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Abstract

We formulate a variational fictitious-time flow which drives an initial guess torus to a torus

invariant under given dynamics. The method is general and applies in principle to continuous

time flows and discrete time maps in arbitrary dimension, and to both Hamiltonian and dissipative

systems.
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I. INTRODUCTION

Analysis of dynamical systems in terms of invariant phase space structures provides im-

portant insights into the behavior of physical systems. The simplest such invariants are

equilibria, points in phase space which are stationary solutions or 0-dimensional invariants

of the flow. They and their stable/unstable manifolds yield information about the topology

of the flow. The role that the next class of flow invariants, periodic orbits, play in the

topological organization of phase space and the computation of long time chaotic dynamics

averages is well known (for an overview, see Ref. [1]). A periodic orbit is topologically a

circle or an invariant 1-torus for a flow, and a set of discrete points or an invariant 0-torus

for a map, embedded in a d-dimensional phase space. Higher dimensional invariant tori also

frequently play an important role in the dynamics; we refer the reader to Ref. [2] for some

of the references to this literature. Invariant tori of dimension lower than the dimension of

the dynamical flow can be normally hyperbolic [3, 4]. KAM theory implies that invariant

tori occur in Cantor sets, and such tori play key roles in the phase-space transport [5, 6].

For 2-degree of freedom Hamiltonian flows (i.e., 4-dimensional phase space), 2-dimensional

invariant tori act as barriers to diffusion through phase space, and for higher dimensional

flows such structures act as effective barriers (Arnold diffusion). In dissipative systems such

as Newtonian fluids, quasi-periodic motion on two or higher dimensional tori is one of the

routes to the eventual turbulent motion [7, 8].

There are many methods for determining periodic orbits available in the literature [1, 9,

10]. The lack of comparably effective methods for the determination of higher dimensional

invariant structures has stymied the exploration of the phase spaces of high-dimensional

flows, a focus of much recent research [2, 11].

Signal processing methods like frequency analysis [12, 13], based on the analysis of trajec-

tories, can detect elliptic invariant tori since these tori influence significantly the behavior

of nearby trajectories. Bailout methods [14, 15] can effectively locate the elliptic regions

in a non-integrable system, by embedding the dynamical system into a larger phase space.

Ref. [16] describes a variational technique designed to find regular orbits in a phase space

with mixed dynamics. However, these methods can only detect trajectories with non-positive

Lyapunov exponents. They single out regular motions in a phase space but can not exactly

determine a torus unless it is stable. Due to their relative ease of identification, in partic-
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ular cases periodic orbits are used to study invariant tori and their breakup. For example,

in Greene’s criterion approach [17, 18, 19] one studies a sequence of periodic orbits which

converges to a given invariant torus. Such approaches have been mainly applied to the

determination of tori of Hamiltonian systems with 2 degrees of freedom.

Other techniques to determine invariant tori are specific to the phase space dynamics

of the system under consideration, most often a Hamiltonian system. Early attempts like

spectral balance method were based on the computation of quasi-periodic orbits [20, 21],

the closure of which constitutes the invariant torus. To overcome the small divisor problems

associated with the flow on a torus, recent research employed a geometric point of view

and focused on the invariant torus itself. Efforts are devoted to find the solution of the so-

called invariance condition which ensures the invariance of a parametrized object in phase

space. Invariance conditions are functional equations for maps [22, 23, 24, 25, 26, 27] and

first-order partial differential equations (PDEs) for flows [28, 29, 30]. These equations can

be solved by Newton’s method or Hadamard graph transform technique [4]. In view of the

periodicity in the angle variables, Fourier transforms are widely used in the computation [31,

32, 33, 34, 35, 36, 37]. For Hamiltonian systems, the action principle and the Hamilton-

Jacobi equation are also frequently used in the calculation of periodic and quasi-periodic

orbits [32, 38, 39, 40, 41, 42].

In this paper we introduce a method to solve the invariance condition equation and

obtain invariant m-tori of flows and maps embedded in d-dimensional phase spaces. It

has a variational structure which guarantees the global convergence. The method is a

generalization of the variational “Newton descent” method originally developed to locate

periodic orbits of flows [43, 44], which can be viewed as a variant of multi-shooting method

in boundary value problems [45, 46, 47]. When the representative points on the guess torus

achieve a near-continuous distribution, a PDE is derived which governs their evolution to

a true invariant torus. In spirit, this is similar to the approach used in Ref. [32] and thus

high accuracy is expected. However, our method is stable and thus applies to more general

cases, including the searches for partially hyperbolic tori embedded in the chaotic regions

of phase space. In a general dynamical system, the phase space structure can be extremely

complex, and the global stability of our algorithm is of key importance for the the efficiency

of our searching program. In our numerical computation, an adaptive scheme is used which

keeps changing the step size according to the smoothness of the evolution. In addition to
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the adaptive step size, we further speed up our searches by utilizing the continuity of the

variational evolution equations. These points will be explained in detail in what follows.

