N
N

N

HAL

open science

The Green-Kubo formula for locally interacting open
fermionic systems
Vojkan Jaksic, Yoshiko Ogata, Claude-Alain Pillet

» To cite this version:

Vojkan Jaksic, Yoshiko Ogata, Claude-Alain Pillet. The Green-Kubo formula for locally interacting
open fermionic systems. Annales Henri Poincaré, 2007, 8 (6), pp.1013-1036.

0327-7 . hal-00090544v2

HAL Id: hal-00090544
https://hal.science/hal-00090544v2
Submitted on 4 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1007/s00023-007-


https://hal.science/hal-00090544v2
https://hal.archives-ouvertes.fr

The Green-Kubo formula for locally interacting fermionic open
systems

V. Jakse!, Y. Ogatd?, C.-A. Pillet

!Department of Mathematics and Statistics
McGill University
805 Sherbrooke Street West
Montreal, QC, H3A 2K6, Canada

2Department of Mathematics, University of California, Davis
Davis, CA 95616, USA

3Department of Mathematical Sciences
University of Tokyo
Komaba, Tokyo,153-8914 Japan

‘FRUMAM
CPT-CNRS, UMR 6207
Université du Sud, Toulon-Var, B.P. 20132
83957 La Garde Cedex, France

January 4, 2007

Abstract

We consider a model describing finitely many free Fermi gas ressreompled by local interactions and
prove the Green-Kubo formulas and the Onsager reciprocity relatansefit and charge fluxes generated by
temperature and chemical potential differentials.
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1 Introduction

This is the fourth in a series of papers [JOP1, JOP2, JOPBhderith derivation of Green-Kubo formulas (GKF)
and Onsager reciprocity relations (ORR) in quantum siedistnechanics. The first two papers [JOP1, JOP2] were
devoted to the abstract axiomatic derivation of GKF and O&Rpen systems driven by thermodynamical forces
associated to temperature and chemical potential diffiadlen This paper and [JOP3] are devoted to the study of
concrete models.

In [JOP3] we have studied the well-known spin-fermion matk=cribing the interaction of aN-level atom
with finitely many independent free Fermi gas reservoirs, [BeSp, JP2]. Combining the results of [JOP1, JOP2]
with spectral theory of non-equilibrium steady states tged in [JP2] we have established GKF and ORR for
this class of models.

In this paper we study a model describing finitely many freerftgas reservoirs coupled by local interactions
and show that the abstract derivation of [JOP1, JOP2] comabivith scattering theory of non-equilibrium steady
states (see [BM1, AM, BM2, Rul, FMU]) yields the GKF and ORR{fus class of models.

Throughout the paper we shall assume that the reader isdamith general aspects of linear response theory
discussed in [JOP1, JOP2, JOP3] and with the algebraic fammaf quantum statistical mechanics [BR1, BR2].
A modern introduction to these topics can be found in [JP3UFihd in the recent lecture notes [AJPP1].

The paper is organized as follows. In Subsection 1.1 fortiwotal purposes we review the description of a
free Fermi gas in the algebraic formalism of quantum stesismechanics. In Subsection 1.2 we introduce the
model and state our results. The strategy of the proof isdhgesas in [JOP3] and is described in Section 3.1.
This strategy reduces the proof of all our results to a texdimstimate formulated in Theorem 3.1. This estimate,
which is our main technical result, is established in SecB2.

Acknowledgment. The research of V.J. was partly supported by NSERC. A paltisftork has been done during
V.J.’s visit to CPT-CNRS and during his stay as a Forchheixisiting Professor at The Hebrew University of
Jerusalem. He would like to thank H. Farkas and Y. Last fohttepitality of the Einstein Institute of Mathematics
at The Hebrew University. The research of Y.O. was suppdiyeithie Japan Society for the Promotion of Science.
A part of this work has been done during the stay of Y.O. at CNRS, partly supported by the Canon Foundation
in Europe and JSPS.

1.1 Prdiminaries

Let h and hy be given Hilbert space and Hamiltonian. The correspondiag fFermi gas is described by the
C*-dynamical systeniO, ) where:

(i) © = CAR(bh) is the CAR algebra ovelj. We denote byu*(f)/a(f) the creation/annihilation operator
associated tg € h. As usuala® stands for eithes or a*;

(ii) 7¢ is the group of Bogoliubow-automorphisms generated hy, 74 (a™ (f)) = a¥ (e!**o f). We denote by
0o the generator ofy;

The gauge group of the free Fermi gas is the group of Bogoliubautomorphism#¥, ¢ € R, generated by
the identity operator oh. The physical observables are gauge invariant and henecepts of

Oy ={AcO|99(A) = Aforall p € R}.

Oy is therg-invariantC*-subalgebra of) generated bya*(f)a(g) | f,g € b} and1.
Let3 > 0 andu € R be parameters ands,, the gauge-invariant quasi-free state@menerated by

1
Ton =7 T Blho—m)
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The quantum dynamical systef@®, 7, wgs,,) describes a free Fermi gas in thermal equilibrium at invesseper-
ature3 and chemical potential. We remark thatg,, is the unique3-KMS state for theC*-dynamicsr o 9+
and thatwg,, [ Oy is a(7y, 8)-KMS state onOy.

