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We study the two-dimensional flow of foams around a circular obstacle within a long channel.

In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a

deterministic software, the Surface Evolver, for bubble details; and a stochastic one, the extended

Potts model, for statistics. We vary the fluid fraction in both experiments and simulations and

determine the yield drag of the foam. We find that it is linear over a large range of the ratio of

obstacle to bubble sizes, and is independent of the channel width over a large range. Fluid fraction,

on the other hand, has a strong effect on the yield drag; at low fluid fraction the yield drag increases

strongly with decreasing fluid fraction. We discuss and interpret this dependence on fluid fraction.

I. INTRODUCTION

Multiphase materials such as colloids, emulsions,

polymer or surfactant solutions, wet granular sys-

tems and suspensions of deformable objects like red

blood cells are characterized by a complex mechani-

cal behaviour [1], due to the interaction of their con-

stitutive entities. The concentration is one of the key

parameters which control the rheology, determining

especially the transition from liquid-like to solid-like

properties [2].

Amongst these complex fluids, liquid foams pro-

vide a convenient model experimental system for

laboratory studies of the interplay between struc-

ture, concentration and rheology. This is because

the bubbles which constitute the foam’s internal

structure can be easily visualised and manipulated.

The mechanical behaviour of foams is very diverse:

they appear elastic, plastic or viscous depending on

the deformation and velocity gradient [3, 4].

A liquid foam consists of gas bubbles separated

by a connected network of liquid boundaries. This
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liquid phase occupies a fraction Φ of the volume of

the foam. The “dry foam” limit, when Φ tends to

zero, corresponds to polyhedral bubbles separated

by thin walls. It is associated with a divergence of

certain contributions to the viscous dissipation [5].

However, the foam’s non-dissipative properties (such

as surface energy [6], shear modulus or yield stress

[7, 8]) usually tend to a regular, finite limit when the

fluid fraction Φ tends to zero.

The “yield drag” FY is the minimal force observed

when there exists (or, equivalently, required to cre-

ate) a movement of the foam relative to an obsta-

cle [9]. It is a global, geometry-dependent quantity

directly measurable in experiments and in practical

applications of foams, for instance when a foam flows

through a porous medium [10], or when one intro-

duces an object into a foam (analogous to sticking

one’s finger into shaving cream). The total yield

drag F t
Y arises from the low-velocity limit (in which

viscous dissipation is neglected) of two contribu-

tions, F p due to the pressure inside the bubbles and

Fn due to the network of bubble walls (i.e., soap

films with surface tension):

F t
Y = F p

Y + Fn
Y . (1)

Here we consider the network contribution Fn
Y and

show how it is affected by the liquid content of the
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foam.

We consider a single layer of bubbles, to facilitate

preparation and analysis of experiments, as well as

numerical and analytical modelling [11]. Section II

presents (quasi-2D) experiments in which the foam

flows around a fixed circular obstacle within a long

channel: this is the historical experiment of Stokes,

already adapted to foams both in 2D [9, 12] and

in 3D [13, 14, 15]. We compare them with truly

2D simulations using two different software pack-

ages (Section III). The simulation methods allow

easy variation of the geometrical parameters such as

bubble, obstacle and channel size and better control

of bubble area. Section IV presents our results: we

show that the yield drag displays the expected de-

pendence with the bubble, obstacle and channel size,

and increases when the fluid fraction Φ decreases.

The discussion in Section V emphasises that tak-

ing into account the effect of fluid fraction allows all

data to be plotted on a single master-curve and that

the simulation results are consistent with those from

experiments.

II. EXPERIMENTAL METHODS

A. Foam channels

Our bulk soap solution is de-ionised water with 1%

Teepol, a commercial dish-washing liquid. Its sur-

face tension, measured with the oscillating bubble

method, is γ = 26.1 ± 0.2 mN m−1, and its kine-

matic viscosity, measured with a capillary viscome-

ter, is 1.06 ± 0.04 mm2 s−1.

The experimental set-up [9] confines the foam be-

tween the surface of water and a glass lid (hereafter

called “liquid-glass” [16]). A 1 m long, wc = 10 cm

wide tank is filled with soap solution, leaving below

the top glass lid a free space of thickness h which

we can adjust. At its centre is a circular obstacle of

diameter d0 = 3 or 4.8 cm (Fig. 1). At the entrance

to the channel, nitrogen is blown at a computer-

controlled flow rate, which varies between 5 and 500

ml min−1. A typical value of the average velocity is

3 mm s−1, for a 3.5 mm thickness and a flow rate of

X

Y

FIG. 1: Image of the experiment, with the foam confined

between liquid and glass and flowing from top to bottom.

