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We consider a model describing finitely many free Fermi gas reservoirs coupled by local interactions and prove the Green-Kubo formulas and the Onsager reciprocity relations for heat and charge fluxes generated by temperature and chemical potential differentials.

Introduction

This is the fourth in a series of papers [START_REF] Jakšić | The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics[END_REF][START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF][START_REF] Jakšić | The Green-Kubo formula for the spin-fermion system[END_REF] dealing with derivation of Green-Kubo formulas (GKF) and Onsager reciprocity relations (ORR) in quantum statistical mechanics. The first two papers [START_REF] Jakšić | The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics[END_REF][START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF] were devoted to the abstract axiomatic derivation of GKF and ORR for open systems driven by thermodynamical forces associated to temperature and chemical potential differentials. This paper and [START_REF] Jakšić | The Green-Kubo formula for the spin-fermion system[END_REF] are devoted to the study of concrete models.

In [START_REF] Jakšić | The Green-Kubo formula for the spin-fermion system[END_REF] we have studied the well-known spin-fermion model describing the interaction of an N -level atom with finitely many independent free Fermi gas reservoirs [START_REF] Davies | Markovian master equations[END_REF][START_REF] Lebowitz | Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs[END_REF][START_REF] Jakšić | Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs[END_REF]. Combining the results of [START_REF] Jakšić | The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics[END_REF][START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF] with spectral theory of non-equilibrium steady states developed in [START_REF] Jakšić | Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs[END_REF] we have established GKF and ORR for this class of models.

In this paper we study a model describing finitely many free Fermi gas reservoirs coupled by local interactions and show that the abstract derivation of [START_REF] Jakšić | The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics[END_REF][START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF] combined with scattering theory of non-equilibrium steady states (see [BM1, AM, BM2, Ru1, FMU]) yields the GKF and ORR for this class of models.

Throughout the paper we shall assume that the reader is familiar with general aspects of linear response theory discussed in [JOP1, JOP2, JOP3] and with the algebraic formalism of quantum statistical mechanics [START_REF] Bratteli | Operator Algebras and Quantum Statistical Mechanics 1[END_REF][START_REF] Bratteli | Operator Algebras and Quantum Statistical Mechanics 2[END_REF]. A modern introduction to these topics can be found in [START_REF] Jakšić | Mathematical theory of non-equilibrium quantum statistical mechanics[END_REF][START_REF] Fröhlich | Dissipative transport: thermal contacts and tunneling junctions[END_REF] and in the recent lecture notes [START_REF] Aschbacher | Topics in non-equilibrium quantum statistical mechanics[END_REF].

The paper is organized as follows. In Subsection 1.1 for notational purposes we review the description of a free Fermi gas in the algebraic formalism of quantum statistical mechanics. In Subsection 1.2 we introduce the model and state our results. The strategy of the proof is the same as in [START_REF] Jakšić | The Green-Kubo formula for the spin-fermion system[END_REF] and is described in Section 3.1. This strategy reduces the proof of all our results to a technical estimate formulated in Theorem 3.1. This estimate, which is our main technical result, is established in Section 3.2.
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Preliminaries

Let h and h 0 be given Hilbert space and Hamiltonian. The corresponding free Fermi gas is described by the C * -dynamical system (O, τ 0 ) where: (i) O = CAR(h) is the CAR algebra over h. We denote by a * (f )/a(f ) the creation/annihilation operator associated to f ∈ h. As usual, a # stands for either a or a * ;

(ii) τ t 0 is the group of Bogoliubov * -automorphisms generated by h 0 , τ t 0 (a # (f )) = a # (e ith0 f ). We denote by δ 0 the generator of τ 0 ;

The gauge group of the free Fermi gas is the group of Bogoliubov * -automorphisms ϑ ϕ , ϕ ∈ R, generated by the identity operator on h. The physical observables are gauge invariant and hence elements of

O ϑ = {A ∈ O | ϑ ϕ (A) = A for all ϕ ∈ R}. O ϑ is the τ 0 -invariant C * -subalgebra of O generated by {a * (f )a(g) | f, g ∈ h} and 1l.
Let β > 0 and µ ∈ R be parameters and ω βµ the gauge-invariant quasi-free state on O generated by

T βµ = 1 1 + e β(h0-µ) .
The quantum dynamical system (O, τ 0 , ω βµ ) describes a free Fermi gas in thermal equilibrium at inverse temperature β and chemical potential µ. We remark that ω βµ is the unique β-KMS state for the C * -dynamics τ t 0 • ϑ -µt and that ω βµ ↾ O ϑ is a (τ 0 , β)-KMS state on O ϑ .

Let V ∈ O ϑ be a self-adjoint perturbation and τ λ the perturbed C * -dynamics generated by δ λ = δ 0 + iλ[V, • ] where λ ∈ R is a coupling constant. We recall that for A ∈ O and t ≥ 0,

τ t λ (A) = τ t 0 (A) + ∞ n=1 (iλ) n 0≤sn≤•••≤s1≤t [τ sn 0 (V ), [• • • , [τ s1 0 (V ), τ t 0 (A)] • • • ]] ds 1 • • • ds n . (1.1)
In this paper we shall consider self-adjoint perturbations of the form

V = K k=1 n k j=1 a * (u kj )a(v kj ), (1.2) 
where K and n k 's are finite. We set n = max k n k . Denote D 0 = {u kj , v kj }. By rescaling λ, without loss of generality we may assume that max

f ∈D0 f = 1. (1.3) If n = 1, then τ t λ (a # (f )) = a # (e ith λ f ) where h λ = h 0 + λ k (v k , • )u k ,
and so the C * -dynamics τ λ is also a group of Bogoliubov * -automorphisms. This special case is exactly solvable and has been studied in detail in [START_REF] Aschbacher | Transport properties of quasi-free Fermions[END_REF] (for additional information and references about quasi-free open quantum systems we refer the reader to recent lecture notes [START_REF] Aschbacher | Topics in non-equilibrium quantum statistical mechanics[END_REF][START_REF] Jakšić | Mathematical theory of the Wigner-Weisskopf atom[END_REF]).