LetV € Oy be a self-adjoint perturbation ang the perturbed*-dynamics generated Wy, = dy + iA[V] -]
where) € R is a coupling constant. We recall that fare O andt > 0,

THA) = T(A) + > ([N / [0 (V) [+ 5 [0 (V), 1o (A)] -+ 1] dsy - - - ds. (1.1)
n=1 0<sn < <1<t

In this paper we shall consider self-adjoint perturbatiohihe form

K ng

V= Z H a” (ug;)a(vg;), (1.2)

k=1j=1

where K andn;’s are finite. We sefi = maxj, n,. DenoteDy = {us;,vy;}. By rescaling), without loss of
generality we may assume that
max =1. 1.3
mac || (L.3)

If 7 = 1, thent{ (a#(f)) = a¥ (e!"> f) wherehy = ho + A X", (vk, - )ux, and so the>*-dynamicsr, is also
a group of Bogoliubow-automorphisms. This special case is exactly solvable astbken studied in detail in
[AJPP2] (for additional information and references abaudsi-free open quantum systems we refer the reader to
recent lecture notes [AJPP1, JKP]).

The following technical result will play a key role in our pap

Theorem 1.1 LetA = a™(f;)---a™(f,,) be a monomial of ordem and
Ci (50, -y 8n) = VL[5 (V). [ [ (V) 70 (A)] -1

Then for alln > 0 there exist a finite index sét, (A), monomiaIst({f; € O, and scalar functions}(ﬂ, such that
C(”) — G(") F(”) 1.4
T (s0r i) = D GT(S0r- s 50)FY ) (S0, 5n). (1.4)
PEPR(A)
Moreover,

1. The order of the monomiﬂﬁl’,’; does not excee?t{n + 1)(m — 1) + m.
2. The factors OFXL; are from

{a(e*™g)| g € Do,s € {0,51,..., 5, }} U{a™ (e™"0g) | g € A},

whereA = {f1,---, fm}. The number of factors from the first set does not ex¢eed 1)(27 — 1) while
the number of factors from the second set does not exeeed.

3. Suppose that

o0
(= / swp  |(f,e™og)|dt < oo,
0 f€Doy,geDoUA

denote -
éo:/ sup |(f,e"*"0g)|ds,
0

f.9€Do
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and set .
if =1
Ay = 2K Lo 2m—2 ! ’
0= 1 2n — 2)“"~
(27 ) if m>1

MKy (2m—1)2n—1
Ifm=1and|A| < Aporifm > 1and|\| < A then the sum

W= Aty / GG (50, -+, 5n)| dso - s,
n=0

PEPR(A) <5, < -<sg<o0

is finite and satisfies
MK ||

(1= [Al/Ao) + 2n(27 — 2)K€0|,\|> -1 (1.5)

W<<1+

Remark 1. Parts (1) and (2) of this theorem are easy to prove and aeddi@t reference purpose. The key fact
is Part (3) which we shall prove using the fundamental Bér@Eu® -Maassen integral estimate [BGM]. Related
but weaker results can be obtained using the integral etstined [BM1, BM2, FMU].
Remark 2. In our applications we shall not need the explicit form of foeind (1.5).

Ouir first regularity assumption is

(A1) There exists a dense vector subspRce § such thatD, C D and that the functions
R >t (f,eg),
are inLY(R,dt) forall f,g € D.

Note that this assumption implies that has purely absolutely continuous spectrum.
A consequence of Theorem 1.1 is

Theorem 1.2 Assume that (A1) holds and thaf < Aq. Then the limits

7;\"(14) = lim TO_t o T/t\(A), (1.6)

t—+o00
exist for all A € O and define a-automorphismy,” : © — O.

Remark. Under additional regularity assumptions one can also pltédrmation about the rate of convergence
in (1.6), see [JP4] for details.

Although Theorem 1.2 is a well-known result (see [Ro, BM1, BNFMU]), for the reader convenience we
will sketch its proof in Subsection 2.2.

1.2 Themode and theresult

Our starting point are finitely many, say, independent free Fermi gassRs in equilibrium at inverse tempera-
tures; > 0 and chemical potentials; € R. More preciselyR; is described by the quantum dynamical system
(0;, 7j,w,) where:

(i) O; = CAR(h,) is the CAR algebra over the single fermion Hilbert spage

(i) 7} is the group of Bogoliubow-automorphisms generated by the single fermion Hamiltohia
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(i) wj; is the gauge-invariant quasi-free state generated by

1
Ty = 1 4+ eBihi—ns)’

We denote by}, the gauge group dk ;. The generators af; andy; are denoted by; and¢;.

Let M M M
b:@bja hOZ@hj, T:@T]
j=1 j=1 j=1

The joint systenR = ) R; in absence of interaction is described by the quantum dycarsystem O, 1, w),
where© = CAR(bh), 7{ is the group of Bogoliubow-automorphisms generated hy, andw is the gauge-invariant
guasi-free state generated By We denote by, the generator of, and by¢ the generator of the gauge grotip
of the joint system. Obviously, =}, d; and{ =3, &;.

Let V € Oy be a perturbation of the form (1.2). This perturbation déssrthe coupling of the reservoirs,
and, possibly, self-interactions within the reservoirst L. € R be a coupling constant ang the C*-dynamics on
O generated by, = §p + iA[V, -]. The interacting joint system is described by the quanturmadyical system
(07 T w).