Foam thickness h = 4.5 mm; bubble area A = 16 mm2;

mean velocity v = 5.6 mm s−1; effective fluid fraction

Φ = 0.06.

50 ml min−1.

The resulting foam consists of a horizontal mono-

layer of bubbles. It exits freely at atmospheric pres-

sure at the open end of the channel, P = Patm.

In the absence of the obstacle, it yields a two-

dimensional plug flow. With the obstacle present,

the flow remains two-dimensional (even if the foam

itself is not exactly 2D [16]): there is no vertical

component of the velocity.

Due to the presence of the obstacle, there is a

velocity gradient. There are many bubble rear-

rangements (so called “T1s” or neighbour-swapping

events): two three-fold vertices contact, merge and

re-separate. We observe well-separated T1s; that is,

between two T1s, there is enough time for the foam

to relax to an equilibrium state. The present flow

is slow enough that results presented below do not

depend on the velocity, and comparison with quasi-

static calculations and simulations makes sense. The

bubble walls meet the solid boundaries of the foam

(glass plate, lateral channel walls, obstacle itself) at
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FIG. 2: Picture of two adjacent three-fold vertices with

Plateau borders. (a) We apply the decoration theorem

[20] to model a wet foam. The liquid is present only

at the vertices, and (assuming here straight or nearly-

straight walls) the uniformity of pressure P inside bub-

bles enforces each gas/liquid interface to have the same

radius of curvature, R. (b) Critical position of the ver-

tices just before the “T1” neighbour-swapping event. It

defines the cut-off wall length Lc.

a 90◦ angle, due to the left-right symmetry [17].

The surface density of bubbles is 1/A, where A is

the average bubble area (including its walls). The

foam is monodisperse: the area variation at the

channel entrance is less than 5%. The average area

is fixed at a value ranging from 0.121 cm2 to 0.393

cm2; most experiments have A = 0.160 cm2. Despite

the low velocity, and hence the long transit time, we

do not detect neither bubble coalescence nor coars-

ening. The effect of foam ageing on rheology [18, 19]

is thus negligible.

B. Fluid fraction

1. Fluid fraction of ideal 2D foams

In an ideal 2D foam, a Plateau border is a triangle

with concave edges of radius R which match tangen-

tially three straight lines meeting at 120◦ (Fig. 2).

The area of a Plateau border is
(√

3 − π
2

)

R2 [3].

The fluid fraction Φ is defined as:

Ag = A(1 − Φ), (2)

where Ag is the area occupied by the gas. Thus, for

a honeycomb array of bubbles:

Φ =
(

2
√

3 − π
) R2

A
. (3)

For a disordered foam, bubbles have a variable num-

ber n of sides, and eq. (3) is no longer exact. How-

ever, eq. (3) comes from the number of Plateau bor-

ders per bubble: it is linear in n, and thus involves

the average n̄ over the foam. Since n̄ ≈ 6 in a large

2D foam [3], eq. (3) holds even for a disordered

foam.

A T1 is triggered when the distance between these

vertices becomes smaller than a cut-off wall length

Lc, which increases with R, and thus with Φ. To

make this observation more quantitative, one possi-

ble convention to define Lc is the condition that two

vertices touch (Fig. 2):

R√
3

=
Lc

2
, (4)

so that, together with eq. (3):

Φ =
3

2

(√
3 − π

2

) L2
c

A
≈ 0.242

L2
c

A
. (5)

At given A, the physical information conveyed by

R, Φ or Lc is the same. For comparison between

different experiments or simulations, we prefer to use

Φ, which is dimensionless and intuitive.

For an ideal honeycomb lattice under homoge-

neous shear, all vertices merge at the same time and

the hexagons become circular when Lc equals the

side-length of the hexagons. This corresponds to

Φ = 0.091 [7], and the honeycomb lattice loses its

rigidity (vanishing shear modulus) [20].
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FIG. 3: Shape of a bubble of area 16.0 mm2, and of

volume V = 16.0 × 3.5 mm3, calculated with the Sur-

face Evolver. To reproduce the experiment, we enforce

the hexagonal symmetry and include the buoyancy. For

simplicity, the junction between lateral faces and the top

plate is assumed to be orthogonal.

2. Fluid fraction in the foam channel

In the experiment, the bubble shapes, and hence

the fluid fraction Φ, are determined by the liquid-

glass distance h: Φ decreases when the thickness h

of the foam increases. It is thus easy to vary Φ. Fig.

(1) shows a foam thickness of 4.5 mm; beyond this

thickness, the bubbles undergo a three-dimensional

instability and the foam is no longer a monolayer

[21]. At the other extreme, below 2 mm, the bubbles

are circular and separated: both the foam’s 2D shear

modulus and the yield drag vanish.