The following technical result will play a key role in our paper.

Theorem 1.1 Let A = a # (f 1 ) • • • a # (f m ) be a monomial of order m and C (n) A (s 0 , . . . , s n ) = [V, [τ sn 0 (V ), [• • • , [τ s1 0 (V ), τ s0 0 (A)] • • • ]]].
Then for all n ≥ 0 there exist a finite index set P n (A), monomials F

A,p ∈ O, and scalar functions G (n)

A,p such that

C (n) A (s 0 , . . . , s n ) = p∈Pn(A) G (n) A,p (s 0 , . . . , s n )F (n)
A,p (s 0 , . . . , s n ).

(1.4)

Moreover,

1. The order of the monomial F (n)

A,p does not exceed 2(n + 1)(n -1) + m.

The factors of F (n)

A,p are from

{a # (e ish0 g) | g ∈ D 0 , s ∈ {0, s 1 , . . . , s n }} ∪ {a # (e is0h0 g) | g ∈ A},
where

A = {f 1 , • • • , f m }.
The number of factors from the first set does not exceed (n + 1)(2n -1) while the number of factors from the second set does not exceed m -1.

Suppose that

ℓ = ∞ 0 sup f ∈D0,g∈D0∪A |(f, e ith0 g)| dt < ∞, denote ℓ 0 = ∞ 0 sup f,g∈D0 |(f, e ish0 g)| ds,
and set

Λ 0 =      1 2Kℓ 0 if n = 1, 1 2nKℓ 0 (2n -2) 2n-2 (2n -1) 2n-1 if n > 1. If n = 1 and |λ| < Λ 0 or if n > 1 and |λ| ≤ Λ 0 then the sum W = ∞ n=0 |λ| n+1 p∈Pn(A) 0≤sn≤•••≤s0<∞ |G (n) A,p (s 0 , . . . , s n )| ds 0 • • • ds n ,
is finite and satisfies

W ≤ 1 + 2nKℓ|λ| (1 -|λ|/Λ 0 ) + 2n(2n -2)Kℓ 0 |λ| m -1.
(1.5)

Remark 1. Parts (1) and (2) of this theorem are easy to prove and are stated for reference purpose. The key fact is Part (3) which we shall prove using the fundamental Botvich-Gutȃ -Maassen integral estimate [BGM]. Related but weaker results can be obtained using the integral estimates of [START_REF] Botvich | Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi gas[END_REF][START_REF] Botvich | Asymptotic completeness and all that for an infinite number of fermions[END_REF][START_REF] Fröhlich | Dissipative transport: thermal contacts and tunneling junctions[END_REF]. Remark 2. In our applications we shall not need the explicit form of the bound (1.5).

Our first regularity assumption is

(A1) There exists a dense vector subspace D ⊂ h such that D 0 ⊂ D and that the functions

R ∋ t → (f, e ith0 g), are in L 1 (R, dt) for all f, g ∈ D.
Note that this assumption implies that h 0 has purely absolutely continuous spectrum. A consequence of Theorem 1.1 is Theorem 1.2 Assume that (A1) holds and that |λ| < Λ 0 . Then the limits

γ + λ (A) = lim t→+∞ τ -t 0 • τ t λ (A), (1.6) 
exist for all A ∈ O and define a * -automorphism γ + λ : O → O.

Remark.

Under additional regularity assumptions one can also obtain information about the rate of convergence in (1.6), see [START_REF] Jakšić | On the strict positivity of entropy production[END_REF] for details. Although Theorem 1.2 is a well-known result (see [START_REF] Robinson | Return to equilibrium[END_REF][START_REF] Botvich | Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi gas[END_REF][START_REF] Botvich | Asymptotic completeness and all that for an infinite number of fermions[END_REF][START_REF] Fröhlich | Dissipative transport: thermal contacts and tunneling junctions[END_REF]), for the reader convenience we will sketch its proof in Subsection 2.2.

The model and the result

Our starting point are finitely many, say M , independent free Fermi gasses R j in equilibrium at inverse temperatures β j > 0 and chemical potentials µ j ∈ R. More precisely, R j is described by the quantum dynamical system (O j , τ j , ω j ) where:

(i) O j = CAR(h j ) is the CAR algebra over the single fermion Hilbert space h j ;

(ii) τ t j is the group of Bogoliubov * -automorphisms generated by the single fermion Hamiltonian h j ;

(iii) ω j is the gauge-invariant quasi-free state generated by

T j = 1 1 + e βj (hj -µj ) .
We denote by ϑ j the gauge group of R j . The generators of τ j and ϑ j are denoted by δ j and ξ j .

Let

h = M j=1 h j , h 0 = M j=1 h j , T = M j=1
T j .

The joint system R = R j in absence of interaction is described by the quantum dynamical system (O, τ 0 , ω), where O = CAR(h), τ t 0 is the group of Bogoliubov * -automorphisms generated by h 0 , and ω is the gauge-invariant quasi-free state generated by T . We denote by δ 0 the generator of τ 0 and by ξ the generator of the gauge group ϑ of the joint system. Obviously, δ 0 = j δ j and ξ = j ξ j .

Let V ∈ O ϑ be a perturbation of the form (1.2). This perturbation describes the coupling of the reservoirs, and, possibly, self-interactions within the reservoirs. Let λ ∈ R be a coupling constant and τ λ the C * -dynamics on O generated by δ λ = δ 0 + iλ[V, • ]. The interacting joint system is described by the quantum dynamical system (O, τ λ , ω).

Let γ + λ be as in Theorem 1.2 and 

ω λ+ = ω • γ + λ . A consequence
lim t→+∞ η • τ t λ (A) = ω λ+ (A).
The state ω λ+ is the NESS of the quantum dynamical system (O, τ λ , ω) [START_REF] Ruelle | Natural nonequilibrium states in quantum statistical mechanics[END_REF][START_REF] Jakšić | Mathematical theory of non-equilibrium quantum statistical mechanics[END_REF]. Clearly, this NESS depends on β j and µ j .