Let~, be asin Theorem 1.2 ang\ ;. = w o 7y . A consequence of Theorem 1.2 (see Subsection 2.2) is:

Theorem 1.3 Assume that (A1) holds and that < Ay. Then for allw-normal states) and A € O,
lim no7i(A) =wri(A).

t—+o00

The statew) is the NESS of the quantum dynamical systéth 7, w) [Rul, JP3]. Clearly, this NESS
depends or; andy;.
Let Boq > 0 andpeq € R be given (equilibrium) values of the inverse temperaturk @remical potential. We
are interested in linear responsefoto thermodynamical forces
Xj = ﬁcq - 6j7 ij = ﬂjuj - ﬂcqucq
LetX = (X5, ,Xn), Y = (Y1, ,Yy). We indicate the dependence &Y by denoting
WXy = w, WAXY + = WAt Txy =T.

Note that by Araki perturbation theotyyoo.+ is the unique3.,-KMS state for theC*-dynamicsr} o 9~ +eat. We
denote this state by eq-
In what follows we shall assume:

(A2) The operators; are bounded.

Although our method of proof extends to unboundet (see Remark 2 after Theorem 1.5), the above assump-
tion covers most cases of physical interest to which oudt®apply and allows for technically simpler exposition
of the proofs.

The observables describing the heat and charge flux dR; @ire

D; = M;(V), T =X (V). (1.7)
Clearly,®;, J; € Oy. The conservation laws

M

M
Zw)\xy+(q)j):0, ZWAXY+(‘7J'):O’
j=1

Jj=1
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hold. The entropy production of the NE&& xy + is defined by

M M M
Ep(waxy+) = waxvs [ =D 65 (85— 13 T5) | = D Xywaxy+(®5) + Y YViwaxy+(T))-
i=1 i=1

Jj=1

By the general results of [Ru2, JP2] (see also [TM, FMU, JQP2p(wrxy+) = 0. The strict positivity of
the entropy production for locally interacting fermion&servoirs can be established by using either perturbative

arguments (see [FMU]) or stability arguments (see Sectidiirnd[JP3] and [JP4]). This point is discussed in more

detail in the forthcoming review [JP5].
To study linear response afy xy 4, in addition to (A1)-(A2) we need the following regularitggumption.

(A3) Forall j andg € Dy, hjg € D.
Our final assumption concerns time-reversal invariance.
(A4) There exists a complex conjugatiemn h which commutes with alk; and satisfiesg = g for all g € Dy

If (A4) holds, then the ma@® (a™(f)) = a*(cf) extends to an involutive skewautomorphism ofo such
that® o 7/ = 7, 0 © andO(V) = V. This implies tha® o 7§ = 75" o © for all \. Note also that

(%)) = -2;,  O(J) =-J;
We set
L ={(X.Y) e R*M[]X;| < e [Vj| <},
D, ={(X,Y) e C*M[]X;| <e |V <},
Ras ={A€C||ReA| <A, |[Im )| < 6}
In the sequef; stands for eithe®; or J;. Our first result is:

Theorem 1.4 Suppose that Assumptions (A1)-(A3) hold andlet A < Ag. Then there exist > 0 andd > 0

such that the maps
A X,Y) = waxy+(35),

extend to analytic functions on the g&t s x D.. In particular, for any|\| < A, there existg(A) > 0 such that

the maps
(X7 Y) = W/\XY—&-(Sj)z

extend to analytic functions ab.y).

The kinetic transport coefficients are defined by

i
Ly = 8ij>\XY+((I)k)’X:Y:O7
Ll;\{lc = 8Y7 w)‘XY+(q)k)|X:Y:O’

(1.8)

y
Lyl = 0x,03xv+ ()| x_y —o»

y
Lyl = Oy,waxy+(Jk) ‘X:Y:m
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where the indice&/c stand for heat/charge. Fdr, B € Oy we set

1 t
LA(AB) = T / req(F(A)B) ds,

t——+o0 ¢

and

Beqa
£x(A,B) = lim / ds/ duwyeq(T5(A)TN(B)),

*_’+O° ﬂcq

whenever the limits exist. Our main result is:

Theorem 1.5 Suppose that Assumptions (A1)-(A3) hold and that< Ag. Theng, (A, B) is well-defined for
A,Bec{®y, -, Pn,T1,--- , I} and

LY, = S\ (2k, ®)),

Llj\{lc = ’Q’)\((I)k? \:7])’
(1.9)

LY, = e\(Jk, @)),

)\cc - ’Q‘)\(jkﬂ%)
Assume in addition that (A4) holds. Thég(A, B) is well-defined ford, B € {®1 - - ®pr, J1, - T s

LYy = La(®k, @),

)\hc - ‘CA((I)/ﬁ ‘73)
(1.10)

)\ch - [’)\(jka )’

L];\jcc = L)\(jka t7])v
and

kj
Ly = LAhh?