In Sec. II we derive the variational equation which governs the fictitious time dynamics.

The numerical implemention of this equation is discussed in Sec. III. The method is further

illustrated in Sec. IV through its application to the determination of 1-tori of the standard

map, of 2-tori of a forced pendulum flow (3-dimensional phase space), of 1- and 2-tori of two

coupled standard maps (a four dimensional symplectic map), and of 2-tori of the Kuramoto-

Sivashinsky system (infinite dimensional phase space). In particular, we provide evidence

that the method converges up to the threshold of existence of a given invariant torus and

yields estimates of the critical thresholds of the breakup of invariant tori of 2-degree of

freedom Hamiltonian systems.

II. NEWTON DESCENT METHOD FOR INVARIANT TORI

We start by deriving a variational fictitious time evolution equation for the determination

of a 1-dimensional invariant torus of a d-dimensional map f : Rd → R
d. The method can be

extended to the determination of invariant m-tori of d-dimensional maps and flows.

A fixed point (0-dimensional invariant torus) x = f(x) is a point which is mapped into

itself under the action of f . Likewise, a 1-dimensional invariant torus of f is a loop in R
d

which is mapped into itself under the action of f . If points on the invariant 1-torus are

parametrized by a cyclic variable s ∈ [0, 2π], with x(s) = x(s+2π), a point x(s) is mapped

into another point on the invariant torus

f(x(s)) = x(s+ ω(s)) , (1)

where ω(s) is the local parametrization s-dependent shift. In other words, the full phase

space dynamics f induces a 1-dimensional circle map on the invariant 1-torus

s 7→ s+ ω(s) mod 2π . (2)

We also parametrize our guess for the invariant 1-torus, the loop x(s, τ), by s ∈ [0, 2π],

with x(s, τ) = x(s+ 2π, τ). Together with the “fictitious time” τ , to be defined below, this

parametrizes a continuous family of guess loops. However, for an arbitrary loop there is

no unique definition of the shift ω, as the loop is not mapped into itself under action of f .
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Intuitively, ω should be fixed by requiring that the d-dimensional distance vector between

the circle map image of a point on the loop at s, and the “closest” point on the iterate of

the loop

F(s, τ) = x(s+ ω(s, τ), τ)− f(x(s, τ)), (3)

is minimized. For example, if the guess loop is sufficiently close to the desired invariant

1-torus, ω(s, τ) can be fixed by intersecting the loop with a hyperplane normal to the loop

and cutting through the image of loop f(x(s, τ)).

Compared with fixed point and periodic orbit searches for iterates of maps, the new aspect

here is that we are searching for m-dimensional compact invariant hyper-surfaces, with

points on such hyper-surfaces parametrized by m cyclic variables. We have encountered this

situation already for the continuous time flows, for which a periodic orbit p is an invariant 1-

torus, with x(t) ∈ p naturally parametrized by the cyclic time variable t ∈ [0, Tp]. For other

cyclic coordinates we are free to choose a parametrization s that best suits our purposes.

In this exploratory foray into the world of compact higher-dimensional invariant manifolds

we shall make the simplest choice at each turn. In particular, we are free to choose any

parametrization s which preserves ordering of points along the invariant 1-torus, i.e. any

circle map (2) that is strictly monotone, 1 + dω/ds > 0. For an irrational rotation number

a strictly monotone circle map can be conjugated to a constant shift, so in what follows we

define the s parametrization dynamically, by requiring that the action of the dynamics f for

both the guess loop and the target invariant 1-torus is rotation with a constant shift ω,

s 7→ s+ ω mod 2π . (4)

The invariance condition (1) with conjugate dynamics (4) has been used previously in the

literature [33, 34]. We now design a stable scheme which yields a parametrization x(s)

satisfying Eq. (1) together with Eq. (4).

Following the approach of Refs. [43, 44] originally developed to locate periodic orbits of

flows, we now introduce the simplest cost functional that measures the average distance

squared (3) of the guess loop from its iterate

F2[τ ] =
∮ ds

2π
F(s, τ)2 . (5)

Similar functional was used in the stochastic path extremization [48]. Here F2[τ ] = F2[x, ω]

is a functional, as it depends on the infinity of the points x(s, τ) that constitute the loop
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for a given τ . If the loop is an invariant 1-torus, F2 = 0, otherwise F2 > 0. At fictitious

time τ we compute cost due to the two mappings: one is the iterate f(x(s, τ)) of the loop,

and the other the circle map s 7→ s + ω(τ) along the loop. The fictitious time evolution

should monotonically decrease the distance between a loop and its iterate, as measured by

the functional F2[τ ], by moving both the totality of loop points x(s, τ) and modifying the

shift ω(τ).