Let β eq > 0 and µ eq ∈ R be given (equilibrium) values of the inverse temperature and chemical potential. We are interested in linear response of R to thermodynamical forces

X j = β eq -β j , Y j = β j µ j -β eq µ eq . Let X = (X 1 , • • • , X M ), Y = (Y 1 , • • • , Y M ).
We indicate the dependence on X, Y by denoting

ω XY = ω, ω λXY + = ω λ+ , T XY = T.
Note that by Araki perturbation theory ω λ00+ is the unique β eq -KMS state for the C * -dynamics τ t λ • ϑ -µeqt . We denote this state by ω λeq .

In what follows we shall assume:

(A2) The operators h j are bounded.

Although our method of proof extends to unbounded h j 's (see Remark 2 after Theorem 1.5), the above assumption covers most cases of physical interest to which our results apply and allows for technically simpler exposition of the proofs.

The observables describing the heat and charge flux out of R j are

Φ j = λδ j (V ), J j = λξ j (V ). (1.7) Clearly, Φ j , J j ∈ O ϑ . The conservation laws M j=1 ω λXY + (Φ j ) = 0, M j=1 ω λXY + (J j ) = 0,
hold. The entropy production of the NESS ω λXY + is defined by

Ep(ω λXY + ) = ω λXY +   - M j=1 β j (Φ j -µ j J j )   = M j=1 X j ω λXY + (Φ j ) + M j=1 Y j ω λXY + (J j ).
By the general results of [START_REF] Ruelle | Entropy production in quantum spin systems[END_REF][START_REF] Jakšić | Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs[END_REF] (see also [START_REF] Tasaki | Fluctuation theorem, nonequilibrium steady states and MacLennan-Zubarev ensembles of a class of large quantum systems[END_REF][START_REF] Fröhlich | Dissipative transport: thermal contacts and tunneling junctions[END_REF][START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF]), Ep(ω λXY + ) ≥ 0. The strict positivity of the entropy production for locally interacting fermionic reservoirs can be established by using either perturbative arguments (see [FMU]) or stability arguments (see Section 4.3 in [START_REF] Jakšić | Mathematical theory of non-equilibrium quantum statistical mechanics[END_REF] and [START_REF] Jakšić | On the strict positivity of entropy production[END_REF]). This point is discussed in more detail in the forthcoming review [START_REF] Jakšić | [END_REF].

To study linear response of ω λXY + , in addition to (A1)-(A2) we need the following regularity assumption.

(A3) For all j and g ∈ D 0 , h j g ∈ D.

Our final assumption concerns time-reversal invariance.

(A4) There exists a complex conjugation c on h which commutes with all h j and satisfies cg = g for all g ∈ D 0 .

If (A4) holds, then the map Θ(a

# (f )) = a # (cf ) extends to an involutive skew * -automorphism of O such that Θ • τ t j = τ -t j • Θ and Θ(V ) = V . This implies that Θ • τ t λ = τ -t λ • Θ for all λ. Note also that Θ(Φ j ) = -Φ j , Θ(J j ) = -J j .
We set

I ǫ = {(X, Y ) ∈ R 2M | |X j | < ǫ, |Y j | < ǫ}, D ǫ = {(X, Y ) ∈ C 2M | |X j | < ǫ, |Y j | < ǫ}, R Λ,δ = {λ ∈ C | |Re λ| < Λ, |Im λ| < δ}.
In the sequel F j stands for either Φ j or J j . Our first result is:

Theorem 1.4 Suppose that Assumptions (A1)-(A3) hold and let 0 < Λ < Λ 0 . Then there exist ǫ > 0 and δ > 0 such that the maps

(λ, X, Y ) → ω λXY + (F j ),
extend to analytic functions on the set R Λ,δ × D ǫ . In particular, for any |λ| < Λ 0 there exists ǫ(λ) > 0 such that the maps

(X, Y ) → ω λXY + (F j ),
extend to analytic functions on D ǫ(λ) .

The kinetic transport coefficients are defined by

L kj λhh = ∂ Xj ω λXY + (Φ k ) X=Y =0 , L kj λhc = ∂ Yj ω λXY + (Φ k ) X=Y =0 , L kj λch = ∂ Xj ω λXY + (J k ) X=Y =0 , L kj λcc = ∂ Yj ω λXY + (J k ) X=Y =0 , (1.8)
where the indices h/c stand for heat/charge. For A, B ∈ O ϑ we set

L λ (A, B) = lim t→+∞ 1 2 t -t ω λeq (τ s λ (A)B) ds,
and

L λ (A, B) = lim t→+∞ 1 β eq t 0 ds βeq 0 du ω λeq (τ s λ (A)τ iu λ (B)),
whenever the limits exist. Our main result is:

Theorem 1.5 Suppose that Assumptions (A1)-(A3) hold and that |λ| < Λ 0 . Then L λ (A, B) is well-defined for A, B ∈ {Φ 1 , • • • , Φ M , J 1 , • • • , J M } and L kj λhh = L λ (Φ k , Φ j ), L kj λhc = L λ (Φ k , J j ), L kj λch = L λ (J k , Φ j ), L kj λcc = L λ (J k , J j ).
(1.9)

Assume in addition that (A4) holds. Then L λ (A, B) is well-defined for A, B ∈ {Φ 1 • • • Φ M , J 1 , • • • J M }, L kj λhh = L λ (Φ k , Φ j ), L kj λhc = L λ (Φ k , J j ), L kj λch = L λ (J k , Φ j ), L kj λcc = L λ (J k , J j ),
(1.10) and

L kj λhh = L jk λhh , L kj λcc = L jk λcc , L kj λhc = L jk λch .
(1.11)