LY =ik (1.11)

Acc T HAcee?

kj _ rijk
L}\hC L)\ch

Remark 1.The formulas (1.9) are the GKF without time reversal assionptThe formulas (1.10) are the GKF
in the standard form. The formulas (1.11) are the Onsageproaity relations. The ORR are an immediate
consequence of (1.10) and the KMS condition, see [JOP1,JOP2
Remark 2. If m = 1, then our proofs give that Theorems 1.1-1.5 hold with= 1/2K/¢,. However, since in
this case the coupled system is quasi-free, these theommisecalso proven using trace class scattering theory
which yields better constants and wealth of additionalrimi@tion about the model. For more information about
this special case we refer the reader to [AJPP1, AJPP2, JKP].
Remark 3. With regard to the Green-Kubo formulas (1.10), a naturaktioe is whether the correlation functions
t — wxeq(TL(A)B) are absolutely integrable fot, B € {®q,---, P, J1, -+ - Jar}- This is a delicate dynamical
problem which is studied in [JPP]. In this paper we only dsthlihe existence of the improper integrals

t

lim Wheq (T3 (A)B) ds.

t——+o0 ¢
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Remark 4. By Theorem 1.4, the functions— L5/ u,v € {h,c}, are analytic fot\| < A, and can be expanded
into power series whose coefficients can be computed. Sudpw@ations can be used to verify that in specific
examples the transport coefficients are non-vanishing. réasons of space we shall discuss these perturbative
computations in the forthcoming review [JP5].

Remark 5. Our results are tailored for application to tight-bindiggé models of electronic transport in which As-
sumption (A2) is usually satisfied. However, all our proofteed to unbounded;’s as long ag>y C Dom CRED)

for all j and some: > f.4. It is an interesting technical problem to prove Theoremsahd 1.5 for unbounded
h;’s without this additional technical assumption.

Remark 6. Theorems 1.1-1.3 are fairly flexible and are easily adapgeal humber of different setups involv-
ing free Fermi gas reservoirs. The same applies to Theorefnant 1.5. For example, one may consider the
tensor product structure, where the joint system in absehogeraction is described b§ = O; ® --- ® Oy,
TO=T1® Ty, w=w Q- Quwy. This type of models was studied in [FMU]. Another class déted
models are local perturbations of the exactly solvable tEdaic Black-Box Model studied in [AJPP1, AJPP2].
Instead of coupled free fermionic systems one may consigpledX — Y quantum spin chains. Theorems 1.4
and 1.5 extend to these models with only notational charsges[JP5] for details.

Remark 7. We call A € O centered ifuyxy (A) = 0 forall |\ < Ag and(X,Y") € L. Our proof easily extends
to the general Green—Kubo formulas

Ox,wxxy+(A)| y_y_o= LA(A4,®;),  dv,uaxy(A)|_y_o= Lr(A,T)),
for centered observableswhich are polynomials in (f) with f € D.

We finish this subsection with some examples to which Thesreri+1.5 apply. Leg be the set of vertices of
a connected graph of bounded degree Agdhe associated discrete Laplacian actingg). We recall that

(Agy)(z) = > ¢(y)
ly—=z|=1

where|y — z| is the distance on the graphy is a bounded self-adjoint operator g || = sup,g d(x), where
d(x) is the degree of the vertex Letd, be the Kronecker delta function ate G. We shall call the graply
admissibleif there existsy > 1 such that for alke, y € G,

(0a,e71295,)| = O(Jt| ™), (1.12)

ast — oo. Clearly, the discrete Laplacian of an admissible graphpluasly absolutely continuous spectrum.

An example of admissible graphds= Z for d > 3. In this casey = d/2. Another example is the half-space
G =7y x 7% whereZ, = {0,1,---}andd > 1 (if d = 1 thenG = Z,). In this casey = (d + 2)/2.
Tubular graphs of the typ®, x I, wherel' C Z?~! is finite, are admissible witly = 3/2. Another well-known
admissible graph is a rooted Bethe lattice where 3/2.

Assumptions (A1)—(A4) and Theorems 1.1-1.5 hold if

(i) G, ...,Gn are admissible graphs;
(ii) b; = £2(G;) or more generally?(G;) ® C to allow for internal degrees of freedora.g.,spin);
(i) D is the subspace of finitely supported elements;of
(V) hy = —Ag;;
(V) ug;, v, belong toD.

Allowed interactions includ® = Vhop  yint where
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(i) Vhor describes tunneling junctions between the reservoirs:

VP =3 " i(a,y) (a(8,)a(8,) + a* (8,)a(5))

wheret : G x G — Ris a finitely supported functiori{= U;G;);
(i) Vit is alocal pair interaction
VI = " u(x,y)a® (5:)a" (6,)a(d,)a(s.),
z,y
wherev : G x G — R is finitely supported.

This concrete model is studied in detail in [JP5].

2 Basic propertiesof the model

In this section we prove Theorems 1.1, 1.2, and 1.3.

2.1 Proof of Theorem 1.1

We start with some preliminaries which are of independeterést. Letd = a; - - - a,, andB = b; - - - by where
thea;, andb; are creation/annihilation operators. Thdsand B are monomials of order: andq respectively. If
q is even it follows from the CAR that
[Byaj] = b1---bga; —a;by---by
= b1---bgaj — ({b1,a;} — bra;)ba - by
= —{bi,aj}tba---bg+bi(by---bgaj + a;ba---by)

q
- Z(_l)k{bkaaj}bl o bp_1bpg1 by,

k=1

and hence

w
=

I
NE

aq - aj_l[B,aj]aj+1 s Qm

.
I
—

I
NE

q
Z(_l)k{bkvaj}al e ajflbl cebp_1bpgr e bnaj+1 ct Q.
k=1

-
I
—

The anticommutatofby,, a; } on the right hand side is called contraction of the faéfoof B with the factora; of
A. Note that contractions are numbers.