With constant shift circle map (4) the variation of F2[τ ] under the (yet unspecified)

fictitious time variation dτ is

d

dτ
F2[τ ] = 2

∮

ds

2π

(

F(s, τ) · dF
dτ

(s, τ)

)

, (6)

where

d

dτ
F(s, τ) =

∂x

∂τ
(s+ ω(τ), τ) + v(s+ ω(τ), τ)

dω(τ)

dτ

− J(x(s, τ))
∂x

∂τ
(s, τ) ,

v(s, τ) =
∂x

∂s
(s, τ) .

The adjustment in the loop tangent direction v is needed to redistribute points along the

loop in order to ensure the constant shift parametrization s, and the [d×d] Jacobian matrix

of the map J = ∂f/∂x moves the loop point x(s, τ) in the “Newton descent” direction.

Again we design a fictitious time flow in the space of loops by taking the simplest choice,

in the spirit of the Newton method:

dF

dτ
= −F , (7)

for which F2[x, ω] decreases exponentially with fictitious time τ :

F2[τ ] = F2[0]e−2τ . (8)

The “Newton descent” PDE (7) which evolves loop points in fictitious time τ and along

loop direction s is the main result of this paper. Written out in detail, the Newton descent

equation for a guess loop,

∂x

∂τ
(s+ ω, τ) +

∂x

∂s
(s+ ω, τ)

∂ω

∂τ
(τ) (9)

−J(x(s, τ))∂x
∂τ

(s, τ) = f(x(s, τ))− x(s+ ω, τ) ,
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evolves points x(s, 0) on the τ = 0 initial guess loop to the points x(s) = x(s,∞), s 7→ s+ω,

ω = ω(s,∞), on the target 1-torus, provided that the τ flow does not get trapped in a local

minimum with F2[∞] > 0.

The Eq. (9) can also be derived via a multi-shooting argument as has been done in

Ref. [44]. Instead of a blind minimization of the cost functional (5), the method uses the

vector equation (3) and its first derivative to find the zeros of the cost functional. The

momotonicity of (8) with τ ensures the global convergence. A similar argument has been

used in the derivation of a globally convergent modified Newton’s method in Ref. [47].

Generalization to searches for invariant m-tori is immediate: the guess m-torus is

parametrized by s = (s1, s2, . . . , sm) ∈ [0, 2π]m, periodic in each cyclic coordinate

x(s+ 2πk) = x(s) for all k ∈ Z
m , (10)

with m incommensurate shifts ω = (ω1, ω2, . . . , ωm) [49]. Now the fictitious time flow (9)

has an [d×m] invariant surface tangent tensor v. The fictitious time flow searches (9)

for invariant tori can also be adopted to continuous time flows, by reducing the flow to a

Poincaré return map on any local Poincaré section which intersects the trajectories on the

guess (m+1)-torus transversally. We will provide examples in what follows.

In general, each tangent vector of an invariant m-torus transformation along given cyclic

parameter sk has a unit eigenvalue, and requires a constraint. For example, for the Jacobian

matrix of a continuous time periodic orbit (a 1-torus) the velocity vector is an eigenvector

with a unit eigenvalue, and Newton descent equations need to be supplemented with a

constraint (a Poincaré section) in order to determine the period of the orbit. In addition,

if the flow is Hamiltonian, and the invariant m-torus is located on a fixed energy surface

H(p,q) = E, the constraint dH/dτ = 0 is needed to ensure the conservation of the energy

by the fictitious time dynamics.

In case at hand, there are two alternative ways to impose the constraint: We may or may

not fix ω a priori.

(a) If we are searching for an invariant 1-torus of a fixed shift ω, the fictitious time flow

should not change the shift along the loop,

dω/dτ = 0 . (11)

.
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(b) If we are searching for an invariant 1-torus of a given topology, the shift ω = ω(τ)

varies with the fictitious time τ , and is to be determined simultaneously with the 1-torus

itself. In this case we impose the phase condition [30]

∮

ds

(

v(s, τ) · ∂x
∂τ

(s, τ)

)

= 0 , (12)

which ensures that during the fictitious time evolution the average motion of the points along

the loop equals zero. Empirically, for this global loop constraint the fictitious time dynamics

is more stable than for a single-point constraint such as δx(0, τ) = 0. For m-torus, v(s, τ)

is a [d × m] tensor and Eq. (12) yields m constraints. For energy conserving Hamiltonian

systems, one phase condition has to be replaced by the energy condition

1

2π

∮

ds∇H(x(s, τ)) · ∂x(s, τ)
∂τ

= E − 1

2π
ds
∮

H(x(s, τ)) , (13)

where a fixed E fixes the energy shell under consideration.

The two cases are analogous to continuous time Hamiltonian flow periodic orbit con-

straints: case (a) corresponds to fixing the period and varying the energy shell, and case (b)

to fixing the energy and computing the period of a periodic orbit of a given topology.