Remark 1.The formulas (1.9) are the GKF without time reversal assumption. The formulas (1.10) are the GKF in the standard form. The formulas (1.11) are the Onsager reciprocity relations. The ORR are an immediate consequence of (1.10) and the KMS condition, see [START_REF] Jakšić | The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics[END_REF][START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF]. Remark 2. If n = 1, then our proofs give that Theorems 1.1-1.5 hold with Λ 0 = 1/2Kℓ 0 . However, since in this case the coupled system is quasi-free, these theorems can be also proven using trace class scattering theory which yields better constants and wealth of additional information about the model. For more information about this special case we refer the reader to [AJPP1, AJPP2, JKP]. Remark 3. With regard to the Green-Kubo formulas (1.10), a natural question is whether the correlation functions

t → ω λeq (τ t λ (A)B) are absolutely integrable for A, B ∈ {Φ 1 , • • • , Φ M , J 1 , • • • J M }.
This is a delicate dynamical problem which is studied in [JPP]. In this paper we only establish the existence of the improper integrals

lim t→+∞ t -t ω λeq (τ s λ (A)B) ds.
Remark 4. By Theorem 1.4, the functions λ → L kj λuv , u, v ∈ {h, c}, are analytic for |λ| < Λ 0 and can be expanded into power series whose coefficients can be computed. Such computations can be used to verify that in specific examples the transport coefficients are non-vanishing. For reasons of space we shall discuss these perturbative computations in the forthcoming review [START_REF] Jakšić | [END_REF]. Remark 5. Our results are tailored for application to tight-binding type models of electronic transport in which Assumption (A2) is usually satisfied. However, all our proofs extend to unbounded h j 's as long as D 0 ⊂ Dom (e a|hj | ) for all j and some a > β eq . It is an interesting technical problem to prove Theorems 1.4 and 1.5 for unbounded h j 's without this additional technical assumption. Remark 6. Theorems 1.1-1.3 are fairly flexible and are easily adapted to a number of different setups involving free Fermi gas reservoirs. The same applies to Theorems 1.4 and 1.5. For example, one may consider the tensor product structure, where the joint system in absence of interaction is described by

O = O 1 ⊗ • • • ⊗ O M , τ 0 = τ 1 ⊗ • • • ⊗ τ M , ω = ω 1 ⊗ • • • ⊗ ω M .
This type of models was studied in [FMU]. Another class of related models are local perturbations of the exactly solvable Electronic Black-Box Model studied in [START_REF] Aschbacher | Topics in non-equilibrium quantum statistical mechanics[END_REF][START_REF] Aschbacher | Transport properties of quasi-free Fermions[END_REF]. Instead of coupled free fermionic systems one may consider coupled X -Y quantum spin chains. Theorems 1.4 and 1.5 extend to these models with only notational changes, see [START_REF] Jakšić | [END_REF] for details. Remark 7. We call A ∈ O centered if ω λXY (A) = 0 for all |λ| < Λ 0 and (X, Y ) ∈ I ǫ . Our proof easily extends to the general Green-Kubo formulas

∂ Xj ω λXY + (A) X=Y =0 = L λ (A, Φ j ), ∂ Yj ω λXY + (A) X=Y =0 = L λ (A, J j ),
for centered observables A which are polynomials in a # (f ) with f ∈ D.

We finish this subsection with some examples to which Theorems 1.1-1.5 apply. Let G be the set of vertices of a connected graph of bounded degree and ∆ G the associated discrete Laplacian acting on l 2 (G). We recall that

(∆ G ψ)(x) = |y-x|=1 ψ(y),
where |y -x| is the distance on the graph. ∆ G is a bounded self-adjoint operator and ∆ G = sup x∈G d(x), where d(x) is the degree of the vertex x. Let δ x be the Kronecker delta function at x ∈ G. We shall call the graph G admissible if there exists γ > 1 such that for all x, y ∈ G,

|(δ x , e -it∆G δ y )| = O(|t| -γ ),
(1.12) as t → ∞. Clearly, the discrete Laplacian of an admissible graph has purely absolutely continuous spectrum. An example of admissible graph is G = Z d for d ≥ 3. In this case γ = d/2. Another example is the half-space

G = Z + × Z d-1 where Z + = {0, 1, • • • } and d ≥ 1 (if d = 1 then G = Z + ). In this case γ = (d + 2)/2.
Tubular graphs of the type Z + × Γ, where Γ ⊂ Z d-1 is finite, are admissible with γ = 3/2. Another well-known admissible graph is a rooted Bethe lattice where γ = 3/2.

Assumptions (A1)-(A4) and Theorems 1.1-1.5 hold if (i) G 1 , . . . , G M are admissible graphs;

(ii) h j = ℓ 2 (G j ) or more generally ℓ 2 (G j ) ⊗ C L to allow for internal degrees of freedom (e.g., spin);

(iii) D is the subspace of finitely supported elements of h;

(iv) h j = -∆ Gj ;

(v) u kj , v kj belong to D.

Allowed interactions include V = V hop + V int where (i) V hop describes tunneling junctions between the reservoirs:

V hop = x,y t(x, y) (a * (δ x )a(δ y ) + a * (δ y )a(δ x )) ,
where t : G × G → R is a finitely supported function (G = ∪ j G j );

(ii) V int is a local pair interaction

V int = x,y v(x, y)a * (δ x )a * (δ y )a(δ y )a(δ x ),
where v : G × G → R is finitely supported.

This concrete model is studied in detail in [START_REF] Jakšić | [END_REF].

Basic properties of the model

In this section we prove Theorems 1.1, 1.2, and 1.3.

Proof of Theorem 1.1

We start with some preliminaries which are of independent interest.

Let A = a 1 • • • a m and B = b 1 • • • b q
where the a k and b j are creation/annihilation operators. Thus, A and B are monomials of order m and q respectively. If q is even it follows from the CAR that

[B, a j ] = b 1 • • • b q a j -a j b 1 • • • b q = b 1 • • • b q a j -({b 1 , a j } -b 1 a j )b 2 • • • b q = -{b 1 , a j }b 2 • • • b q + b 1 (b 2 • • • b q a j + a j b 2 • • • b q ) . . . = q k=1 (-1) k {b k , a j }b 1 • • • b k-1 b k+1 • • • b q ,
and hence

[B, A] = m j=1 a 1 • • • a j-1 [B, a j ]a j+1 • • • a m = m j=1 q k=1 (-1) k {b k , a j }a 1 • • • a j-1 b 1 • • • b k-1 b k+1 • • • b n a j+1 • • • a m .
The anticommutator {b k , a j } on the right hand side is called contraction of the factor b k of B with the factor a j of A. Note that contractions are numbers.