Iterating the last formula we get, for any monomidls, Bs, . .. B,,+1 of even orderg;, ¢s, . . . g,+1 and any
monomialA of orderm

(B, [76" (Bn), [+ 5[5 (B1), 75 (A)] - - ]]] = > Gp(s0,++ 5 5n)Fp, (2.13)
PEPn(A,B1,...,Bni1)

where theF}, are monomials of order; + ¢2 + - - - + ¢n+1 + m — 2(n + 1) and the coefficienté&r,, are products
of n + 1 contractions. The sum on the right hand side runs over th®,gd, By, ..., B,+1) whose elementg
are contraction diagrams of the type displayed in Figure 1.
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A o o o'. e o o o .’o So

B, & o e o o o - S1
~ ,/'
B, © o e ®» o' o o So
-7
e ’
B3 ° ° [ 2 ° ' 53
7
7
7
’
7
B, ®© e o ¢ o o Sn
"\\
Bhi1® ° e ° ° ° ° Spi1 =0

Figure 1: An element of the s&,,.

Each line of this diagram represents a monomial, as labateth® left. Each dot on a line represents a
factor of the corresponding monomial. The dashed linesessmt contractions of such factors. From each line
of the diagram there is exactly one contraction going up arydfactor can belong only to one contraction. To a
contraction diagranp we associate its skeleton: a rooted tfieéevhose nodes aré (the root),1,...,n + 1 and
whose bonds correspond to the contractions (see Figurehg)sKeletori” is simply obtained by collapsing each
line of the contraction diagramto a single node. If there is an arrow going from the ngde the nodek in T" we
say thatj is a child ofk or thatk is the parent ofi (each node has a unique parent and we shall say that the root
node0 is its own parent). We can describe the rooted fre®y the function": {0,...,n+ 1} — {0,...,n+ 1}
which to a nodg associates its parefft(j). Reciprocally, any functiofi’ such thatl’(0) = 0 andT'(j) < j for
j=1,...,n+1defines arooted tréE. Such a function is called a climber of orde# 1 and there is a one-to-one
correspondence between climbers and rooted trees.

Suppose that all the factors of the monomiBlls.. .., B, are from{a*(g) | g € Dy} and let4 and.A be as
in Theorem 1.1. Then, the factors of the monomi#gjsare from

{a#(eis}“)g) g € Do,s €{0,81,...,8,}}U {a#(eis(’hog) |g € A}.

The number of factors from the first set does not exgeed 1)(g — 1), whereg = max gi. The number of factors
from the second set does not exceed- 1. If we denote

sup |(f,e"Mog)| fork =0,
f€Do,geA

sup |(f,el"hog)| for k > 0,
1,9€Do

Sk(t> =

then all coefficients, associated with a given skeleton tfEere bounded by

n+1
Gyl < TT Sty (s7i) — 55) = S(T),

j=1

where we set,, 11 = 0. Thus, if N(T") denotes the number of contraction diagrams with skeleg®itwe have
Yo IG < Y NDS(T),
pEP, TeTh 41

where7,, 1 denotes the set of all rooted trees with nod¢the root),1,...,n + 1. Let us computeV (7). To this
end denote by; the number of childs of the node For the tree of Figure 2 we have for example= 2, = 2,
ro =rg = 0,7, = 1andr,;; = 0. Clearly, N(T') = 0if 7o > m orr; > ¢; — 1. Otherwise, to construct a
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S0

S1 53

59 Sn

Sn+1

Figure 2: The skeleton tree corresponding to Figure 1.

diagramp whose skeleton i§" we first have to choose a factor on each IBg . .., B, 1. The number of such
choices is clearly;1 ¢z - - - ¢,+1. Now on line A we have to choose one factor for each of thechilds of node

0. There aren(m — 1)---(m — rg + 1) such choices. Similarly, on lin8; we have to chose, factors out of
theq, — 1 remaining. There arbpy — 1)(¢1 — 2) - - - (¢1 — 1) such choices. The same reasoning applies to lines
B,, ..., B,, and we conclude that

n —

n
N(T: m—rg)! H -—rj—l m —1g)! H —7"]—1

N(T).

We now turn to the proof of Theorem 1.1. Sine= Zszl Vi whereV,, are monomials of ordej, = 2ny (S0
q = 2m), we can write

K
Cgl)(so,...,sn) = Z [an+1v[7‘g”(vkn)a["' ’[Tgl(vk1)vTSO(A)]"']]]’

ki,..oskny1=1

and Parts (1) and (2) follow immediately with
K
Pu(A) = | A k) X PulA Vigs o Vi)

To prove (3), we start with the estimate

oGS KT ST NTD)S(T).

