
HAL Id: hal-00090428
https://hal.science/hal-00090428v1

Preprint submitted on 30 Aug 2006 (v1), last revised 23 Apr 2007 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resonant eigenstates in quantum chaotic scattering
Stéphane Nonnenmacher, Mathieu Rubin

To cite this version:
Stéphane Nonnenmacher, Mathieu Rubin. Resonant eigenstates in quantum chaotic scattering. 2006.
�hal-00090428v1�

https://hal.science/hal-00090428v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

90
42

8,
 v

er
si

on
 1

 -
 3

0 
A

ug
 2

00
6

RESONANT EIGENSTATES FOR A QUANTIZED CHAOTIC SYSTEM

STÉPHANE NONNENMACHER AND MATHIEU RUBIN

Abstract. We study the resonant eigenstates of the quantized “open baker’s map”, a
simple model for quantum chaotic scattering, in the semiclassical limit. We first investigate
the fractal dimension appearing in the Fractal Weyl law for the density of resonances,
showing that it is not related with the “information dimension”. In a second step, we
consider the semiclassical measures associated with sequences of resonant eigenstates.
We show that these measures are conditionally invariant with respect to the classical
dynamics, and generally exhibit interesting rich fractal structures.

1. Introduction

1.1. Quantum cattering on Rd and resonances. In a typical scattering system, par-
ticles of positive energy come from infinity, interact with a localized potential V (q), and

then leave to infinity. The corresponding quantum Hamiltonian Ĥ = −~
2∆ + V (q) has

an absolutely continuous spectrum on the positive axis. However, the Green’s function
G(z; q′, q) = 〈q′|(Ĥ − z)−1|q〉 admits a meromorphic continuation from the upper half
plane {ℑz > 0} to (some part of) the lower half-plane {ℑz < 0}. This continuation gen-
erally has poles zj = Ej − iΓj/2, Γj > 0, which are called resonances of the scattering
system.

The probability density of the corresponding “eigenfunction” ϕj(q) decays in time like
e−tΓj/~, so physically ϕj represents a metastable state with decay rate Γj/~, or lifetime
τj = ~/Γj. In the semiclassical limit ~ → 0, we will call “long-living” the resonances zj
such that Γj = O(~), equivalently with lifetimes bounded away from zero.

The eigenfunction ϕj(q) is meaningful only near the interaction region, while its be-
haviour outside that region (exponentially increasing outgoing waves) is clearly unphysical.
As a result, one practical method to compute resonances (at least approximately) consists

in adding a smooth absorbing potential −iW (q) to the Hamiltonian Ĥ, thereby obtaining a

nonselfadjoint operator ĤW = Ĥ− iW (q). The potential W (q) is supposed to vanish in the
interaction region, but is positive outside: its effect is to absorb outgoing waves, as opposed
to a real positive potential which would reflect the waves back into the interaction region.

Equivalently, the (nonunitary) propagator e−iĤW /~ kills wavepackets localized oustide the
interaction region.

The spectrum of ĤW in some neighbourhood of the positive axis is then made of discrete
resonances z̃j associated with square-integrable eigenfunctions ϕ̃j. This method has been
widely used in quantum chemistry in order to study reaction or dissociation dynamics
[17, 33]; in those works it is implicitly assumed that eigenvalues z̃j close to the real axis are
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small perturbations of the resonances zj , and that the corresponding eigenfunctions ϕj(q),
ϕ̃j(q) are close to one another in the interaction region. Very close to the real axis (namely,
for |ℑz̃j | = O(~n) with n sufficiently large), Stefanov proved that the eigenvalues z̃j are

close to the resonances zj of Ĥ [36]. Such very long-living resonances are possible when
the classical dynamics admits a trapped region of positive (Liouville) volume. In that case,
resonances and the associated eigenfunctions can be approximated by quasimodes of an
associated closed system [37].

1.2. Resonances in chaotic scattering. We will be interested in a different situation,
where the set of trapped trajectories has volume zero, and is a fractal hyperbolic repeller.
This case encompasses the famous 3-disk scatterer in 2 dimensions [8], or its smoothing,
namely the 3-bump potential introduced in [34] and numerically studied in [16]. Resonances
then lie deeper below the real line (typically, Γj & ~), and are not perturbations of a
real spectrum. Previous studies have focussed in counting the number of resonances in
small disks around the energy E, in the semiclassical régime, resulting in the following
conjectured Weyl-type law:

(1.1) #
{
zj ∈ Res(Ĥ) : |E − zj | ≤ γ~

}
∼ C(γ)~−d .