Iterating the last formula we get, for any monomials B 1 , B 2 , . . . B n+1 of even orders q 1 , q 2 , . . . q n+1 and any monomial A of order m

[B n+1 , [τ sn 0 (B n ), [• • • , [τ s1 0 (B 1 ), τ s0 0 (A)] • • • ]]] = p∈Pn(A,B1,...,Bn+1) G p (s 0 , • • • , s n )F p , (2.13)
where the F p are monomials of order q 1 + q 2 + • • • + q n+1 + m -2(n + 1) and the coefficients G p are products of n + 1 contractions. The sum on the right hand side runs over the set P n (A, B 1 , . . . , B n+1 ) whose elements p are contraction diagrams of the type displayed in Figure 1. Each line of this diagram represents a monomial, as labeled on the left. Each dot on a line represents a factor of the corresponding monomial. The dashed lines represent contractions of such factors. From each line of the diagram there is exactly one contraction going up and any factor can belong only to one contraction. To a contraction diagram p we associate its skeleton: a rooted tree T whose nodes are 0 (the root), 1, . . . , n + 1 and whose bonds correspond to the contractions (see Figure 2). The skeleton T is simply obtained by collapsing each line of the contraction diagram p to a single node. If there is an arrow going from the node j to the node k in T we say that j is a child of k or that k is the parent of j (each node has a unique parent and we shall say that the root node 0 is its own parent). We can describe the rooted tree T by the function T : {0, . . . , n + 1} → {0, . . . , n + 1} which to a node j associates its parent T (j). Reciprocally, any function T such that T (0) = 0 and T (j) < j for j = 1, . . . , n+1 defines a rooted tree T . Such a function is called a climber of order n+1 and there is a one-to-one correspondence between climbers and rooted trees.

s 0 s 1 s 2 s 3 s n A B 1 B 2 B 3 B n s n+1 = 0 B n+1
Suppose that all the factors of the monomials B 1 , . . . , B n+1 are from {a # (g) | g ∈ D 0 } and let A and A be as in Theorem 1.1. Then, the factors of the monomials F p are from {a # (e ish0 g) | g ∈ D 0 , s ∈ {0, s 1 , . . . , s n }} ∪ {a # (e is0h0 g) | g ∈ A}.

The number of factors from the first set does not exceed (n + 1)(q -1), where q = max q k . The number of factors from the second set does not exceed m -1. If we denote

S k (t) ≡      sup f ∈D0,g∈A |(f, e ith0 g)| for k = 0, sup f,g∈D0 |(f, e ith0 g)| for k > 0,
then all coefficients G p associated with a given skeleton tree T are bounded by

|G p | n+1 j=1 S T (j) (s T (j) -s j ) ≡ S(T ),
where we set s n+1 = 0. Thus, if N (T ) denotes the number of contraction diagrams with skeleton tree T we have

p∈Pn |G p | T ∈Tn+1

N (T )S(T ),

where T n+1 denotes the set of all rooted trees with nodes 0 (the root), 1, . . . , n + 1. Let us compute N (T ). To this end denote by r j the number of childs of the node j. For the tree of Figure 2 we have for example r 0 = 2, r 1 = 2, r 2 = r 3 = 0, r n = 1 and r n+1 = 0. Clearly, N (T ) = 0 if r 0 > m or r j > q j -1. Otherwise, to construct a

s 0 s 3 s 1 s 2 s n s n+1
Figure 2: The skeleton tree corresponding to Figure 1.

diagram p whose skeleton is T we first have to choose a factor on each line B 1 , . . . , B n+1 . The number of such choices is clearly q 1 q 2 • • • q n+1 . Now on line A we have to choose one factor for each of the r 0 childs of node 0. There are m(m -1) • • • (m -r 0 + 1) such choices. Similarly, on line B 1 we have to chose r 1 factors out of the q 1 -1 remaining. There are (q 1 -1)(q 1 -2) • • • (q 1 -r 1 ) such choices. The same reasoning applies to lines B 2 , . . . , B n , and we conclude that

N (T ) = m! (m -r 0 )! n j=1 q j ! (q j -r j -1)! ≤ m! (m -r 0 )! n j=1 q! (q -r j -1)! ≡ N (T ).
We now turn to the proof of Theorem 1.1. Since V = K k=1 V k where V k are monomials of order q k = 2n k (so q = 2n), we can write

C (n) A (s 0 , . . . , s n ) = K k1,...,kn+1=1 [V kn+1 , [τ sn 0 (V kn ), [• • • , [τ s1 0 (V k1 ), τ s0 0 (A)] • • • ]]],
and Parts (1) and (2) follow immediately with

P n (A) ≡ K k1,...,kn+1=1
{(k 1 , . . . , k n+1 )} × P n (A, V k1 , . . . , V kn+1 ).

To prove (3), we start with the estimate

p∈Pn(A) |G (n) A,p | ≤ K n+1 T ∈Tn+1

N (T )S(T ).

Hence,

W ≡ ∞ n=0 |λ| n+1 p∈Pn(A) 0≤sn≤•••≤s0 |G (n) A,p (s 0 , . . . , s n )| ds 0 • • • ds n , satisfies W ≤ W 0 ≡ ∞ n=1 T ∈Tn N (T ) 0=sn≤sn-1•••≤s0 n j=1 (|λ|KS T (j) (s T (j) -s j )) ds 0 • • • ds n-1 .
We will need the following general result of [BGM].

Theorem 2.1 Let m k , m k be two sequences of nonnegative numbers and g, g two integrable nonnegative functions on [0, ∞[. Denote by g and g their L 1 -norms, set g 0 = g and g k = g for k > 0 and define

M (x) ≡ ∞ k=0 m k k! x k , M (x) ≡ ∞ k=0 m k k! x k .
To any rooted tree T ∈ T n associate the weight (recall that r j is the number of childs of the node j),

w(T ) = m r0 m r1 • • • m rn 0=sn≤sn-1≤•••≤s0 n j=1 g T (j) (s T (j) -s j ) ds 0 • • • ds n-1 .
Then, the sum W = ∞ n=1

T ∈Tn w(T ) is finite if and only if the equation M ( g x) = x has a positive solution x such that M ( g x) < ∞. If x * denotes the least such solution, then W = M ( g x * ).