PEPL(A) TET, 11
Hence, _
WEZ|>\|”+1 Z / |G§(L;(so,. sn)| dso - - dsn,
=0 PEP(A) 0<s, < <so
satisfies

I/\
\H

Z Z / ]._.[ |)“KST(J) ST() — ))dSO"'dSn—l-
=1T€eT,

0=5,<8p—1--<50 J=1

We will need the following general result of [BGM].
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Theorem 2.1 Letmy, m; be two sequences of nonnegative numbers@gdwo integrable nonnegative func-
tions on[0, oo[. Denote by|g|| and||g|| their L!-norms, sey, = g andgy = ¢ for k > 0 and define

M(z) = ka, M(z) = Z Fz‘k.
k=0 k=0

To any rooted tred” € 7,, associate the weight (recall that is the number of childs of the nod}
w(T) = MpgMipy -+ - My, / H 97()(87() — 55)dso - -dsp_1.
0=5,<5p-1<--<s0 j=1

Then, the suil’ = >-° | >~ w(T) is finite if and only if the equation/ (||g|z) = = has a positive solution
2 such thatM (||g]|z) < oc. If z* denotes the least such solution, tH&h= M (||g]|=*).

To apply this result we seb; = 0 for £ = 0 andk > m, otherwise

- m!
L ATE
my, = 0 for k > 2m, otherwise
e — (2m)!
T en—k—1)

and
g(s) = [A[KS1(s), g(s) = [A[KSo(s).

Hence M (z) = 2n(1+ )21, M(z) = (1+z)™—1, ||g| = |A|Kfo, and||g|| = |A|K¢. An elementary analysis

shows that, if )

2K (g B
AO = 1 (2ﬁ _ 2)2n—2 )

= form>1
ki, (2n— 1)1 e

then, as long ab\| < Ag for @ = 1 and|\| < A, for @ > 1, the equationV/ (||g||x) = = has a least positive
solutionz* satisfying

for m =1,

2n
<z <
0SS TTN/Ay) + 2n(2n — 2) Ko\’

and that

2nK /|| >m 71
(1 —|X|/Ao) + 2n(2m — 2) K| | '

W <Wy= 1+ KLANz*)™" —1< (1 +
This ends the proof of Theorem 1.1.

2.2 Proofsof Theorems1.2and 1.3
Proof of Theorem 1.2. To establish the existence of the limit (1.6) for dlle O it suffices to consider the case
A = a*(f)with f € Dand||f|| = 1. Since

to
7o o (A) — 1o o (A) = i)\/ 7o “([Vi73(4)]) ds,

ty
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we have that
7t 0 7i2(A) — 77 o T (A)] < A / V5 ()] ds. (2.14)

The expansion (1.1) yields

[V, (A)] = [V, 75(A Z ()" / Vil (V) [ [t (V) 15 (A)] - -l dsa - - ds.

0<s,<--<s1<s

Our standing assumption (1.3) and the fact {hét = 1 implies that||F(" || <1 andwe can estimate
IV (V) L It (V) g (]IS D0 16 (551, w0
pGPn(A)

Part (3) of Theorem 1.1 yields that foX| < Ao,

/0 V()] ds < o (2.15)

The estimates (2.14) and (2.15) imply the existence of thi (iL.6) for |A| < Ay.
The mapy is obviously a«-morphism. To prove that it is an isomorphism, it sufficesttov that the limits

—t t
tilinoc ™ o7o(4),

exist for all A € O. Repeating the above argument we see that it suffices to $tatw t

/OOOI[V,TS(AHIIds < o0,

for A = a”(f), f € D. Butthis is a special case of Equ. (2.15).

Proof of Theorem 1.3. Sinceh has purely absolutely continuous spectrum the quantum ndipaé system
(O, 19, w) has the property of return to equilibrium: for altnormal stateg andA € O,

lim 7o 73(A) = w(A),

|t] — o0

see, e.g., [AJPP1]. The existence of norm-limits (1.6) eessthat

lim n(7(A)) = lim norg(ry ' ori(4) = lim nor(ry(4)) =w(y(4)),

t——+oo t—+4oo t——+oo

and the statement follows]

3 Proofsof Theorems1.4and 1.5

3.1 Strategy

The strategy of the proofs of Theorems 1.4 and 1.5 is basdukarguments in [JOP3]. Consider thé-dynamics
oxy onO generated by

Oxy = 8o — pet — 2535 —Z f@ (3.16)
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The reference statexy is the uniquéo xy, feq)-KMS state or0. Leto, xy be theC*-dynamics orO generated
by

hxy =oxy +iA[V, -].
The Araki perturbation theory [Ar, BR2, DJP] yields thatthexists a uniquér xy, Beq)-KMS state on0. We

denote this state hy, xy. The statesyxy andw, xy are mutually normal.
Recall thatg; stands for eithe®; or 7;. Our main technical result is:

Theorem 3.1 Suppose that Assumptions (A1)-(A3) hold andlet A < Ag. Then there exist > 0 andd > 0
such that for allt > 0 the functiong\, X,Y) — wyxy (7% (F;)) have analytic extensions ®, s x D. satisfying

sup |w>\Xy(T)t\(3j))| < 0.
AERA 5,(X,Y)ED, t>0

This result and the multi-variable Vitali theorem yield Dnem 1.4 (see Theorem 2.3 in [JOP3]). Moreover,
the relations

Ox,wrxy+(8k) = Aim Ox;waxy o X (8k), Oy, wrxy+(Sk) = Jim Oy wixy o (Ek),  (317)

hold for (A, X,Y) € Ry s x D.. The proof of Relations (1.9) is completed by invoking thidiwing identities
proven in [JOP1, JOP2]:

1 t Beq .
Ox;wrxy (TX(81)| x—y—o = ﬂeq/o ds/o duwieq (T3 (Fx) 72" (25)),

1 t Beq )
Ay, axy (TXE)) | y_y o = 5*/0 ds/o duwieq(73 () 7x" (J)))-
eq

Proposition 4.1 in [JOP2] yields that (1.9) and time-regésvariance (A4) imply (1.10). The KMS condition and
(1.10) imply (1.11) [JOP1, JOP2]. Hence, to complete thefsrof Theorems 1.4 and 1.5 we need to establish
Theorem 3.1.