Here the exponent d is related to the trapped set at energy E: the latter has (Minkowski)
dimension 2d+1. This asymptotics could be numerically checked for a variety of hyperbolic
systems [16, 20, 10, 31, 23], but only upper bounds for the number of resonances could
be rigorously proven [34, 42, 10, 35]. In §3.2 we numerically check the equivalent of this
fractal law for an asymmetric version of the open baker’s map; apart from extending the
results of [23], it allows to specify more precisely the dimension d appearing in the scaling
law. To our knowledge, so far the only system for which the asymptotics corresponding
to (1.1) could be explicitly computed is the “Walsh quantization” of the symmetric open
baker’s map [23, 24], which is described in §5.

Beyond the Weyl law, the next step consists in studying the long-living resonant eigen-
states ϕj or ϕ̃j. Some rigorous results on this matter are announced in [25], while in-
teresting numerics were performed by M. Lebental and coworkers for a model of open
stadium billiard, relevant to describe an experimental micro-laser cavity [15]. To avoid the
complications of “realistic” scattering systems, we focus on a simple model, namely the
quantized open baker’s map studied in [24, 23, 13]. Such a model is meant to mimick the

propagator of the nonselfadjoint Hamiltonian ĤW , in the case where the classical flow at
energy E is chaotic in the interacting region. The classical open baker’s map lives on the
2-dimensional torus phase space (see §2.1), it is a highly chaotic (Bernoulli) system, and its
eigenmeasures can be explicitly described (§2.3). The associated quantum map is a finite
dimensional matrix, the eigenstates of which can be computed through a straightforward
diagonalisation. The phase space distribution of the eigenstates will be characterized us-
ing Husimi measures (see §4.1). We will focus on the semiclassical limits of these Husimi
measures, which are called semiclassical measures. We prove that (up to some subtelties
due to discontinuities) any limit measure is necessarily an eigenmeasure of the classical
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map, associated with a certain decay rate (Theorem 1). The characterization of semiclas-
sical measures among all possible eigenmeasures remains an open problem. Inspired from
the case of closed chaotic systems, in §4.3 we ask a few questions about the “unicity” of
semiclassical measures; these questions remain open.

In a final attempt, we consider in §5 the Walsh quantization of the symmetric baker’s
map: in that case, we can construct some explicit sequences of eigenstates, which converge
to specific eigenmeasures. In that (nongeneric) framework, we can partially answer the
above questions.

Let us mention that the eigenstates of the quantized open baker have been studied in par-
allel by J. Keating and coworkers, for both the “standard” [13] and “Walsh” quantization.
Our theorem 1 provides a rigorous version of statements contained in their work.

Acknowledgments. M. Rubin thanks the Service de Physique Théorique for hospital-
ity in the spring 2005, during which this work was initiated. S. Nonnenmacher has been
partially supported from the grant ANR-05-JCJC-0107-01 of the Agence Nationale de la
Recherche. Both authors are grateful to Jonathan Keating, Marcel Novaes and Martin
Sieber for communicating their results concerning the Walsh-quantized baker before pub-
lication, and for interesting discussions. We also thank Mélanie Lebental for sharing with
us her preliminary results on the open stadium billiard.

2. The open baker’s map

2.1. Definition and symbolic dynamics. Consider the phase space consisting in the
2-dimensional torus, or square T2 ≃ [0, 1) × [0, 1). A point on T2 is described with the
coordinates x = (q, p), which we call respectively position (horizontal) and momentum
(vertical), to insist on the symplectic structure dq ∧ dp on T2. We partition T2 into three

������������

Cp

1q

1

0

R0 R1 R2

Figure 1. Sketch of the closed baker’s map Ar, and its open counterpart
Br, for the case r = rsym = {1/3, 1/3, 1/3}. The three rectangles form a
Markov partition.
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vertical rectangles Ri with widths ri, such that r0 + r1 + r2 = 1, and first construct the
following (closed) baker’s map on T2 (see Fig. 1):

(2.1) (q, p) 7→ Ar(q, p)
def
= (q′, p′) =





(
q
r0
, p r0

)
if 0 ≤ q < r0(

q−r0
r1
, p r1 + r0

)
if r0 ≤ q < r0 + r1(

q−r0−r1
r2

, p r2 + r1 + r0
)

if r0 + r1 ≤ q < 1
.