While we observe that it is easy to vary Φ, its def-

inition is ambiguous [11, 16], due to the 3D shape

of bubbles (Fig. 3). Throughout this paper, to es-

tablish a correspondence between the triggering of

T1s in experiments, simulations and analytical ex-

pressions, we define an effective 2D fluid fraction.

We binarize all images using the same threshold

level, and determine the surface fraction occupied

by the white pixels. Since the 3D meniscus (Fig.

3) considerably expands the bubble wall thickness,

this significantly overestimates Φ. We rescale the

data (we divide them by 4) so that the observed

and expected values of the rigidity loss coincide. We

find Φ ≃ 0.11(1 − 0.1 h), where h is in mm, and an

uncertainty around ±0.01.

C. Force measurements

1. Total yield drag

The obstacle floats just below the top glass surface

and is free to move, without solid friction. However,

it is linked to a fixed base through a calibrated elastic

fibre. We track the obstacle displacement from its

position at rest using a CCD camera which images

the foam flow from above. We thus measure the

force exerted by the flowing foam on the obstacle

(precision better than 0.1 mN) [9].

We check that the lift (spanwise component of the

resultant force) is consistently zero, within fluctua-

tions, as expected by symmetry (data not shown).

After a transient, the total drag F t (streamwise com-

ponent of the resultant force) fluctuates around a

steady value: we record the average and standard

deviation of these steady flow data. The extrapo-

lation to the low velocity limit (or zero-velocity in-

tercept) of the force-velocity curve defines the yield

drag F t
Y . It is independent of the bulk solution vis-

cosity [22], and increases with the obstacle to bubble

size ratio [9].

2. Network contribution to the yield drag

We measure Fn
Y as follows. Each bubble wall in

contact with the obstacle pulls it with a force equal

to its line tension λ. The elastic contribution of

the wall network to the drag is then the vectorial

sum of all these individual forces, which all have

the same modulus λ. As mentioned above, in a

quasi-static flow each wall touches the obstacle at

90◦ angle. Thus it suffices to find the contact points

between bubble walls and the obstacle, sum vecto-

rially all outward normal vectors to the obstacle at

these contact points (which is easy to determine for

a circular obstacle), and multiply by λ. If the down-

stream geometry of the foam was the same as that



5

upstream, the drag would be zero. Since bubbles

are squashed upstream and stretched downstream,

the up/downstream asymmetry means that there are

more bubble walls pulling the obstacle downstream,

and we measure a downstream elastic contribution

to the drag. To facilitate the comparison with sim-

ulations, we report the dimensionless value Fn
Y /λ.

In two cases we were able to measure λ directly

by preparing a single wall pulling on the obstacle.

For a thickness h = 4.0 mm, we find λ = 0.44 mN;

for h = 4.5mm, λ = 0.49 mN. We thus extrapolate

to lower thicknesses as λ ≈ 0.11 h.

III. SIMULATIONS

A. Deterministic simulations (the Surface

Evolver)

The Surface Evolver [23, 24] offers the possibility

to reach a true quasi-static limit, that is a succession

of exact equilibrium states, through a deterministic

(conjugate-gradient) minimisation of the foam’s en-

ergy. It yields precise details of the foam structure,

including the pressure P in each bubble. We can

thus separately compute F p
Y and Fn

Y .

1. Preparation of the foam

We use a mode in which all bubble walls are rep-

resented as circular arcs. The Surface Evolver lets

these circular arcs evolve in order to minimise the

total perimeter (equivalent to the energy, up to the

prefactor λ). It enforces the constraint that bubble

areas A remain fixed and determines the correspond-

ing Lagrange multipliers, namely each bubble’s pres-

sure P . Since we can freely choose the units, we call

them “cm” and use bubble size A = 0.16 or 0.353

cm2, channel width wc = 10 cm, and obstacle diam-

eters d0 = 1.5, 3 and 4.8 cm, to reproduce actual

experiments.

The lateral sides of the channel are rigid and do

not interact with the foam, ensuring free-slip bound-

ary conditions for the flow. We adopt a periodic

boundary condition in the direction of motion: bub-

(a)

(b)

FIG. 4: Images of simulated foam flow. The x-axis

is parallel to the flow along the channel, with periodic

boundary conditions (exiting bubbles re-enter); axis y

is spanwise, with free-slip rigid boundary conditions on

either side of the channel. (a) Surface Evolver. The im-

age shows the whole simulation domain of 750 bubbles;

the shaded bubbles started in a horizontal line. Here

d0 = 4.8 cm, A = 0.16 cm2, wc = 10 cm, Lc = 0.05 cm

and therefore Φ = 0.0037. (b) Potts model. The image

shows the simulated channel’s full width (except for a few

pixels) of 256 pix and half the length. This is a dry foam

with d0 = 74 pix, A = 100 pix2 and Φ = 0.01. Bubbles

coloured in white are without topological defect: 6-sided

bulk bubbles, or 5-sided bubbles touching a lateral wall

or the obstacle [6]. Bubbles with fewer neighbours are in

dark grey, bubbles with more neighbours in light grey.
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bles that exit at the end of the channel are fed back

into the entrance of the channel. We stop the simu-

lation when each bubble has passed the obstacle no

more than once.