3.2 Proof of Theorem 3.1

The GNS representation of the algeld?aassociated to the gauge-invariant quasi-free sigte can be explicitly
computed [AW, BR2]. LetF be the anti-symmetric Fock space oyerWe denote by)s the vacuum vector and
by N the number operator. Let

HZJ:@}—, Q=0 ® Q.

In the sequeBB($)) denotes th€'*-algebra of all bounded operators on a Hilbert spgacketC; be given complex
conjugations oty ; andC = @;C;. Without loss of generality we may assume tiatommutes withh ;. As usual,

we denot& f = f. The map
mxy(a(f) = a((I = Txy)2f) @ T+ (-D)N @ a*(TLF),

uniquely extends to a representationy : O — B(H) and the triple(H, 7xy, 2) is the GNS-representation of
the algebra) associated to the state(y .

In what follows we suppose that Assumptions (A1)-(A3) hoB} adding a constant tp., without loss of
generality we may assume that > 0.
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Lemma3.2 For 8 > 0andu € R set

w3

T a(a v

€(B,p) =

The functions
e (s,,y) = (14 ei[(f’—ﬂﬂ>s—<3“+y”)_1/2 ,

are continuous and, for fixed analytic in(z, y) on the sef{(s,z,y) € Ry x C?||z| < (3, p), ly| < e(B, 1)}
Moreover, for any < e(3, 1) one has

sup [l (s, 2,y)| < .
sERy,(z,y)EC?,|z|<4,|y|<d

Proof. Setr = a + ibandy = ¢ + id with a,b,¢,d € R, Ms = {(z,y) € C?||z| < 6,|y| < §} and write the

exponentin_ as
0(s,z,y) = — <u(s) <1 _iﬁﬁa> —i (d+bﬂﬁﬂj’ac>) )

where
u(s) = (8 —a) (s—ﬁ;—i_ac).
If (z,y) € Mswith§ < (3, then
b 5 Bu+e| B+ u)
‘ﬁ—a <ﬁ—5’ ‘derﬁ_a ) 56

and it follows thatd(R;. x Mj) is contained in the dashed region of Figure 3. An elementalgutation shows
that ford < ¢(3, u) this region does not intersect the half-lifies + ix /2. Another elementary calculation shows
that1 + e?(®+xMs) js contained in a bounded region of the half-plane

{z eC ‘ Rez>1-— ewﬁ(‘s_lé(ﬁv#)_l)} )

Thus,l_ is a bounded continuous function &1 x Mj; which is clearly analytic if(x, y) for any fixeds € R,..
This yields the result sina€/2 has obviously the same properties @nd= e?/2i_ for reals, z,y. O

The spectral theorem and Lemma 3.2 yield
Lemma 3.3 The maps
(XY) = (I=Txy)? € B),  (X,Y) = T3y € B),
extend to analyti&(h)-valued functions o, s, ,...)-
Since forX, Y real,||wxy (a¥ (f))|| = || f||, Lemma 3.3 implies
Lemma 3.4 Foranyé > 0 there existg(d) > 0 such that for allf € § the operator-valued function
(X,Y) = mxy (a®(f)) € B(H),

has an analytic extension 0, ;) which satisfies

sup  [|lmxy (@ ()] < (1 + )]
(X,Y)ED(s)
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281l + 1)

)
<0755

sPUu+1)

T —

/ —ir/2

Figure 3: The range of the exponéits, z, y).

Recall thaty xy is defined by (3.16). Let

X Y,
hXY:ho—Meq—Zﬂfjhj—Zﬁ]pj
i i e

Beq — X Beqtteq + Y
:Z[ qﬁ Ip; - qﬁq ip|,
J eq eq

wherep; is the orthogonal projection oly;. Clearly,e!ox¥ (a#(f)) = a#(elt"x¥ f) is, for fixed ¢, an analytic
function of X Y.

Set
K ng
Vxy(s) = Z H a* (e "y )a(e¥ XY vy,),
k=1j=1
and

Oaxy =1+ Z(*Aﬂeq)n / Vxy (Beqsn) -+ Vxy (Beqsi) dsi - - - dsy.
= 0<sp < <s1<1
Araki’s perturbation theory [Ar, BR2, DJP] yields that faf, Y real the statev, xy can be expressed in terms of
wxy as
wxy (AGrxy)

wxy (Gaxy) (3.18)

wrxy (A) =

Lemma 3.5 The function

(t7 A X, Y) — ny(Té(gAxy)) S B(H),
extends to a continuous function Bnx C x D¢, ..,) Which is analytic in(\, X, Y") for fixedt. Moreover, for
all A > 0and0 < € < €(Beq, fleq)s

sup 7xy (75 (Grxy )l < oo.
LERAEC,|A|<A,(X,Y)ED.
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Proof. Since forX,Y real,

Txy (16(Gaxy) = 1+ ) (=Afeq)” / Txy (Vy (Beasns ) - Txy (Vy (Beqsis t)) dsi - - - dsn,

n>1 0<s5,<--<5:<1
where
K nyg
xy (Vxy (Beqs; ) = Z H mxy (a* (e Peashxy elthon, )y sy (a(ePeashxv e oy, ),
k=1j=1

the statement follows from Lemma 3.@.