This baker’s map is invertible and area-preserving on T2. It is discontinuous on the bound-
aries of the three rectangles Ri. This map is the archetype of a Bernoulli system: it can
be put in correspondence with the right shift σ on the symbolic space Σ = {0, 1, 2}Z.
Namely, to each bi-infinite sequence ǫ = . . . ǫ−2ǫ−1 · ǫ0ǫ1 . . . ∈ Σ corresponds the point
x = Jr(ǫ) ∈ T

2, which is defined as follows: the coordinates of x = (q, p) are given by

(2.2) q(ǫ) =

∞∑

k=0

rǫ0rǫ1 · · · rǫk−1
αǫk , p(ǫ) =

∞∑

k=1

rǫ−1rǫ−2 · · · rǫ−k+1
αǫ−k

,

where we have set α0 = 0, α1 = r0, α2 = r0 + r1. The position coordinate (unstable
direction) depends on symbols on the right of the dot, while the momentum coordinate
(stable direction) depends on symbols on the left. In the symmetric case r0 = r1 = r2 =
1/3, which we denote by r = rsym, this mapping amounts to the ternary decomposition
of q and p. The map Jr : Σ → T2 described in (2.2) is surjective, “almost injective”, and
conjugates Ar with the shift:

(2.3) Ar(Jr(ǫ)) = Jr(σ(ǫ)) = Jr(. . . ǫ−1ǫ0 · ǫ1 . . .) .

For this reason, Jr is often called a semiconjugacy between the two dynamical systems.
This equation shows that for each time n ∈ Z, the point An

r
(x) is in the rectangle Rǫn . A

finite sequence ǫ = ǫ−m . . . ǫ−1 ·ǫ0 . . . ǫn−1 represents a cylinder, which is the set of sequences
in Σ sharing the same symbols between indices −m and n − 1. It is mapped through Jr

to a rectangle on the torus, which we denote by [ǫ] This rectangle has sides parallel to the
two axes; it has width rǫ0rǫ1 · · · rǫn−1 and height rǫ−1 · · · rǫ−m

.

To open this system, we now assume that the points in the middle rectangle R1 (“the
hole”) escape to infinity, or equivalently, that the map is not defined on those points. We
thus obtain an “open baker’s map” Br defined on S = R0 ∪R2:

(q, p) 7→ Br(q, p)
def
= (q′, p′) =

{ (
q
r0
, p r0

)
if 0 ≤ q < r0(

q−1+r2
r2

, p r2 + 1 − r2
)

if 1 − r2 ≤ q < 1
.

This open map is still easy to analyze through symbolic dynamics: the “hole” R1 corre-
sponds to sequences ǫ with ǫ0 = 1; as a result, Br transforms the points x = Jr(ǫ) as
follows:

(2.4) ǫ = . . . ǫ−2ǫ−1 · ǫ0ǫ1 . . . 7−→
{
∞ if ǫ0 = 1

. . . ǫ−2ǫ−1ǫ0 · ǫ1 . . . = σ(ǫ) if ǫ0 ∈ {0, 2} .
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The “inverse” of Br (which we will denote by B−1
r

) is defined on the set Br(S), that is
on the union of the bottom and top horizontal rectangles (see Fig. 1, right). It kills the
sequences s.t. ǫ−1 = 1, and if ǫ−1 6= 1 it shifts the comma to the left.

2.2. Trapped sets. This symbolic dynamics allows to easily characterize the various
trapped sets [24]: the set of points trapped in the future (forward trapped set)

Γ− =

∞⋂

n=0

B−n
r

(S) ,

is made of the points x = Jr(ǫ) such that, ǫn ∈ {0, 2} for all n ≥ 0. This condition
characterizes the positions of the points, while their momenta are unconstrained. Therefore,
the set Γ− takes the form of the direct product Γ− = Cr × [0, 1), where Cr is a Cantor
set of the interval. Similarly, the set Γ+ of points trapped in the past is made of all
sequences ǫ such that ǫn ∈ {0, 2} for all n < 0. It is obviously given by the direct product
Γ+ = [0, 1)×Cr. Finally, the trapped set K = Γ−∩Γ+ is given by K = Cr×Cr, or sequences
ǫ with all ǫn ∈ {0, 2}.

1q0

p

1

Figure 2. From left to right, approximations of the forward,backward
trapped sets Γ−, Γ+ and K = Γ− ∩ Γ+, for the open baker Brsym

. On the
left and central plots, each color corresponds to points escaping at the same
time in the future or past.