The examples of Secs. IVA, IVB and IVC illustrate the constant shift ω constraint (11);

the examples of Fig. 4 and Sec. IVD illustrate the phase condition (12).

III. NUMERICAL IMPLEMENTATION

Due to the periodic boundary condition (4) it is convenient to expand the loop point x,

the Jacobian matrix J , the map f , and the loop tangent v as a discrete Fourier series

x(s, τ) =
∑

k

ak(τ)e
iks

J(x(s, τ)) =
∑

k

Jk(τ)e
iks

f(x(s, τ)) =
∑

k

bk(τ)e
iks

v(s, τ) = i
∑

k

k ak(τ)e
iks (14)

(a∗

k = a−k due to the reality of x(s, τ), and similar relations hold for Jk and bk), and rewrite

the Newton descent PDE (9) as an infinite ladder of ordinary differential equations:
(

dak

dτ
+ ikak

dω

dτ

)

eikω −
∑

l

Jk−l

dal

dτ
= bk − ake

ikω . (15)
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Finally, the unit stability eigenvalue along the loop tangent direction v(s, τ) needs to be

eliminated by adding to (15) either the constant shift ω constraint (11), or the phase condi-

tion (12) . in the Fourier representation the phase condition is given by
∑

k ka
∗

k ·∂ak/∂τ = 0

.

The monotone decrease with τ of the functional F2, given by (6), guarantees that the

solution of (15) approaches a fixed point which, provided that F2 → 0, is the Fourier

representation of the target invariant torus.

In our numerical calculations, we represent the loop by a discrete set of points

{x(s1), · · · ,x(s2N)}. The search is initialized by a 2N -point guess loop. The Fourier trans-

forms of x, v and J are computed numerically, yielding M complex Fourier coefficients ak,

bk, and Jk, respectively. To maintain numerical accuracy, we chooseM ≤ N and set ak = 0,

bk = 0, and Jk = 0 for |k| ≥ M . We terminate the numerical integration of the fictitious

time dynamics (18) when the distance (3) falls bellow a specified cutoff. In the Fourier

representation, we stop when distance reaches the termination value ∆ defined as

max
k

‖Fk‖ = max
k,j

|bk,j − ak,je
ikω| < ∆ , (16)

where ak,j and bk,j denote the jth component of ak and bk.

While the algorithm is more efficient the better the initial guess, in practice it often

works for rather inaccurate initial guesses. If the initial guess is bad, or the target invariant

torus does not exist, the evolution diverges. Then another search is initiated, with a new

guess. This guess torus can either be derived from the integrable limit, like the examples

of Secs. IVA, IVB and IVC, or from numerical exploration, like the example of Sec. IVD.

If the invariant torus is isolated or partially hyperbolic, it can be a challenging problem

to initialize the search for an embedded invariant torus. However, once provided with a

reasonable guess, our method is able to reliably locate the torus with relatively high accuracy.

Another concern is related to the numerical efficiency. If we try to find a higher order

torus (large m) in a high dimensional phase space (large d) with high accuracy, we have to

repeatedly invert a very large [((2M)md+m)×((2M)md+m)] matrix when carrying out the

integration of Eq. (15). This may constitute a major bottleneck in such calculations. In our

numerical implementation, the matrix invertsion by the LU decomposition [47] consumes

most of the computational time. We employ a speed-up scheme, based on the continuity

of the evolution of Eq. (15). Once we have the LU decomposition at one step, we use it
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to approximately invert the matrix in the next step, with accurate inversion achieved by

iterative approximate inversion [47]. In practice, we find that one LU decomposition can

be used for many δτ evolution steps. The more steps we go, the more iterations at each

step are needed to get the accurate inversion. After the number of such iterations exceeds

some fixed given maximum number, another LU decomposition is performed. The number

of integration steps following one decomposition is an indication of the smoothness of the

evolution, and we further accelerate our program by adjusting accordingly the step size δτ :

the greater the number, the bigger the step size. Near the final stage of convergence, the

evolution becomes so smooth that the step size can be brought all the way up to δτ = 1,

recovering the full undamped Newton-Raphson step and acquiring the desired quadratic

convergence.

IV. EXAMPLES

We now test the Newton descent method for determining invariant tori on a series of

systems of increasing dimensionality: a two-dimensional area-preserving standard map, a

Hamiltonian flow with one and half degrees of freedom (a forced pendulum), a 4-dimensional

symplectic map (two coupled standard maps), and a dissipative PDE (the Kuramoto-

Sivashinsky system). In the following, the representative points are uniformly distributed

on the initial guess torus.