We begin with a rectangular lattice of 30 × 25

monodisperse bubbles of area slightly larger than the

required area A. We randomly perturb this lattice

so that all the unstable four-fold vertices decay into

pairs of three-fold vertices and the whole foam struc-

ture relaxes towards equilibrium. We then choose

one bubble to be the circular obstacle, by slowly

increasing its area to the required value (and cor-

respondingly reducing the bubble areas to A) and

constraining its edges to lie on a circle. The centre

of the circular obstacle is then moved to the centre

of the channel and the structure again relaxed to

equilibrium.

2. Simulation of the flow

With the obstacle in the desired location and the

foam close to equilibrium, we start the quasi-static

iteration procedure. This requires that we move the

foam past the obstacle, in a direction which we de-

note by x; the difficulty is in doing this with the

periodic boundary conditions without fixing any ver-

tices or bubble shapes. Our method is to choose a

continuous line of consecutive bubble walls from one

side of the channel to the other. Joining this to a

line at x = 0 with lines along the channel walls de-

fines a plane region with a certain area. At each

iteration we choose a convenient line of consecutive

walls, and increment the area of the region formed

by a small amount dA (equal to 0.05 cm2 in all sim-

ulations), resulting in a slight movement of a line of

films without modifications of bubble areas. The to-

tal perimeter of the structure is then reduced until

it converges to a constant value (Fig. 4a), so that

measurements can be performed.

We have double-precision values for the network

geometry. We measure the network contribution Fn
Y

to the yield drag as in experiments (section II C 2).

It is the sum of the unit vectors of the bubble wall

with one end attached to the obstacle, expressed in
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FIG. 5: The network force F n

Y (expressed in units of the

line tension λ) measured in simulations versus time. (a)

Surface Evolver data plotted every iteration step; d0 =

4.8 cm, A = 0.16 cm2 and Lc = 0.05 cm. The plateau

value is F n

Y = 9.6 ± 1.4. (b) Potts model data plotted

every 1500 Monte Carlo Steps; d0 = 74 pix, A = 100

pix2, Φ = 0.01. The plateau value is F n

Y = 5.4 ± 1.1.

units of the line tension (hence as a dimensionless

number). Here too, we check that the lift is consis-

tently zero within fluctuations (data not shown).

With the area increment dA = 0.05 cm2, the tran-

sient lasts for about 600 steps (Fig. 5a). This is

comparable to but still smaller than the total simu-

lation time that is reasonably accessible. After this

transient, the drag fluctuates around a steady value.

Such fluctuations recall the stress drops observed in

Couette experiments for disordered foams [25, 26];

they are both linked to the rearrangements of the

bubbles. We record the average and standard devia-

tion of these plateau (steady-flow) data for a total of

1500 iterations. To validate the choice or our simu-

lation size, we checked once that the drag forces are

the same with more bubbles in the direction of flow

(1250 bubbles instead of 750), although the transient

is longer.

Each simulation takes about 35 hours on a Pen-
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tium IV 3.20 GHz processor: typically one iteration

per minute (depending on the number of bubbles

and on the liquid fraction), plus a several hour build-

up to the initial structure (inflating the obstacle).

3. Cut-off wall length and effective fluid fraction

The Surface Evolver requires to specify the cut-

off wall length Lc at which two three-fold vertices

are allowed to contact, merge and re-separate. This

mimics the effect of liquid in the foam (Fig. 2) and

defines an effective fluid fraction in simulations (eq.

5). We choose Lc of the order of 0.1 cm or slightly

smaller, reaching Φ = 0.0015, 0.0037, 0.0061 and

0.015.

At very small values of Φ < 6 10−6, films be-

hind the obstacle would get very stretched and lead

to numerical problems. Attempting larger values of

Φ > 0.015 leads to poor convergence in the Surface

Evolver and would require that we simulate the ac-

tual geometry of the liquid in the vertices (including

4-fold vertices).