2.3. Eigenmeasures of open maps. Before giving the definition and some properties of
the eigenmeasures of the open baker, we briefly recall how invariant measures emerge in the
study of the quantized closed baker Ar,N , and the associated quantum ergodicity theorem
(as explained in §3, N = (2π~)−1 is the semiclassical parameter in this framework).

2.3.1. Quantum ergodicity for closed chaotic systems. The quantum-classical correspon-
dence between a closed symplectic map like Ar and its quantization Ar,N has one important
consequence: in the semiclassical limit, stationary states of the quantum system (that is,
eigenstates of Ar,N) should reflect the stationary properties of the classical map, namely
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its invariant measures. To be more precise, for any sequence of eigenstates (ψN )N→∞ of
the quantum map, one can associate a sequence of Husimi measures (HψN

)N→∞, which
are probability measures on T2 (see the definition in §4.1). One can always extract a
subsequence (HψNk

)k≥1 weakly converging to some limit measure µ, which one calls the

semiclassical measure associated with the sequence (ψNk
)k≥1. If we omit the problems

due to the discontinuities of Ar, the quantum-classical correspondence implies that µ must
be invariant w.r.to the map Ar, that is,

(2.5) A∗
r
µ = µ ⇐⇒ for any Borel set S ⊂ T

2, µ(A−1
r

(S)) = µ(S) .

µ is then also invariant w.r.to the inverse map A−1
r

.
Furthermore, because the map Ar is ergodic w.r.to the Lebesgue measure µLeb, the

Quantum Ergodicity theorem (or Shnirelman’s theorem [30]) states that, for “almost any”
sequence (ψN )N→∞, the associated semiclassical measure is the Lebesgue measure µLeb.
Such a theorem was first proven for eigenstates of the Laplacian on compact surfaces of
negative curvature [39, 5], then for more general Hamiltonians [12], billiards [9, 41] and
maps [3, 40]. Quantum ergodicity for the baker’s map was proven in [6].

It is generally unknown whether there exist “exceptional sequences” of eigenstates, con-
verging to a different invariant measure. The absence of such sequences is expressed by the
Quantum unique ergodicity conjecture [26], which has been proven only for few arithmetic
systems [18, 14]; it has been disproved for systems enjoying very large spectral degenera-
cies at the quantum level, allowing for sufficient freedom to build up partially localized
eigenstates [7, 1]. Some special eigenstates of the standard quantum baker with interesting
multifractal properties have been recently identified by numerical means [22], but their
persistence in the semiclassical limit remains unclear.

2.3.2. Eigenmeasures for the open baker. We now one opens the hole R1, and consider the
open map Br. An invariant measure for that map is necessarily supported on the trapped
set K: any point outside Γ− (resp. outside Γ+) will be expelled after a sufficient number
of iterations of Br (resp. of B−1

r
).

In the following we will be lead to slightly relax the invariance condition, and consider
measures which are invariant through B∗

r
up to a multiplicative factor. Such a measure µ

(called an “eigenmeasure”, or “conditionally invariant measure” of Br) satisfies

(2.6) B∗
r
µ = Λµ µ ⇐⇒ for any Borel set S ⊂ T

2, µ(B−1
r

(S)) = Λµ µ(S) .

Here Λµ ∈ [0, 1] (or rather γµ = − log Λµ) is called the “escape rate” or “decay rate” of the
eigenmeasure µ, and is given by Λµ = µ(S). It corresponds to the fact that a fraction of
the particles in the support of µ escape at each step. We summarize some simple properties
of eigenmeasures (the trapped sets Γ+ and K are sketched in Figure 2).

Proposition 1. Let µ be an eigenmeasure of B−1
r

with decay rate Λµ.
If Λµ = 0, µ is supported in the hole R1.
If Λµ = 1, µ is supported in the trapped set K (invariant measure).
If 0 < Λµ < 1, µ is supported on the set Γ+ \K.
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To prove the last statement of the proposition, we notice that any subset S in the interior
of T2 \ Γ+ is sent to infinity by a certain power of B−1

r
; by iterating (2.6) we see that if

Λµ > 0, then µ(S) = 0. This shows that µ is supported on Γ+. On the other hand, (2.6)
for S = K implies µ(K)(1 − Λµ) = 0. �

Figure 3. Various components Γ
(n)
+ of the forward trapped set for the open

baker Brsym
. The index n = 0, 1, 2, 3 corresponds respectively to the color

yellow, red, green, blue.