A. Critical tori of the standard map

As our first example we search for invariant 1-tori of a two-dimensional area-preserving

map, the standard map

qn+1 = qn + pn+1 mod 2π

pn+1 = pn +K sin qn , (17)

where K is the nonlinearity parameter. For K = 0 the map is a constant rotation in q, and

for K > 0 its phase space is a mixture of KAM tori and chaotic regions. In the Fourier

space the initial guess loop x = (q, p) and its image f(x) = (q + p+K sin q, p+K sin q) are
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expanded as

x(s, τ) = s +
∑

k

ak(τ)e
iks , s = (s, 0)

f(x(s, τ)) = s +
∑

k

bk(τ)e
iks .

The linear term s in Eq.(15) is needed to compensate the modulus 2π operation on q in

Eq.(17). Substitution into (9) yields
(

dak

dτ
+ ikak

dω

dτ

)

eikω + δ0 k
dω

dτ
e1 −

∑

l

Jk−l

dal

dτ

= bk − ake
ikω − δ0 kωe1 , (18)

where e1 = (1, 0). If we denote by Fk the distance (3) on the right hand side of (18), the

invariant torus condition for constant shift (11) is Fk = 0 for all k, i.e bk = ake
ikω for k 6= 0

and b0 = a0 + ωe1.

As the first test of our variational method, we apply it to the determination of the golden-

mean invariant torus, with shift fixed to ωg = 2π(
√
5 − 1)/2, and the fixed shift constraint

(11). We use as the initial guess for the fictitious time dynamics the invariant torus of the

linear standard map with K = 0 and the golden-mean shift x(s, 0) = (s, ωg) , represented

by the straight line in Fig.1. In order to test that the method works for a smooth invariant

torus we set K = 0.5 and integrate the fictitious time dynamics (18) with 2N = 256 point

discretization of the torus, M = 64 complex Fourier mode truncation, and ∆ = 2 × 10−6

termination value (16). The resulting invariant torus is shown by the dotted line in Fig. 1.

0 2 4 6

3.6

3.8

4

4.2

q

p

FIG. 1: The ω = ωg = 3.883 · · · golden mean invariant torus of the standard map (17) for K = 0.5;

the straight line represents the initial condition.

Next, we apply the method to a sequence of golden-mean invariant tori with increasing

K. Numerics indicates that there exists a critical value K̃c such that when K < K̃c, the
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fictitious time dynamics converges exponentially, as in (8), but for K > K̃c, it diverges. The

critical value K̃c depends sensitively on the torus discretization 2N and the termination

value ∆. K̃c(N) computed for ∆ = 2× 10−6 and several values of N is

2N 64 128 256 512 1024

K̃c(N) 0.34 0.80 0.93 0.9656 0.9762

The golden-mean critical invariant torus is depicted in Fig. 2(a) for 2N = 1024 points

discretization of the torus. Small oscillating structures in the critical torus whose resolu-

tion would require higher frequency Fourier components are already visible. The uneven

distribution of representative points (s parametrization’s embedding into the (q, p) plane)

along the torus indicates the drastically varying stretching rate on the invariant torus close

to the breakup [50, 51]. Our variational method of estimating the critical Kc parameter is

in agreement with the Greene’s estimate [17] that the golden-mean invariant torus breaks

up at the critical value Kc ≈ 0.9716. Moreover, we find that for large values of 2N points

discretization of the torus, K̃c(N) approaches Kc approximately as N−1.

(a) (b)

FIG. 2: Invariant tori for the standard map (17) for: (a) ω = ωg at K = K̃c(512) = 0.9762 close to

the golden-mean torus critical value K̃c, termination value ∆ = 2×10−6. The inset enlargement of

the curve around q = 4.6 illustrates the fine structure of the nearly critical torus. (b) irrational shift

ω = 2π(π − 3) at the estimated critical value K̃c(512) = 0.4313, termination value ∆ = 4× 10−6.

2N = 1024 torus points discretization.

As Newton descent method does not depend on the specific arithmetical properties of the

invariant torus shift, it should work for arbitrary irrational shifts. As an example, we study

the family of invariant tori with shift ω = 2π(π − 3). The critical value of convergence of

our algorithm is K̃c ≈ 0.4313 for 2N = 1024 and ∆ = 4× 10−6. The critical torus, depicted
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on Fig. 2(b) exhibits non-uniform s-parametrization and oscillating structure, though much

less so than the golden-mean critical torus.

In order to assess the sensitivity of the method to the choice of the termination value

∆, we have studied its influence on the estimation of the critical K̃c. For the golden-mean

example, a decrease in the termination value to ∆ = 10−6 for ω = ωg and 2N = 1024 points

discretization of the torus, yields K̃c = 0.6188 much smaller than the value of K̃c = 0.9762

obtained for ∆ = 2 × 10−6. The corresponding invariant torus for ∆ = 10−6 is depicted

in Fig. 3(a). We notice that this torus looks much smoother than the one obtained for

∆ = 2 × 10−6 (see Fig. 2(a)). Similarly, for ω = 2π(π − 3) a decrease of the termination

value to ∆ = 2× 10−6, yields a much smaller critical value K̃c = 0.3004. The corresponding

invariant torus for ∆ = 2 × 10−6 is shown in Fig. 3(b). The points are distributed more

evenly than in Fig. 2(b), indicating that the invariant torus obtained using this termination

value is far from criticality.