B. Stochastic simulations (Potts Model)

To simulate a larger number of bubbles, the Potts

model adapted for foam rheology [27] also minimises

the same energy, but stochastically (Monte-Carlo),

drastically increasing the simulation speed. It thus

provides more statistics on Fn
Y and allows greater

variation of the geometrical parameters.

1. Principle of the Potts Model

The Potts model is derived from a large-Q Potts

model run at zero temperature, a model widely used

to model grains in crystals [28]. It has been also ap-

plied to different domains of foam physics, includ-

ing rheology, by enforcing the conservation of bubble

size and applying an external force [27].

We consider a 2D square lattice. Each site i has an

integer index σi. The kth bubble is defined as the

domain consisting of all sites with the same index

value σi = k. Thus bubbles tile the plane without

gaps or overlaps. The evolution is driven by the

minimisation of a total energy (strictly speaking, it

is a Hamiltonian), with three contributions:

H =
∑

i,j neighbours

[1 − δ(σi, σj)]

+χ
∑

bubbles k

(

Ak − At
k

)2
+ b

∑

sites i

xi. (6)

The first term represents the contribution of the

surface energy of interfaces between bubbles. Min-

imising this term leads to perimeter minimisation.

Here δ is the Kronecker symbol : 1 − δ is equal to

1 if the neighbouring sites i, j belong to different

bubbles (σi 6= σj); else it equals zero. The prefactor

has been set to one without loss of generality. It de-

termines the effective line tension, which is of order

unity.

The second term keeps each bubble area Ak (the

number of sites with the same index) close to its pre-

defined target value At
k. Here χ is the compressibil-

ity, which we choose to be high enough to keep bub-

ble areas constant within a few pixels. The balance

between this term and the preceding one simulates

a foam relaxing towards mechanical equilibrium.

The third term is a bias term that describes an

energy gradient, hence a homogeneous external force

field. Here b is the bias intensity and x the site’s

coordinate along the flow. Without obstacle, the

resulting velocity profile would be a plug flow.

We use a Metropolis algorithm to evolve the foam:

we randomly select a site at a bubble boundary,

change its index to the value of a neighbour if, and

only if, this decreases the total energy (eq. 6). Sev-

eral independent changes are tried successively; a

Monte Carlo Step (MCS) is defined conventionally

as a number of tries equal to the total number of

lattice sites.

2. Simulation of the flow

As for the Surface Evolver (section III A 1), we

choose a periodic boundary condition in the direc-

tion of flow and free-slip rigid boundary conditions

on the channel sides. To ensure that it does not

affect the steady-state measurements presented be-
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low, the total channel length is 4wc, out of which

only 2wc are used for measurements and are shown

on Fig. (4b).

To match the experiments, we choose 16 ≤ d0 ≤
148 pix, 64 ≤ A ≤ 400 pix2 and 64 < wc < 512

pix. Initially, we insert a rigid round obstacle in

the centre of the channel, and let a perfectly or-

dered foam (honeycomb pattern) flow in. We then

switch off the bias term by setting b = 0, and relax

the foam to ensure that the bubbles recover their

(near) equilibrium state. We then switch the bias

on again. We use the smallest bias b for which the

foam flows, which is constant and independent of

parameters such as bubble diameter.

The foam has reached the stationary state at the

end of this preparation. When we switch the bias

on again, we begin the measurements, performed at

intervals of 1500 MCS (during which a bubble moves

a few pixels).

We measure the network contribution to the drag

using the same method as in the experiments and

Surface Evolver simulations. It fluctuates around

a steady value: we record the average and stan-

dard deviation of these plateau (steady-flow) data

(Fig. 5b). We run each simulation for a total of

600,000 MCS, during which a bubble passes com-

pletely through the channel but no bubble passes

the obstacle twice. One simulation takes about 12

hours on a Pentium IV 2.8 GHz processor.

3. Cut-off wall length and effective fluid fraction

In the Potts model, the discretisation due to the

lattice has two main effects.

First, there is an unavoidable residual anisotropy

of the line tension, typically a few percent [29]: it

does not seem to affect the results presented be-

low. To reduce the line tension anisotropy due to

the lattice, we choose to evaluate the energy with

the fourth nearest neighbour interactions [29].

Second, the lattice affects the boundaries: they

are smooth if we choose a large bubble area A, at

the expense of a longer computation time. The exact

choice of A usually does not fundamentally affect the

results. However, we will now see that the present

simulations require some attention.

The cut-off distance Lc at which two vertices can

merge should be typically of the order of the pixel

size on the lattice, but its exact value is difficult

to define. For simplicity (and also because it yields

a reasonable agreement with experiments), we as-

sume Lc ≈ 2 pix. Eq. (5) thus defines an effective

fluid fraction Φ ≈ 0.242 × 4/A ≈ A−1. The simu-

lated range 64 pix2 ≤ A ≤ 400 pix2 corresponds to

0.0025 < Φ < 0.015. Decreasing Φ would require a

longer computation time.