To apply this result we set m k = 0 for k = 0 and k > m, otherwise

m k = m! (m -k)! , m k = 0 for k ≥ 2n, otherwise m k = (2n)! (2n -k -1)! , and 
g(s) = |λ|KS 1 (s), g(s) = |λ|KS 0 (s).
Hence, M (x) = 2n(1+x) 2n-1 , M (x) = (1+x) m -1, g = |λ|Kℓ 0 , and g = |λ|Kℓ. An elementary analysis shows that, if

Λ 0 =      1 2Kℓ 0 for n = 1, 1 2nKℓ 0 (2n -2) 2n-2 (2n -1) 2n-1 for n > 1,
, then, as long as |λ| < Λ 0 for n = 1 and |λ| ≤ Λ 0 for n > 1, the equation M ( g x) = x has a least positive solution x * satisfying

0 ≤ x * ≤ 2n (1 -|λ|/Λ 0 ) + 2n(2n -2)Kℓ 0 |λ| ,
and that

W ≤ W 0 = (1 + Kℓ|λ|x * ) m -1 ≤ 1 + 2nKℓ|λ| (1 -|λ|/Λ 0 ) + 2n(2n -2)Kℓ 0 |λ| m -1.
This ends the proof of Theorem 1.1.

Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. To establish the existence of the limit (1.6) for all A ∈ O it suffices to consider the case

A = a # (f ) with f ∈ D and f = 1. Since τ -t2 0 • τ t2 λ (A) -τ -t1 0 • τ t1 λ (A) = iλ t2 t1 τ -s 0 ([V, τ s λ (A)]) ds,
we have that

τ -t2 0 • τ t2 λ (A) -τ -t1 0 • τ t1 λ (A) ≤ |λ| t2 t1 [V, τ s λ (A)] ds.
(2.14)

The expansion (1.1) yields

[V, τ s λ (A)] = [V, τ s 0 (A)] + ∞ n=1 (iλ) n 0≤sn≤•••≤s1≤s [V, [τ sn 0 (V ), [• • • , [τ s1 0 (V ), τ s 0 (A)] • • • ]]] ds 1 • • • ds n .
Our standing assumption (1.3) and the fact that f = 1 implies that F

A,p ≤ 1 and we can estimate

[V, [τ sn 0 (V ), [• • • , [τ s1 0 (V ), τ s 0 (A)] • • • ]]] ≤ p∈Pn(A) |G (n) A,p (s, s 1 , • • • , s n )|. Part (3) of Theorem 1.1 yields that for |λ| < Λ 0 , ∞ 0 [V, τ s λ (A)] ds < ∞.
(2.15)

The estimates (2.14) and (2.15) imply the existence of the limit (1.6) for |λ| < Λ 0 . The map γ + λ is obviously a * -morphism. To prove that it is an isomorphism, it suffices to show that the limits

lim t→+∞ τ -t λ • τ t 0 (A),
exist for all A ∈ O. Repeating the above argument we see that it suffices to show that

∞ 0 [V, τ s 0 (A)] ds < ∞, for A = a # (f ), f ∈ D.
But this is a special case of Equ. (2.15). 2

Proof of Theorem 1.3. Since h has purely absolutely continuous spectrum the quantum dynamical system (O, τ 0 , ω) has the property of return to equilibrium: for all ω-normal states η and A ∈ O,

lim |t|→∞ η • τ t 0 (A) = ω(A),
see, e.g., [START_REF] Aschbacher | Topics in non-equilibrium quantum statistical mechanics[END_REF]. The existence of norm-limits (1.6) ensures that

lim t→+∞ η(τ t λ (A)) = lim t→+∞ η • τ t 0 (τ -t 0 • τ t λ (A)) = lim t→+∞ η • τ t 0 (γ + λ (A)) = ω(γ + λ (A)),
and the statement follows. 2

3 Proofs of Theorems 1.4 and 1.5

Strategy

The strategy of the proofs of Theorems 1.4 and 1.5 is based on the arguments in [START_REF] Jakšić | The Green-Kubo formula for the spin-fermion system[END_REF]. Consider the C * -dynamics σ XY on O generated by

δ XY = δ 0 -µ eq ξ - j X j β eq δ j - j Y j β eq ξ j .
(3.16)

The reference state ω XY is the unique (σ XY , β eq )-KMS state on O. Let σ λXY be the C * -dynamics on O generated by

δ λXY = δ XY + iλ[V, • ].
The Araki perturbation theory [Ar, BR2, DJP] yields that there exists a unique (σ λXY , β eq )-KMS state on O. We denote this state by ω λXY . The states ω XY and ω λXY are mutually normal.

Recall that F j stands for either Φ j or J j . Our main technical result is:

Theorem 3.1 Suppose that Assumptions (A1)-(A3) hold and let 0 < Λ < Λ 0 . Then there exist ǫ > 0 and δ > 0 such that for all t ≥ 0 the functions

(λ, X, Y ) → ω λXY (τ t λ (F j )) have analytic extensions to R Λ,δ × D ǫ satisfying sup λ∈R Λ,δ ,(X,Y )∈Dǫ,t≥0 ω λXY (τ t λ (F j )) < ∞.
This result and the multi-variable Vitali theorem yield Theorem 1.4 (see Theorem 2.3 in [START_REF] Jakšić | The Green-Kubo formula for the spin-fermion system[END_REF]). Moreover, the relations

∂ Xj ω λXY + (F k ) = lim t→+∞ ∂ Xj ω λXY • τ t λ (F k ), ∂ Yj ω λXY + (F k ) = lim t→+∞ ∂ Yj ω λXY • τ t λ (F k ), (3.17) hold for (λ, X, Y ) ∈ R Λ,δ × D ǫ .
The proof of Relations (1.9) is completed by invoking the following identities proven in [START_REF] Jakšić | The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics[END_REF][START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF]:

∂ Xj ω λXY (τ t λ (F k )) X=Y =0 = 1 β eq t 0 ds βeq 0 du ω λeq (τ s λ (F k )τ iu λ (Φ j )), ∂ Yj ω λXY (τ t λ (F k )) X=Y =0 = 1 β eq t 0 ds βeq 0 du ω λeq (τ s λ (F k )τ iu λ (J j )).
Proposition 4.1 in [START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF] yields that (1.9) and time-reversal invariance (A4) imply (1.10). The KMS condition and (1.10) imply (1.11) [START_REF] Jakšić | The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics[END_REF][START_REF] Jakšić | Linear response theory for thermally driven quantum open systems[END_REF]. Hence, to complete the proofs of Theorems 1.4 and 1.5 we need to establish Theorem 3.1.

