ − 2)
as gelation phenomenon (γ < (λ − 3)/2). In these situations, the long time behaviour
does not depend on the initial mass, but only on the relative proportion of coagulation
and fragmentation phenomena. Not surprisingly, the solution is well approached by the
scheme in this case and we prefer to give a detailed account of the more delicate situation
where the long time behaviour strongly depends on the initial mass. Thus, the main pur-
pose of the numerical simulations presented in this section is to observe numerically the
intermediate regime γ ∈ ((λ − 3)/2, λ − 2), which is, due to the dependence with respect
to the initial datum, the most difficult to study.

We restrict ourselves here to the model case (65) with µ = ν = λ/2; that is,

a(x, x′) = (x x′)λ/2 , b(x, x′) = (x + x′)γ , (x, x′) ∈ (R+)2 ,

with λ = 5/2 and γ = 0. We take the following initial datum f0:

(66) f0(x) = M1 exp(−x) , x ∈ R
+ .

Thus, the gelation phenomenon does take place when the initial mass M1 is large enough
and Tgel < +∞ (see [9, Thoerem 1.2]) and the authors conjecture that for a small initial
mass M1, there is a mass-conserving solution.

In Figure 2, we present our results for an initial mass M1 = 0.4 and observe that gelation
occurs at finite time (Tgel ≃ 1). We see that the choice of the truncation (9), (10) and the
scheme (16)-(21) provide a good estimate of the gelation phenomenon.

Next, the moments Mℓ(t) are expected to blow up as t → Tgel for ℓ ≥ 2. We compute
numerical approximations of the solution to (7) with initial datum (66) for increasing
values of the truncation parameter R. We define the moment of order ℓ ≥ 0 of the
numerical approximation by

Mh
ℓ (tn) =

Ih
∑

i=0

∆xi xℓ
i fn

i ,

and we plot the time evolution of the moments of order 1, 2, and 3 (see Figure 2). It
is clear that the gelation transition takes place in finite time and that there is a sudden
growth of the moments of order 2 and 3 near the numerical gelation time. In particular,
the growth rate increases for increasing values of R, which is seemingly a good evidence
for occurrence of blow-up. The fact that these moments decrease after the numerical
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gelation time is due to the finite length of the interval of computation (0, R). Indeed, due
to the non conservative approximation, the amount of mass Fn

Ih+1/2
is lost and high order

moments then start to decrease with time.
On the other hand, we perform other computations (see Figure 3) for a small initial

mass M1 = 0.25 and observe that in this case the solution is mass-conserving. Moreover,
the numerical solution converges as time goes to infinity to an equilibrium (note that
the detailed balance condition is not valid for these kernels a and b (65)): there are two
different regimes in this case, the solution first spreads out and next concentrates itself to
reach a steady state (see last pictures of Figure 3).

7. Conclusion

This paper provides an extensive study of a discrete approximation of coagulation
and fragmentation equations. The scheme first introduced for the discretization to the
coagulation-fragmentation equation in [12] proves unexpectedly efficient in the description
of gelation as well as long time behaviour of solutions to this model. In particular, it should
be emphasized that mass conservation or dissipation is obtained in strong agreement with
theoretical works.

The discretization is based on a divergence formulation, which (in association with the
finite volume method) makes it well adapted to the observation of the time evolution of
the total mass. Finally, numerical results seem to indicate the validity and the flexibil-
ity of the present approach that, to our opinion, will make deterministic schemes much
more competitive with Monte Carlo methods in several situations for coagulation and
fragmentation models.

Acknowledgement

The first author wishes to thank N. Mauser for providing him the best possible scien-
tific and human conditions to complete this work. He also wants to thank, for financial
support, the Austrian Ministry of Science (BM:BWK) via its grant for the Wolfgang Pauli
Institute, the Austrian Science Foundation (FWF) via the START Project (Y-137-TEC)
of N. Mauser, and the European network HYKE funded by the EC as contract HPRN-
CT-2002-00282.

References

[1] M. Aizenman and T.A. Bak, Convergence to equilibrium in a system of reacting polymers, Comm.
Math. Phys. 65 (1979), pp. 203–230.

[2] H. Babovsky, On a Monte Carlo scheme for Smoluchowski’s coagulation equation, Monte Carlo
Methods Appl., 5 (1999), pp. 1–18.

[3] T. A. Bak and O. Heilmann, A finite version of Smoluchowski’s coagulation equation, J. Phys. A,
24 (1991), pp. 4889–4893.

[4] F. P. da Costa, A finite-dimensional dynamical model for gelation in coagulation processes, J. Non-
linear Sci., 8 (1998), pp. 619–653.

[5] R. L. Drake, A general mathematical survey of the coagulation equation, in Topics in Current Aerosol
Research (Part 2), International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford,
UK, (1972), pp. 203–376.



32 JEAN-PIERRE BOURGADE AND FRANCIS FILBET

 0.395

 0.396

 0.397

 0.398

 0.399

 0.4

 0  0.2  0.4  0.6  0.8  1

M
^
1
(t

)

t

R = 1400
R = 2250
R = 3300
R = 6000

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1
M

^
2
(t

)
t

R = 1400
R = 2250
R = 3300
R = 6000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  0.2  0.4  0.6  0.8  1

M
^
3
(t

)

t

R = 1400
R = 2250
R = 3300
R = 6000

-35

-30

-25

-20

-15

-10

-5

 0

 0  1000  2000  3000  4000  5000  6000

lo
g
(f

(t
,x

))

x

t = 0.000
t = 0.225
t = 0.450
t = 0.675
t = 0.900
t = 1.125

Figure 2. Initial mass M1 = 0.4: Evolution of the total mass of particles
M1, the second and third moments of f and the distribution f(t, x) in log
scale at time t = 0, 0.225, 0.45, 0.675, 0.9 and 1.125 (after blow-up).

[6] A. Eibeck and W. Wagner, An efficient stochastic algorithm for studying coagulation dynamics and

gelation phenomena, SIAM J. Sci. Comput., 22 (2000), pp. 802–821.
[7] L. D. Erasmus, D. Eyre, and R. C. Everson, Numerical treatment of the population balance

equation using a Spline-Galerkin method, Computers Chem. Engrg., 8 (1994), pp. 775–783.
[8] M. Escobedo, S. Mischler, and B. Perthame, Gelation in coagulation and fragmentation models,

Comm. Math. Phys., 231 (2002), pp. 157–188.
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ETH Zürich, Birkhäuser Verlag, Basel, 1992.
[20] F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A,

14 (1981), pp. 3389–3405.
[21] J. Makino, T. Fukushige, Y. Funato, and E. Kokubo, On the mass distribution of planetesimals

in the early runaway stage, New Astronomy, 3 (1998), pp. 411–417.
[22] H. Tanaka, S. Inaba, and K. Nakaza, Steady-state size distribution for the self-similar collision

cascade, Icarus, 123 (1996), pp. 450–455.
[23] R.M. Ziff and E.D. McGrady, The kinetics of cluster fragmentation and depolymerisation, J. Phys.

A 18 (1985), pp. 3027–3037.

Jean-Pierre Bourgade

University of Vienna,

Nordbergstrasse 15

A-1090 Vienna

AUSTRIA

e-mail: bourgade@mip.ups-tlse.fr

Francis Filbet

MIP, Université Paul Sabatier
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