IV. RESULTS

Both experiments and both simulations present

similar images (Figs. 1, 4) and a consistent picture.

The drag force is positive (downstream), due to

both the network and the pressure contributions.

The Surface Evolver (data not shown) indicates that

F p
Y and Fn

Y are of the same sign and same order of

magnitude, as has already been observed [24]. Ex-

periments display the same qualitative trend (data

not shown).

There are a priori four lengths in this problem:

the channel width wc, the obstacle diameter d0, the

bubble size
√

A; and either the Plateau border ra-

dius R (in experiments), or the cut-off length Lc

(in simulations). As far as we can tell, it is safe to

assume that the channel length (if long enough) is

irrelevant here. These four lengths can be reduced

to three dimensionless parameters. We now present

the results using: d0/wc which characterises the flow

geometry; d0/
√

A which describes the foam-obstacle

interaction; and Φ or L2
c/A which characterises the

threshold for T1 rearrangements.

A. Effect of obstacle to channel size ratio

Potts model simulations indicate that the network

yield drag is independent of the channel width wc

(Fig. 6a), until the obstacle (or the distance between

the obstacle and the channel side [24]) is comparable

to one bubble diameter.
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FIG. 6: Network contribution to the yield drag F n

Y (ex-

pressed in unit of λ), measured in Potts model simula-

tions, A = 100 pix2 (Φ = 0.01). (a) F n

Y versus wc, for

d0 = 74 pix; the solid line is the average (value 5.43).

(b) F n

Y versus d0, for wc = 256 pix; the solid line is a

linear fit with zero intercept, F n

Y = 0.77 d0/
√

A.

In 2D, elastic and hydrodynamic interactions are

often logarithmic in distance, in which case the chan-

nel width would play a role. The weak dependence

in d0/wc that we find characterises the yielding be-

haviour of the foam, which means that only a small

region near the obstacle is affected by the flow [14].

Nonetheless, the zone where the obstacle influences

the flow is larger in 2D [30] than in 3D [14].

 0
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FIG. 7: The network contribution to the yield drag

F n

Y , rescaled by λd0/
√

A, is plotted versus the effec-

tive fluid fraction Φ defined in eq. (5), in the range

10−3 < Φ < 10−1. Bars indicate the standard devia-

tion of the force fluctuations in time around the plateau

value. Experiments (�), Surface Evolver (◦) and Potts

model (△) data lie close to the solid line denoting the

analytical model, from eq. (7). Note the semi-log scale.

B. Effect of obstacle to bubble size ratio

Potts model simulations indicate that the network

yield drag increases linearly with the obstacle size d0

(Fig. 6b). This is consistent with the force scaling

as d0/
√

A, also suggested by the available Surface

Evolver data, as well as by experimental measure-

ments of the total force that show the role of the

obstacle’s spanwise dimension (“leading edge”) [9].

Note that most elastic properties of a foam scale like

1/
√

A [3]. In fact, when A increases, the density of

bubbles and of bubble walls decreases, and so does

the foam elastic modulus (it would eventually vanish

if there was only one large bubble left).

C. Effect of fluid fraction

We need to separate the effects of foam geome-

try, d0/
√

A, from those of fluid fraction. We thus

rescale the network contribution to the yield drag

Fn
Y by d0/

√
A, and plot all our data as a function

of the effective fluid fraction Φ. All the data, from

both experiments and simulations, fall on the same

master-curve (Fig. 7). This is the main result of the
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present paper.

V. DISCUSSION

A. Model

The effect of the fluid fraction on the network drag

can be understood as follows. A bubble of area A

detaches from the obstacle when its width is of order

Lc, and thus its length is of order A/Lc. When Φ

decreases, Lc decreases too. Bubbles stretch more

downstream, and more bubbles pack behind the ob-

stacle. The number of bubble walls pulling the

obstacle downstream increases; simultaneously, the

number of walls upstream decreases. This larger

up/downstream asymmetry results in an increase in

the resulting drag Fn
Y . The contribution from the

network (or bubble walls) increases as their number

per unit length along the obstacle boundary, namely

L−1
c , and thus scales like

√
Φ.

However, the length of the region on which

stretched bubbles act decreases, and the divergence

in
√

Φ is in fact softened by a geometrical factor. As

shown in the Appendix, we can estimate this factor

by integrating the bubble wall contribution around

the obstacle. When Φ increases, Fn
Y decreases; it

vanishes for Φ = 0.086. This is close to the rigidity

loss value, namely 0.091. Eq. (17) is plotted in Fig.