The set Γ+ \K can be naturally split into a disjoint union (see figure 3):

Γ+ \K =
⊔

n≥0

Γ
(n)
+ , where Γ

(0)
+

def
= Γ+ ∩ R1, Γ

(n)
+

def
= B−n

r
Γ

(0)
+ , n ≥ 1 .

Using this decomposition, we may construct any eigenmeasure as follows:

Proposition 2. Take some Λ ∈ (0, 1) and ν an arbitrary Borel probability measure on

Γ
(0)
+ . Define a probability measure µ on T2 as follows:

(2.7) µ = (1 − Λ)
∑

n≥0

Λn (A∗
r
)n ν = (1 − Λ)

∑

n≥0

Λn (B∗
r
)n ν .

Then B∗
r
µ = Λµ. All Λ-eigenmeasures of Br are of this type.

In §4 we will see that eigenmeasures of Br naturally appear as semiclassical limits of
eigenstates of the quantized map Br,N . In the remainder of this section, we provide some
examples of “remarkable” eigenmeasures of Br.
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2.3.3. Pure point eigenmeasures. Applying the recipe of Proposition 2 to the Dirac mea-

sure δx0 on an arbitrary point x0 ∈ Γ
(0)
+ , we obtain a simple, pure point Λ-eigenmeasure

supported on the backwards trajectory
(
x−n = B−n

r
(x0)

)
n≥0

. For any Λ ∈ (0, 1), we call

this eigenmeasure

(2.8) µx0,Λ
def
= (1 − Λ)

∑

n≥0

Λn δx−n
.

We recall that pure point invariant measures of Br are localized on periodic orbits of Br on
K, which form a countable set. On the opposite, for each Λ ∈ (0, 1) we have an uncountable

family of eigenmeasures µx0,Λ, labelled by all x0 ∈ Γ
(0)
+ .

We also notice that the measure µ constructed by iterating an arbitrary measure ν on

Γ
(0)
+ can be expanded as

µ =

∫

Γ
(0)
+

µx0,Λ dν(x0) .

2.3.4. Natural eigenmeasure. Hyperbolic systems with holes have been first studied by
Markarian, Chernov and co-workers, who focussed on the existence and characterization of
a “natural” eigenmeasure µnat, absolutely continuous along the unstable direction [21, 4,
19]. This measure can be obtained by iterating any smooth measure ρ such that ρ(Γ−) > 0:

(2.9) µnat = lim
n→∞

Bn
r
ρ

‖Bn
r
ρ‖ , where ‖µ‖ def

= µ(T2) .

The eigenvalue Λnat associated with this measure is generally called “the decay rate of the
system” by physicists. For the closed baker’s map Ar, the natural measure is the Lebesgue
measure µLeb. As explained in §2.3.1, the quantum ergodicity theorem shows that this
particular invariant measure is “favored” by quantum mechanics. One interesting question
we will try to address is the relevance of µnat with respect to the quantum open baker.

2.3.5. Bernoulli eigenmeasures. The first in (2.2), defines a mapping between the set Σ+ of
one-sided sequences ·ǫ0ǫ1 . . . and the position interval [0, 1] ∋ q. By a slight abuse, we also
call this mapping Jr. Using this mapping, we may construct a certain family of measures
on [0, 1] by pushing-forward Bernoulli measures on Σ+.

Let us choose a weight distribution P = {P0, P1, P2}, where each Pǫ ∈ [0, 1] and P0+P1+
P2 = 1. Any finite sequence ǫ = ·ǫ0ǫ1 · · · ǫn−1 ⊂ Σ+ is mapped by Jr onto a subinterval
Iǫ ⊂ [0, 1]. By setting

νr,P(Iǫ) = Pǫ0 · · ·Pǫn−1 ,

we define a Bernoulli measure νr,P on [0, 1] (or equivalently on Σ+). Fractal properties of
those measures are given in [11]. Below we list some of them.

If we take Pǫ = rǫ, we recover νr,r = νLeb the Lebesgue measure on the interval. If for
some ǫ ∈ {0, 1, 2} we take Pǫ = 1, we get for νr,P the Dirac measure at the point q(·ǫǫǫ . . .),
which takes respectively the values 0, r0

1−r1
and 1. For any other distribution P, the

Bernouilli measure νr,P is purely singular continuous, with obvious self-similar properties.
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If the weight Pǫ vanishes, νr,P is supported on the Cantor set Jr

(
{ǫ ∈ Σ+, ǫn 6= ǫ}

)
. For

any two distributions P 6= P′, the two measure νr,P, νr,P′ are mutually singular, meaning
that there exists disjoint subsets A, A′ of [0, 1] such that νr,P(A) = νr,P′(A′) = 1.