Lemma3.6 ForalltandA € O,

waxy (r4(A)) = waxy (1(4)) + —— | / oxy (VoA (Gaxy)) ds.  (3.19)

wxy (Gaxy

Proof. Relation (3.18) yields
(wrxy (T5(A)) — waxy (T6(A)) )wxy (Gaxy) = wxy ((TX(A) — 75(A))Grxy)-
Sincewxy is Tg-invariant we have
wxy ((T3(4) = 76(A)Gaxy) = wxy (15 0 R (A) = A)75 " (Gaxy))

— i / wxy (7 *(V, (A7 (Gaxy ) ds

t
—id [ wxr (V3 ()7 @) ds,
0
and (3.19) follows

Lemma 3.7 For any A > 0 there exist > 0 andé > 0 such that the function
(A X,Y) = wxy (Gaxy),
extends to an analytic function dhx D, which satisfies

(e >0 3.20
/\GRA,J,I(HX,Y)GDE leY(g/\XYN ( )

Proof. Sincewxy (Graxy) = (2, 7xv(Grxv)?), the first statement is a special case of Lemma 3.5. Since
wxy (Grxy) > 0for A\, X,Y real, by continuity (3.20) holds farandd small enoughD

Lemma 3.8 For any A > 0 there exist > 0 andd > 0 such that for allt € R the functions
(A X, Y) = waxy (16(35)) (3.21)
extend to analytic functions aRly s x D. such that

sup lwaxy (16(35))] < oc.
AERp 5,(X,Y)ED, teR
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Proof. For X,Y real,

(Q, mxy (§)7xy (15 (Grxv))Q)
wxy (Grxy) '

This identity and Lemmas 3.3, 3.5, and 3.7 yield the statémen

wiaxy (16(35)) =

Lemma3.9 Let0 < A < Ag be given. Then there exists> 0 such that for allA = a#(f1) - - - a¥(f,,) with
fj € D, the map
(t A X,Y) = mxy ([V, 73(A)]) € B(H), (3.22)

extends to a continuous function By x {A € C||\| < A} x D, which is analytic in(\, X,Y") for fixedt € R.
Moreover,

/ sup Iy (Vb (A dt < oo. (3.23)
0 AeEC,|A|<A(X,Y)ED,

Proof. The expansion (1.1) yields that
mxy (V. A (A)]) = mxy (V. 75 (A)])

+) )" / mxy ([V, 15" (V), [+ 5 [0 (V), 1o (A)] - T]]) dsy - - - dsi.
n=1 0<s, < <1<t
Set
C = mxy (Vi (A)),
and, forn > 1,

CY (51, ey 80) = mxy (Vi [mgm (V) [, 550 (V), 7 (A)] 1) -
Theorem 1.1 yields that for eaehthere exist a finite index s, (A), scalar functionﬁfﬁ; which do not depend
onX,Y, and monomialsFXLI)) € O such that

Cg(":g)/(tasl7--'7sn) = Z qunv;)o(t’sl’"'787L)7TXY(FAX?;).
pE'P,,L(A)

Recall our standing assumption (1.3) and Part (2) of ThedrdmLetd > 0 be such that

Co=(1+6)""1< % (3.24)

Applying Lemma 3.4 with thi$ to the factors oﬁXY(FX;) we conclude that there exists> 0 (which depends
on¢) such that for alh the functions

(X,Y) = mxy (F™) € B(H),

extend to analytic functions oR. satisfying

sup Imxy (F{M)| < CLCp ™,
t,81,...sn €ER,(X,Y)ED,
whereCy = (1+6)™ fmax(L, || f1ll,- -, [ fm[)]™ . By Part (3) of Theorem 1.1,
Z\A|”+1Cg+1 Z / |G%;(t,sl,...,sn)|dtdsl~--dsn < 00,
n=0

PEPR(A) 0<s, < <y <t<oo
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and we conclude that

sup lmxy ([V. 3§D dt < oo
0 AeC|A<A(X,Y)ED,

We are now ready to complete:

Proof of Theorem 3.1. We start with formula (3.19). By Lemmas 3.7 and 3.8, it seffito show that for some
e > 0 the functions

(A X,Y) / (2 ey (V73 @) Dy (78~ (Gaer))) ds,

extend to analytic functions of € C| |A| < A} x D, such that

sup

t
/(Q>7TXY([V7Ti(&')])WXY(TS%(QAXY))Q)ds < 0.
AEC,IA|<A,(X,Y)eD.,t>0 | Jo

By Lemma 3.5, it suffices to show that the functions
(t, X X,Y) = mxy (V. 7X(85)]) € B(H),

extend to continuous functions @ x {A € C||\| < A} x D, which, for fixedt, are analytic i\, X,Y") and
satisfy the bound

/ sup ey (V, 74 @)D dt < oo.
0 AEC,|XN<A(X,Y)eD.

By (A2) and (A3), everyg; can be written as a finite sum of monomials(f) - - - a#(f.n) with f;, € D, and the
result follows from Lemma 3.9
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