(7), without adjustable parameters.

The three sets of data agree in the range 10−3 <

Φ < 10−1, and the model shows qualitative agree-

ment. This suggests we have obtained a coherent

picture, where the model captures the essence of the

physics, over two decades of fluid fraction.

B. Consequences of the scaling

In the limit of low Φ, the development of the above

argument indicates that Fn
Y increases according to

Fn
Y =

0.516

Φ1/4

λ d0√
A

. (7)

In simulations, this scaling has a surprising conse-

quence: the network drag changes if we multiply by

0 100 200 300 400
0

2

4

6

8

10

Bubble Area (pix2)

N
et

w
o
rk

F
o
rc

e
F

n Y
/
λ

FIG. 8: Opposite effects in simulations of F n

Y (here with

Potts model). When A/L2

c increases, both d0/
√

A and

Φ decrease, but their effects balance each other (eq. 7),

and F n

Y barely varies. Obstacle diameter d0 equals to 16

(△), 32 (�), 74 (�) and 128 (•).

the same prefactor the bubble, obstacle and channel

sizes expressed in units of the cut-off length.

Conversely, increasing only A at fixed Lc simulta-

neously decreases both d0/
√

A and Φ; this has two

opposing effects, the former decreasing Fn
Y , the lat-

ter increasing it, resulting in an almost constant Fn
Y

(Fig. 8).

C. Saturation at low Φ

Surface Evolver simulations allow us to probe the

range 10−5 < Φ < 10−3. They indicate that the

force saturates below Φ ∼ 10−3, in agreement with

preliminary experiments of a foam confined between

glass plates.

Direct observation of simulation images of very

dry foams (Fig. 9) confirms that the up/downstream

asymmetry is around 10 bubbles, roughly indepen-

dent of liquid fraction.

The model seems to correctly describe the squash-

ing and stretching of bubble shapes. However, the

interpolation between both extreme values assumes

a phenomenological expression (eq. 11), which

seems too crude at low Φ. In fact, packing many

narrow bubbles around the trailing edge of the ob-

stacle is energetically unfavourable, since the bub-
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(a)

(b)

FIG. 9: Surface Evolver simulation of a very dry foam:

zoom around the obstacle. (a) Φ = 3.7 10−3; (b) Φ =

6 10−6. Here d0 = 4.8 cm, A = 0.16 cm2, wc = 10 cm.

bles become highly anisotropic (Fig. 9b).

VI. CONCLUSION

To summarise, we investigate the two-dimensional

flow of a foam around a circular obstacle, within a

long channel. Our deterministic (Surface Evolver)

and stochastic (Potts model) simulations, as well as

our model and experiments, complement and vali-

date each other.

The yield drag is defined as the low-velocity limit

of the interaction force between an obstacle and a

flowing foam. The network contribution scales as

the obstacle to bubble diameter ratio, as long as

this ratio is larger than unity, and is almost inde-

pendent of the channel width. It increases (because

more and more stretched bubbles accumulate behind

the obstacle) as a power law when the liquid frac-

tion contained in the foam decreases to 10−3, then

saturates.

Its dependence with fluid fraction is well charac-

terized. It is very different from that of local intrinsic

properties such as the yield stress or shear modulus.

Such observation suggests that it will be difficult to

deduce one quantity from the other. This should

be kept in mind in future simulations, and has to

be taken into account when modelling the foam be-

haviour. In fact, the deformation of bubbles around

the obstacle is non-trivial and difficult to model.

Although the volume of a given bubble is constant

in the experiments, we can estimate the pressure

contribution to the yield drag since the glass-liquid

set-up has a special property: when the pressure in-

side a bubble increases, the thickness between the

glass and liquid increases, stretching the bubble in

the vertical direction. Thus its area projected on

the horizontal glass lid decreases and each bubble

thus acts as a pressure sensor. We observe pressure-

driven variations of bubble area (especially near the

obstacle) up to ±10% around the area at the channel

entrance. This is small enough not to perturb the

flow itself and large enough to measure each bubble’s

pressure P [30]. Knowing P in each bubble neigh-

bouring the obstacle allows us to obtain F p
Y , and

these values will be compared with Surface Evolver

predictions in a further paper.