Proposition 3. For any weight distribution P such that P1 < 1, there is a unique auxiliary

distribution, namely P∗ =
{

P0

P0+P2
, 0, P2

P0+P2

}
, such that the product measure

µr,P(dx)
def
= νr,P(dq) × νr,P∗(dp) .

is an eigenmeasure of Br. The corresponding decay rate is

(2.10) ΛP = 1 − P1 = P0 + P2 .

The measure of a rectangle [ǫ]n,m is simply

µr,P([ǫ]n,m) = P ∗
ǫ−m

. . . P ∗
ǫ−1

Pǫ0 · · ·Pǫn−1 .

If we take P = r, we obtain the “natural” eigenmeasure µnat = µr,r, constructed by [21, 4] in
a more general setting. This is the only eigenmeasure of Br which is absolutely continuous
along the unstable (horizontal) direction. If P 6= P′, the Bernoulli eigenmeasures µr,P and
µr,P′ are mutually singular, eventhough they may share the same decay rate.

Some of these measures will appear in §5 as semiclassical measures for the Walsh-
quantized open baker.

3. Quantization of the open baker

We recall here the quantization of closed and open baker’s maps, following the original
approach of Balasz-Voros, Saraceno, Saraceno-Vallejos [2, 27, 28]. The quantum Hilbert
space corresponding to the torus phase space is N -dimensional, with N = (2π~)−1, so we
denote it by HN . That space is spanned by the orthonormal position basis

{
qj , j = 0, . . . , N − 1

}
,

localized at the discrete positions qj = j
N

. Through the discrete Fourier transform

(3.1) (FN)jk = N−1/2 e−2iπjk/N , j, k = 0, . . .N − 1 ,

this basis is transformed into the momentum basis {pk, k = 0, . . . , N − 1}:

pk =
N−1∑

j=0

(F ∗
N)jk qj .

The quantization of the closed baker’s map Ar consists in a unitary operator acting on this
Hilbert space. Strictly speaking, the quantization is well-defined only if the coefficients r

are such that

(3.2) N ri = Ni ∈ N, i = 0, 1, 2 .

Yet, in the semiclassical rgime (N → ∞) one can, if necessary, slightly modify the ri by
amounts ≤ 1/N in order to satisfy this condition: such a modification is irrelevant for the
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classical dynamics. Assuming (3.2), the quantization of Ar on HN is given by the following
unitary matrix in the position basis:

(3.3) Ar,N = F−1
N




FN0

FN1

FN2



 .

In §2.1, the open map Br was obtained by sending all points of the “hole” R1 to infinity,
then applying Ar to the remaining points. On the quantum side, this corresponds to kill
all quantum states localized in R1, and then apply Ar,N . Since the hole is defined in terms
of positions, this “killing”is performed by the projector ΠS,N = IN − Πhole,N , where

Πhole,N
def
=

∑

N0≤j<N−N2

|qj〉〈qj | .

One ends up with the following matrix in the position basis:

(3.4) Br,N = F−1
N



FN0

0
FN2


 .

This matrix is the “Weyl” quantization of Br. It is expected to share some semiclassical
properties with the propagator exp

(
− iĤW/~

)
of the “absorbing Hamiltonian”. In par-

ticular, the eigenvalues {λj} of Br,N should be compared with
{
e−iz̃j/~

}
, or with

{
e−izj/~

}
,

where {z̃j} (resp. {zj}) are the eigenvalues of ĤW (resp. the resonances of Ĥ).

3.1. Fractal Weyl law for the quantized open baker. The range of Πhole,N is obviously
in the kernel of Br,N . We call “nontrivial” the spectrum of Br,N on the complementary
subspace. That spectrum is situated inside the unit disk. In the semiclassical limitN → ∞,
most of it accumulates near the origin, which corresponds to “short-lived states” [31].
We rather focus on “long-living” eigenvalues, situated away from the origin. In [24] we
conjectured a fractal Weyl law for the semiclassical density of “long-living” eigenvalues.

Conjecture 1 (Fractal Weyl Law). Let Br be the open baker’s map described in §3. Then,
for any radius 0 < r < 1, there exists Cr ≥ 0 such that

(3.5) n(N, r)
def
= # {λ ∈ Spec(Br,N), : |λ| ≥ r} = CrN

d + o(Nd), N → ∞, .