Proof of Theorem 3.1

The GNS representation of the algebra O associated to the gauge-invariant quasi-free state ω XY can be explicitly computed [START_REF] Araki | Representations of canonical anti-commutation relations[END_REF][START_REF] Bratteli | Operator Algebras and Quantum Statistical Mechanics 2[END_REF]. Let F be the anti-symmetric Fock space over h. We denote by Ω f the vacuum vector and by N the number operator. Let

H = F ⊗ F, Ω = Ω f ⊗ Ω f .
In the sequel B(H) denotes the C * -algebra of all bounded operators on a Hilbert space H. Let C j be given complex conjugations on h j and C = ⊕ j C j . Without loss of generality we may assume that C j commutes with h j . As usual, we denote Cf = f . The map In what follows we suppose that Assumptions (A1)-(A3) hold. By adding a constant to µ eq without loss of generality we may assume that h j ≥ 0. 

π XY (a(f )) = a((I -T XY ) 1/2 f ) ⊗ I + (-I) N ⊗ a * (T 1/2 XY f ),
θ(s, x, y) = -u(s) 1 -i b β -a -i d + b βµ + c β -a , where u(s) = (β -a) s - βµ + c β -a . If (x, y) ∈ M δ with δ < β, then b β -a < δ β -δ , d + b βµ + c β -a < δ β(1 + |µ|) β -δ ,
and it follows that θ(R + × M δ ) is contained in the dashed region of Figure 3. An elementary calculation shows that for δ < ǫ(β, µ) this region does not intersect the half-lines R + ± iπ/2. Another elementary calculation shows that 1 + e θ(R+×M δ ) is contained in a bounded region of the half-plane z ∈ C Re z > 1 -e -πβ(δ -1 -ǫ(β,µ) -1 ) .

Thus, l -is a bounded continuous function on R + × M δ which is clearly analytic in (x, y) for any fixed s ∈ R + . This yields the result since e θ/2 has obviously the same properties and l + = e θ/2 l -for real s, x, y. 2

The spectral theorem and Lemma 3.2 yield

Lemma 3.3 The maps (X, Y ) → (I -T XY ) 1/2 ∈ B(h), (X, Y ) → T 1/2 XY ∈ B(h),
extend to analytic B(h)-valued functions on D ǫ(βeq,µeq) .

Since for X, Y real, π XY (a # (f )) = f , Lemma 3.3 implies Lemma 3.4 For any δ > 0 there exists ǫ(δ) > 0 such that for all f ∈ h the operator-valued function Recall that δ XY is defined by (3.16). Let

(X, Y ) → π XY (a # (f )) ∈ B(H), has an analytic extension to D ǫ(δ) which satisfies sup (X,Y )∈D ǫ(δ) π XY (a # (f )) ≤ (1 + δ) f . iπ/2 -iπ/2 < δ 2β(|µ| + 1) β -δ iδ β(|µ| + 1) β -δ Slope ± δ β -δ
h XY = h 0 -µ eq - j X j β eq h j - j Y j β eq p j = j
β eq -X j β eq h j -β eq µ eq + Y j β eq p j ,

where p j is the orthogonal projection on h j . Clearly, e tδXY (a # (f )) = a # (e ithXY f ) is, for fixed t, an analytic function of X, Y . Set

V XY (s) = K k=1 n k j=1 a * (e -shXY u kj )a(e shXY v kj ), and 
G λXY = 1l + n≥1 (-λβ eq ) n 0≤sn≤•••≤s1≤1 V XY (β eq s n ) • • • V XY (β eq s 1 ) ds 1 • • • ds n .
Araki's perturbation theory [Ar, BR2, DJP] yields that for X, Y real the state ω λXY can be expressed in terms of ω XY as

ω λXY (A) = ω XY (AG λXY ) ω XY (G λXY ) . (3.18) Lemma 3.5 The function (t, λ, X, Y ) → π XY (τ t 0 (G λXY )) ∈ B(H)
, extends to a continuous function on R × C × D ǫ(βeq,µeq) which is analytic in (λ, X, Y ) for fixed t. Moreover, for all Λ > 0 and 0 < ǫ < ǫ(β eq , µ eq ), sup t∈R,λ∈C,|λ|<Λ,(X,Y )∈Dǫ π XY (τ t 0 (G λXY )) < ∞.

Proof. Since for X, Y real,

π XY (τ t 0 (G λXY )) = 1l + n≥1 (-λβ eq ) n 0≤sn≤•••≤s1≤1 π XY (V XY (β eq s n , t)) • • • π XY (V XY (β eq s 1 , t)) ds 1 • • • ds n , where π XY (V XY (β eq s, t)) = K k=1 n k j=1
π XY (a * (e -βeqshXY e ith0 u kj ))π XY (a(e βeqshXY e ith0 v kj )), the statement follows from Lemma 3.4. 2 Lemma 3.6 For all t and A ∈ O,

ω λXY (τ t λ (A)) = ω λXY (τ t 0 (A)) + iλ ω XY (G λXY ) t 0 ω XY ([V, τ s λ (A)]τ s-t 0 (G λXY )) ds. (3.19) Proof. Relation (3.18) yields (ω λXY (τ t λ (A)) -ω λXY (τ t 0 (A)))ω XY (G λXY ) = ω XY ((τ t λ (A) -τ t 0 (A))G λXY ).
Since ω XY is τ 0 -invariant we have Proof. For X, Y real, ω λXY (τ t 0 (F j )) =

ω XY ((τ t λ (A) -τ t 0 (A))G λXY ) = ω XY ((τ -t 0 • τ t λ (A) -A)τ -t 0 (G λXY )) = iλ t 0 ω XY (τ -s 0 ([V, τ s λ (A)])τ -t 0 (G λXY ) ds = iλ t 0 ω XY ([V, τ s λ (A)]τ s-t 0 ( G 
(Ω, π XY (F j )π XY (τ -t 0 (G λXY ))Ω) ω XY (G λXY ) .