Future perspectives include the generalisation of

the present understanding to different situations, in-

cluding extension to 3D [13, 14], which should not

present fundamental differences with the present 2D

flow (especially since the external friction on the

glass plate [31] does not seem dominant here). It is

apparently applicable to other obstacle shapes like

an ellipse [32].
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contact, bubble 1 attaches to the obstacle.
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Appendix: Variation of F n

Y with the cut-off

length

We consider here only the bubbles touching the

obstacle, and the contribution of their walls to the

yield drag. We assume that the foam is bidimen-

sional and monodisperse, and that P is the same for

each bubble: bubble walls are straight, all Plateau

borders have the same curvature radius R. We as-

sume the obstacle is much larger than the bubbles

(
√

A ≪ d0) so that we can neglect its curvature at

the bubble scale. This approximation could in prin-

ciple affect the bubbles upstream, which share a long

edge with the obstacle. However, it should not affect

much the bubbles downstream, which are the main

contributors to the drag.

A. Geometry

To model a wet foam, we apply the decoration the-

orem [20]: the liquid is present only at the vertices

which decorate an ideally dry foam. For a bubble

touching the obstacle, we note L the distance be-

tween two neighbouring vertices in contact with the

obstacle (Fig. 10a).

When the foam flows, bubbles attach to the obsta-

cle upstream, and detach from it downstream. Vi-

sual observation of both experiments (Fig. 1) and

simulations (Fig. 4) indicate that bubbles are flat-

tened along the obstacle at the leading side of the

obstacle, and that they progressively stretch stream-

wise at the trailing side.

L reaches its minimum value Lc downstream,

where bubbles detach. There, two neighbouring

(decorated) vertices come in contact, and L equals

the cut-off length 2R (Fig. 10b).

On the other hand, upstream, for a new bubble

to attach to the obstacle, two bubbles must detach

through the configuration of Fig. (10c). In this case,

a vertex between three bubbles merges with one be-

tween two bubbles and the wall. The cut-off length

is different, and rather equals (1 + 1/
√

3)R. This

geometrically determines that the maximum bubble

width Lmax obeys:

A =

(

1 +
1√
3

)

RLmax +
L2

max

4
√

3
. (8)

Inverting eq. (8) yields Lmax:

Lmax(A, R) = 2

√

(
√

3 + 1)2R2 + A
√

3

−2(
√

3 + 1)R. (9)

At low fluid fraction, Lmax tends to a finite value,

namely
√

4A
√

3; there is no singularity at vanishing

R. Conversely, at high fluid fraction, Lmax varies

much with R, so it is preferable to rewrite eq. (9)

and determine R from the measurement of Lmax:

R(A, Lmax) =

(

1 +
1√
3

)−1 (

A

Lmax

− Lmax

4
√

3

)

.

(10)
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B. Continuous assumption

We assume the shape of the bubbles varies

smoothly from the configuration of Fig. (10c) up-

stream to that of Fig. (10b) downstream: 2R <

L < Lmax. Since the obstacle is much larger than

the bubbles, we switch from discrete to continuous

description of bubbles. We thus consider L as a con-

tinuous function of the ortho-radial angle θ along the

obstacle boundary. Equivalently, L−1 is the linear

density of vertices along the obstacle boundary.

If we take θ = 0 in the downstream direction, then

L(0) = 2R, L(±π) = Lmax. To interpolate between

these values, we assume the following phenomeno-

logical dependence, reflecting that all bubbles in the

range |θ| ≥ π/2 appear squashed against the obsta-

cle:

|θ| ≤ π/2 : L(θ) =

(

R +
1

2
Lmax

)

+
(

R − 1

2
Lmax

)

cos 2θ

|θ| ≥ π/2 : L(θ) = Lmax.

(11)

Since each bubble edge exerts a pulling force of mag-

nitude λ along the outward normal vector of the

obstacle boundary, the network contribution to the

drag is

F =
λd0

2

∫ π

−π

cos θ

L(θ)
dθ. (12)

To compute this integral, we introduce two dimen-

sionless variables, both functions of A and R:

ε =
R√
A

, (13)

β =
Lmax

2R
. (14)

The physical meaning of ε is equivalent to the fluid

fraction, since

Φ = (2
√

3 − π)ε2. (15)

On the other hand, β quantifies the amount of

up/downstream asymmetry, that is, the squashing

and stretching of bubbles. It increases when Φ (or

equivalently ε) decreases (eq. 9):

β(Φ) =

√

(
√

3 + 1)2 +
(6 −

√
3π)

Φ
− (

√
3 + 1). (16)

When Φ goes to zero, ε goes to zero too, and β

diverges.

Using these variables, eq. (12) yields

F =
λ d0

Lmax

[

β√
β − 1

arctan
(

√

β − 1
)

− 1

]

. (17)

At high fluid fraction, the force F vanishes when

β = 1, that is (eq. 16) when:

Φ =
2
√

3 − π

2 +
√

3
= 0.086. (18)

At low fluid fraction, we develop eq. (17) to leading

order in β and insert the leading order term of eq.

(16) to obtain eq. (7).
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