Here 2d is the fractal dimension of the trapped set K.

So far, this conjecture could be proven only for the Walsh quantization B̃k of the sym-
metric baker Brsym

, see section 5.2. This Weyl law was numerically checked for the sequence
of quantum open bakers Brsym,N , especially for N along geometric sequences N = No 3k,
k ≥ 1. It was also checked for an open version of the kicked rotator [31]. Similar Weyl laws
have been conjectured for Hamiltonian scattering systems [34], and upper bounds could
be rigorously proven in various settings [42, 10, 35].
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3.2. Which dimension plays a role? In the proofs for upper bounds, the exponent d
is defined in terms of the upper Minkowski dimension of K. In the case of the open baker
Br, we therefore expect that the exponent d appearing in the conjecture (resp. d + 1) is
given by the Minkowski dimension of the Cantor set Cr (resp. Γ+), which is equal to its
box, Hausdorff and packing dimensions. We call this theoretical value d0.

For the symmetric baker Brsym
, the Hausdorff dimension dH(Γ+) = d0 + 1 happens to

be equal to the Hausdorff dimension of the natural measure µnat, defined by

dH(µnat) = inf
A⊂T2, µnat(A)=1

dH(A) .

For a more general map Br, that Hausdorff measure only satisfies the inequality dH(µnat) ≤
dH(Γ+) (see the explicit expressions below). We want to investigate a possible “role” of
the natural eigenmeasure µnat regarding the structure of the resonance spectrum. It is
therefore legitimate to ask the following

Question 1. Is the correct exponent in the Weyl law (3.5) given by dI = dH(µnat) − 1
instead of d0 = dH(Γ+) − 1?

Here the suffix I indicates that dI is sometimes called the information dimension of the
measure [11, 8]. As mentioned above, both dimensions are equal for the symmetric baker
Brsym

, which has been numerically tested so far [23] They are also equal in the case of a
closed map on T2: in that case, the Weyl law has exponent 1 (the whole spectrum lies on
the unit circle), and we have dH(T2) = dH(µLeb) = 2.

However, for a nonsymmetric baker Br, the two dimensions take different values:

d0 is the solution of rd0 + rd2 = 1, while dI =
r0 log p0 + r2 log p2

r0 log r0 + r2 log r2
.

To answer this question, we considered a very asymmetric baker, namely taking rasym with
r0 = 1/32, r2 = 2/3. The two dimensions then take the values d0 ≈ 0.493, dI ≈ 0.337. We
computed the counting function n(N, r) for several radii 0.1 ≤ r ≤ 1 and several values of
N . We then tried to fit the Weyl law (3.5) with an exponent d varying in a certain range,
and computed the standard deviations (see Fig. 4). The numerical result is unambiguous:
the best fit clearly occurs away from dI , but it is close to d0. This numerical test apparently
rules out the possibility that dI provides the correct exponent of the Weyl law, and suggests
to take d = d0.

To further illustrate the Weyl law for the asymmetric baker Brasym
, we plot in figure 5

(left) the counting functions n(N, r) as a function of r ∈ (0, 1), for several values of N . On
the right plot, we rescale n(N, r) by the power N−d0 : the rescaled curves almost perfectly
overlap, indicating that the scaling (3.5) is correct.

Remark 1. On figure 5 (right) the rescaled counting function seems to be “strictly de-
creasing” on an interval [λmin, λmax], where λmin ≈ 0.1, λmax ≈ 0.9. This implies that
the spectrum of Brasym,N becomes dense in the whole annulus {λmin ≤ |λ| ≤ λmax}, when
N → ∞. Therefore, for any λ ∈ [λmin, λmax], one can consider sequences of eigenvalues

(λN)N≥1 such that |λN | N→∞−−−→ λ.
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Figure 4. Standard deviations when fitting the Weyl law (3.5) to various
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Figure 5. Left: number of resonances of the asymmetric baker Brasym

outside the disks of radii r, for various values of Planck’s constant N . Right:
same curves vertically rescaled by N−d0 .

4. Localization of resonant eigenstates

In this section, we study the phase space localization properties of the “long-living” right
eigenstates of a given open baker Br,N . That is, we will consider sequences (ψN)N→∞ such
that, for any N ,

(4.1) Br,N ψN = λN ψN , ‖ψN‖ = 1 , |λN | ≥ λmin > 0 .
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The lower bound λmin > 0 is arbitrary: its role is to ensure that all the eigenstates we
consider are “long-living”. The phase space distribution of eigenstates is provided by the
Husimi measures, which are defined in the next subsection.