(a) (b)

FIG. 3: The invariant tori for the standard map (17) with smaller termination values ∆ than in

Fig. 2, the same number of torus points 2N = 1024: (a) ω = ωg with K̃c = 0.6188 and ∆ = 10−6;

and (b) ω = 2π(π − 3) with K̃c = 0.3004 and ∆ = 2× 10−6.

In summary: For fixed 2N points discretization of the torus, if ∆ is too small, then

K̃c(N) < Kc, while if ∆ is too large, then K̃c(N) > Kc. At the threshold of criticality the

invariant torus is fractal and thus cannot be resolved by a smooth finite Fourier truncation.

The discrepancy between the invariant torus and its numerical discretization has a compli-

cated influence on the fictitious time dynamics, not elucidated in this investigation. If ∆

is too small, the discrepancy leads to an estimate of K̃c lower than the true Kc, making

the torus appear smoother. If ∆ is too large, the discretization will average out the small

features, converging to a grid beyond the critical value. With increasingly refined 2N point-
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discretization of the torus, the value of ∆ needs to be chosen carefully in order to improve

the Kc estimate.

0 2 4 6
4.4

4.6

4.8

5

q
p

FIG. 4: An invariant torus of the standard map (17) for K = 0.352 obtained by the fictitious time

dynamics with the phase condition (12). The method yields shift ω ≈ 4.67857. 2N = 256 points

discretization of the torus, termination value ∆ = 2× 10−6.

So far we have determined invariant tori of the standard map by imposing a constant shift

condition (11). An alternative is the phase condition (12) which requires that the motion of

representative points along the torus during the fictitious time dynamics averages to zero. In

this case the shift ω is not fixed, but is determined by the fictitious time dynamics. We test

this condition by starting with an initial torus x(s) = (s, 9ωg/10) discretized on 2N = 256

points, with termination value ∆ = 2 × 10−6. For K = 0.352 the Newton descent method

yields the invariant torus of the standard map shown in Fig. 4, with shift ω ≈ 4.67857.

B. A periodically forced Hamiltonian system

As our second test case, we consider the forced pendulum

H(p, x, t) = p2/2− ε(cosx+ cos(x− t)) , (19)

a time-dependent Hamiltonian flow with 1.5 degrees of freedom. H(p, x, t) is a periodic func-

tion of the angle variable x and the time variable t, with dynamics on R×T
2. The Poincaré

return map for the stroboscopic section t = 0 mod 2π is a reversible area-preserving map.

The Jacobian J required for the fictitious time dynamics (9) is evaluated by integrating

J̇ = AJ , A =







0 1

−ǫ(cos x+ cos(x− t)) 0





 , J(0) = 1 . (20)

14



We apply the fixed shift condition (11) Newton descent to the determination of the invariant

torus with the golden-mean shift ω = ω̄g = (
√
5− 1)/2. For the initial guess torus we take

the golden-mean torus of Hamiltonian (19) with ε = 0, i.e. x(s) = (s, ω̄g). We define ε̃c(N)

to be the minimum value of the parameter of the model at which the algorithm defining

the fictitious time dynamics with 2N sampling points fails to converge at fixed ∆. The

critical values ε̃c(N) computed for different numbers of sampling points (termination value

∆ = 2× 10−6) are

2N 64 128 256 512 1024

ε̃c 0.01688 0.02312 0.02594 0.02750 0.02781

For 2N = 512 and 2N = 1024 the ε̃c(N) values that we find are are close to the threshold

εc ≈ 0.02759 estimated in Ref. [52]. The invariant torus with ε = 0.02781, 2N = 1024 and

∆ = 2 × 10−6 shown in Fig. 5(a) exhibits non-smoothness and an uneven distribution of

discretization points characteristic of criticality. Setting ∆ = 10−6 leads to the invariant

torus with the critical value estimate ε̃c = 0.01844, displayed in Fig. 5(b). It looks smooth,

indicating that it is far from criticality and thus that the termination value is too small.

(a)
0 2 4 6

0.6

0.62

0.64

0.66

x

p

(b)
0 2 4 6

0.6

0.62

0.64

x

p

FIG. 5: Invariant tori of Hamiltonian (19) with ω = ω̄g obtained by the fictitious time dynamics

with 2N = 1024 and two different termination values: (a) ∆ = 2 × 10−6 yields a critical value

ε̃c = 0.02781, and (b) ∆ = 10−6 yield to an underestimate ε̃c = 0.01844.