This identity and Lemmas 3.3, 3.5, and 3.7 yield the statement. 2 Lemma 3.9 Let 0 < Λ < Λ 0 be given. Then there exists ǫ > 0 such that for all A = a # (f 1 ) • • • a # (f m ) with f j ∈ D, the map (t, λ, X, Y ) → π XY ([V, τ t λ (A)]) ∈ B(H), π XY ([V, τ t λ (F j )]) dt < ∞.

2

We are now ready to complete: Proof of Theorem 3.1. We start with formula (3.19). By Lemmas 3.7 and 3.8, it suffices to show that for some ǫ > 0 the functions (λ, X, Y ) → By (A2) and (A3), every F j can be written as a finite sum of monomials a # (f 1 ) • • • a # (f m ) with f k ∈ D, and the result follows from Lemma 3.9. 2
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  uniquely extends to a representation π XY : O → B(H) and the triple (H, π XY , Ω) is the GNS-representation of the algebra O associated to the state ω XY .
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 3738 λXY )) ds, and (3.19) follows. 2 For any Λ > 0 there exist ǫ > 0 and δ > 0 such that the function(λ, X, Y ) → ω XY (G λXY ),extends to an analytic function on C × D ǫ which satisfiesinf λ∈R Λ,δ ,(X,Y )∈Dǫ |ω XY (G λXY )| > 0.(3.20)Proof. Since ω XY (G λXY ) = (Ω, π XY (G λXY )Ω), the first statement is a special case of Lemma 3.5. Since ω XY (G λXY ) > 0 for λ, X, Y real, by continuity (3.20) holds for ǫ and δ small enough. 2 For any Λ > 0 there exist ǫ > 0 and δ > 0 such that for all t ∈ R the functions(λ, X, Y ) → ω λXY (τ t 0 (F j )),(3.21) extend to analytic functions on R Λ,δ × D ǫ such that sup λ∈R Λ,δ ,(X,Y )∈Dǫ,t∈R |ω λXY (τ t 0 (F j ))| < ∞.

,

  (3.22) extends to a continuous function onR + × {λ ∈ C | |λ| < Λ} × D ǫ which is analytic in (λ, X, Y ) for fixed t ∈ R. Moreover, ,(X,Y )∈Dǫ π XY ([V, τ t λ (A)]) dt < ∞. (3.23)Proof. The expansion (1.1) yields thatπ XY ([V, τ t λ (A)]) = π XY ([V, τ t 0 (A)]) + ∞ n=1 (iλ) n 0≤sn≤•••≤s1≤t π XY ([V, [τ sn 0 (V ), [• • • , [τ s1 0 (V ), τ t 0 (A)] • • • ]]]) ds 1 • • • ds n . Set C (0) XY = π XY ([V, τ t 0 (A)]), and, for n ≥ 1, C (n) XY (t, s 1 , . . . , s n ) = π XY [V, [τ sn 0 (V ), [• • • , [τ s1 0 (V ), τ t 0 (A)] . . . ]]] .Theorem 1.1 yields that for each n there exist a finite index set P n (A), scalar functions G (n)A,p which do not depend on X, Y , and monomialsF (n) A,p ∈ O such that C (n) XY (t, s 1 , . . . , s n ) = p∈Pn(A) G (n) A,p (t, s 1 , . . . , s n )π XY (F (n) A,p ).Recall our standing assumption (1.3) and Part (2) of Theorem 1.1. Let δ > 0 be such thatC 0 ≡ (1 + δ) 2n-1 < Λ 0 Λ . (3.24)Applying Lemma 3.4 with this δ to the factors of π XY (F(n)A,p ) we conclude that there exists ǫ > 0 (which depends on δ) such that for all n the functions(X, Y ) → π XY (F (n) p ) ∈ B(H),extend to analytic functions on D ǫ satisfying sup t,s1,...sn∈R,(X,Y )∈Dǫπ XY (F (n) p ) ≤ C 1 C n+1 0 where C 1 = (1 + δ) m-1 [max(1, f 1 , • • • , f m )]m-1 . By Part (3) of Theorem 1.1, (t, s 1 , . . . , s n )| dtds 1 • • • ds n < ∞, and we conclude that ∞ 0 sup λ∈C,|λ|<Λ,(X,Y )∈Dǫ

  π XY ([V, τ s λ (F j )])π XY (τ s-t 0 (G λXY ))Ω) ds, extend to analytic functions on {λ ∈ C | |λ| < Λ} × D ǫ such that sup λ∈C,|λ|<Λ,(X,Y )∈Dǫ,t≥0 t 0 (Ω, π XY ([V, τ s λ (F j )])π XY (τ s-t 0 (G λXY ))Ω) ds < ∞.By Lemma 3.5, it suffices to show that the functions(t, λ, X, Y ) → π XY ([V, τ t λ (F j )]) ∈ B(H), extend to continuous functions on R + × {λ ∈ C | |λ| < Λ} × D ǫ which,for fixed t, are analytic in (λ, X, Y ) and satisfy the bound ∞ 0 sup λ∈C,|λ|<Λ,(X,Y )∈Dǫ π XY ([V, τ t λ (F j )]) dt < ∞.

  Assume that (A1) holds and that |λ| < Λ 0 . Then for all ω-normal states η and A ∈ O,

	of Theorem 1.2 (see Subsection 2.2) is:
	Theorem 1.3