C. Two coupled standard maps

In principle, the Newton descent method is applicable to determination of invariant tori

of arbitrary dimension for flows or maps of arbitrary dimension. In practice, one is severely

limited by computational constraints.
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In order to test the feasibility of the method in higher dimensions, here we consider two

coupled standard maps [53],

In+1 = In + ǫ1 sin θn + ǫ3 sin(θn + ψn)

θn+1 = θn + In+1 (21)

Jn+1 = Jn + ǫ2 sinψn + ǫ3 sin(θn + ψn)

ψn+1 = ψn + Jn+1 ,

with 4-dimensional phase space, and demonstrate that the method can determine 1- and 2-

dimensional invariant tori. The fictitious time dynamics (15) acts on the x = (θn, In,Ψn, Jn)

phase space, with dynamics f(x) defined by (21).

First, we apply the fixed shift (18) fictitious time dynamics to determination of the 1-

dimensional golden mean invariant torus with shift ω = ωg. For the initial guess torus we

take the integrable case torus ǫ1 = ǫ2 = ǫ3 = 0 :

x(s) = (s, ωg, s, ωg). (22)

In the numerical experiment we then search for a typical 1-d invariant torus, for (arbitrarily

chosen) small coupling values ǫ1 = 0.1, ǫ2 = 0.15, ǫ3 = 0.005 .

(a)
0 2 4 6

3.8

3.9

4

θ

I

(b)
0 2 4 6

3.8

3.9

4

θ

J

FIG. 6: A 1-dimensional invariant torus with shift ωg of (21) with ǫ1 = 0.1, ǫ2 = 0.15 and

ǫ3 = 0.005 : (a) I− θ projection; (b) J − θ projection. 2N = 512 points discretization of the torus,

termination value ∆ = 10−6.

The invariant torus obtained by the fictitious time dynamics in this case is shown in

Fig. 6. Numerically θ = ψ, indicating that for this 1-dimensional torus the two phases are

entrained. The torus appears very smooth, indicating that for the parameter values chosen

it is far from the critical values.
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Next, we apply the Newton descent to the determination of a 2-dimensional torus with

non-resonant frequencies ω1 and ω2. In this case, we need two cyclic parameters (s1, s2) ∈
[0, 2π]2 to locate a point on the torus. In (18) we take

k =







k1

k2





 , ω =







ω1

ω2





 , s =





















s1

0

s2

0





















, e1 =





















1 0

0 0

0 1

0 0





















.

The initial guess is chosen as in the integrable ǫi = 0 case

x(s1, s2) = (s1, ω1, s2, ω2). (23)

In the numerical experiment we then search for (arbitrarily chosen) ǫ1 = 0.07, ǫ2 = 0.1 and

ǫ3 = 0.004 2-dimensional invariant torus with (also arbitrarily chosen) frequencies ω1 = ωg

and ω2 = π(
√
3 − 1). In order to reduce the computational time, we take a rather coarse

2N = 32 grid, with (2N)2 = 1024 points representing the torus.

(a)
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1

s
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ψ

(b)
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2.2

2.3

2.4

s
1

s
2

J

FIG. 7: The 2-dimensional invariant torus of the coupled standard maps (21) with incommensurate

frequencies ω1 = ωg and ω2 = π(
√
3 − 1) for ǫ1 = 0.07, ǫ2 = 0.1 and ǫ3 = 0.004. (2N)2 = 1024

points discretization of the torus, termination value ∆ = 10−4.

Two projections of the resulting invariant torus for ∆ = 10−4 termination value are shown

in Fig. 7. While the ψ(s1, s2) and J(s1, s2) dependence on s1 , s2 shown in Fig. 7 follows

in shape the integrable case (23) dependence, the small coupling terms induce significant

oscillations. The smoothness of the invariant torus indicates that the parameters are not

close to the critical values. For (2N)2 = 1024 points discretization of the torus, ∆ can be as

low as 5.1 × 10−5, and for (2N)2 = 4096, as low as 1.6 × 10−5. However, the computation

takes at least 100 times longer, and in this exploratory study the larger (2N)2 resolutions

were out of reach.
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D. Kuramoto-Sivashinsky system

In our last example, we apply the Newton descent to determination of an invariant 2-

torus embedded in a high-dimensional strongly contracting flow. Special tori that can be

converted to periodic orbits in a rotating or moving frame have previously been computed

for the complex Ginzburg-Landau equation [31], and for the 2-d Poiseulle flow [54]. Here

we shale determine a generic 2-torus of the Kuramoto-Sivashinsky equation [55, 56, 57]

parametrized by the system size L,

ut = (u2)x − uxx − uxxxx , x ∈ [0, L] . (24)

The Kuramoto-Sivashinsky equation describes the interfacial instabilities in a variety of

contexts, like the flame front propagation, the two fluid model and the liquid film on an

inclined plane.

In the study of flame fluttering on a gas ring as the system size L increases, the “flame

front” becomes increasingly unstable and turbulent. As shown in Refs. [8, 58], in dissipa-

tive systems 2-dimensional tori often result from a Hopf bifurcation while 3- (or higher-)

dimensional tori are a rare occurrence. In the following we restrict our search to the anti-

symmetric solution space of (24) with periodic boundary conditions, i.e. u(−x, t) = −u(x, t)
and u(x+ L, t) = u(x, t), with u(x, t) Fourier-expanded as

u(x, t) =
∞
∑

k=−∞

iake
ikqx, (25)

where q = 2π/L is the basic wavenumber and a−k = −ak ∈ R. Accordingly, (24) becomes a

set of ordinary differential equations :

ȧk = ((kq)2 − (kq)4)ak − kq
∞
∑

m=−∞

amak−m . (26)

In the asymptotic regime of (26) for k large ak’s decay faster than exponentially, so a

finite number of ak’s yields an accurate representation of the long-time dynamics. In our

calculation, a truncation at d = 16 suffices for a quantitatively accurate calculation.

In the current example, 2N = 128 points are used to represent the torus on the Poincaré

section a1 = 0.06. Numerical experimentation indicates that for L = 40.95 trajectories

spend significant fraction of time in a toroidal neighborhood, suggesting that a (partially

hyperbolic?) invariant 2-torus exists at this system size: Poincaré section returns of a typical
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orbit fall close to a closed curve. The initial guess for the Newton descent is constructed by

choosing 128 points to represent this curve and their Fourier transform is used to initialize

the search with (18). In this case the shift ω is fixed by dynamics, and in order to compute

it we impose the phase condition (12).

(a)
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(b)
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−0.03
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FIG. 8: The projections of the 2-dimensional invariant torus of (26) on the Poincaré section

a1 = 0.06 with shift ω = 0.5968 for L = 40.95 : Projection on (a) (a2, a5) and (b) (a3, a6).

The Poincaré section return times are in the range T = 24.18 ± 0.3. 2N = 128 torus points

parametrization, ∆ = 10−4 termination value.

Fig. 8 shows two Poincaré section projections, in the Fourier space, of the invariant 2-

torus of the Kuramoto-Sivashinsky flow determined by the Newton descent method. The

method yields the shift ω = 0.5968. Even though the invariant torus is very smooth and

discretization points are evenly distributed, surprisingly many points are required to resolve

the torus. For attempts with fewer discretization points, for example 2N = 64, the search

did not converge even with ∆ = 10−2.

V. SUMMARY

We have generalized the “Newton descent” variational method to determination of in-

variant m-tori in general d-dimensional dynamical systems, and provided numerical evi-

dence that the method converges in a large domain of existence of invariant tori, up to

their breakups. In case of maps and flows with invariant tori such as standard maps, the

approach offers an alternative method for determining critical thresholds. While in princi-

ple the method is applicable to flows or maps in arbitrary dimension, computation can be

expensive for invariant objects larger than 1- and 2-tori. We have utilized the smoothness of
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the fictitious time evolution to introduce acceleration schemes which improve the efficiency

of the method.

In our numerical work, we have implemented the method in the constant shift (4)

parametrization, Fourier representation of an m-torus. Other discretizations could be bet-

ter suited to specific applications. For instance, if an invariant torus is close to its critical

threshold, representation of small fractal structures requires inclusion of slowly decaying high

wavenumber Fourier modes, and a large number of Fourier modes is needed to obtain an ac-

curate representation. Furthermore, the discretization points distribute very non-uniformly

when close to criticality. In this limit, other non-constant shift parametrizations of the

torus dynamics might be more appropriate. For example, our method is of modest accuracy

compared to some of current studies of critical tori, in particular Haro and de la Llave [11]

computation of critical tori to 100 digits precision.

In periodic orbit searches we have found the Newton descent approach robust, and very

useful for finding periodic orbits in high-dimensional phase-spaces where good guesses for

multi-shooting Newton routines are hard to find [43, 44]. Examples worked out here suggest

that the method is also a robust starting point for m-dimensional invariant tori searches.

Once an approximate invariant torus is found by the Newton descent method, it can be used

a starting guess for a high precision method, such as some of the currently used Newton’s

methods in Fourier space representations of invariant tori.
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(Editions Frontiéres, Paris 1990), pp. 285–329. Available on www.dynamicalsystems.org/tu/

[22] I. G. Kevrekidis, R. Aris, L. D. Schmidt and S. Pelikan, Physica D 16, 243 (1985)

[23] L. Debraux, hopf bifurcation point”, Contemp. Math. 172, 169 (1994)

[24] G. Moore, SIAM J. of Numer. Anal 33, 2333 (1996)

[25] M. van Veldhuizen, SIAM J. Sci. Stat. Comput. 8, 951 (1987)

[26] H. W. Broer, H. M. Osinga and G. Vegter ZAMP 48, 480 (1997)

[27] L. Dieci, J. Lorenz and R. D. Russell, SIAM J. Sci. Stat. Comput. 12, 607 (1991)
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