4.1. Phase space representation of quantum states. We recall the definition and
properties of torus coherent states, which we use to construct both the Husimi representa-
tion of quantum states, and the anti-Wick quantization of observables [3]. The Gaussian
coherent state in L2(R), localized at the phase space point x = (q0, p0) ∈ R2 and with
squeezing σ > 0, is defined by the wavefunction

(4.2) Ψx,σ(q)
def
=

( σ

π~

)1/4

e−i
p0q0
2~ ei

p0q

~ e−σ
(q−q0)2

2~

When ~ = (2πN)−1, that state can be periodized on the torus, to yield the torus coherent
state ψx,σ ∈ HN with following components in the basis

{
qj

}
:

(4.3)
(
ψx,σ

)
j
=

1√
N

∑

ν∈Z

Ψx,σ(j/N + ν), j = 0, . . . , N − 1 .

This family of states is quasi-periodic w.r.to x: for any m ∈ Z2, ψx+m,σ = ei(∗) ψx,σ. These
states are asymptotically normalized in the semiclassical limit.

We use these coherent states to quantize classical observables f ∈ C∞(T2) into operators
on HN . To any squeezing σ > 0 and inverse Planck’s constant N > 0 we associate the
anti-Wick quantization

f ∈ C∞(T2) 7→ OpAW,σ
N (f)

def
=

∫

T2

|ψx,σ〉〈ψx,σ| f(x) dx .

By duality, this quantization defines, for any state ψ ∈ HN , a Husimi distributionHσ
ψ(x) dx:

∀f ∈ C∞(T2),

∫
f(x)Hσ

ψ(x) dx = 〈ψ|OpAW,σ
N (f)|ψ〉 .

This distribution is actually a positive measure, with density given by the Husimi function

x ∈ T
2 7→ Hσ

ψ(x)
def
= N |〈ψx,σ|ψ〉|2 .

For ‖ψ‖ = 1, this function defines a probability density on T2.
We will say that a sequence of states (ψN ∈ HN)N→∞ converges to the probability

measure µ if, for a given σ > 0, the Husimi measures Hσ
ψN

weak-∗ converge to the measure
µ. Equivalently,

(4.4) ∀f ∈ C∞(T2), 〈ψN |OpAW,σ
N (f)|ψN〉 N→∞−−−→ µ(f) =

∫

T2

f dµ .

The measure µ is then called the semiclassical measure associated with the sequence (ψN ).
Following [32], one can also consider quantizations (and dual Husimi representations)

for which the squeezing parameter σ smoothly depends on the phase space point x, and is
bounded away from 0. By adapting the proofs of [32] to the torus setting, one easily shows
the following
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Proposition 4. Let σ1, σ2 ∈ C∞(T2, (0,∞)). The two associated quantizations become
close to to one another when N → ∞:

∀f ∈ C∞(T2), ‖OpAW,σ1

N (f) − OpAW,σ2

N (f)‖ = O(N−1) .

As a result, if the convergence property (4.4) holds for the squeezing σ1, it also holds for
σ2.

4.2. Semiclassical measures of resonant eigenstates. We turn back to our sequence
(ψN )N→∞ of long-living resonant eigenstates of Br,N (see (4.1)). As explained in §2.3.1, up
to extracting a subsequence, we can assume that the Husimi measures (H1

ψN
)N→∞ converge

to a certain probability measure µ. The latter is called a semiclassical measure of the open
baker Br. In Figure 6, we plot the Husimi functions H1

ψN
of some (right) eigenstates of

Br,N , for the maps with respectively r = rsym and r = r2 = (1/9, 5/9, 1/3). As a first
remark, we notice that all Husimi functions are very inhomogeneous: they are very small
in the horizontal strips which are in the complement of Γ+. The proof of the proposition
below shows that they are actually exponentially small outside of Γ+, when N → ∞.

Let D denote the interior of Br(R0)∪Br(R2), so that ∂D is the set of discontinuities for

the map B−1
r

. We also define Γ̃+
def
= Γ+ ∪ ∂D (see Fig. 7). Taking the semiclassical limit,

this nonhomogeneous distribution yields the following theorem, which is our central result.

Theorem 1. Consider a semiclassical measure µ for the open baker Br, limit of some
sequence (ψN )N→∞ as in (4.1). Then:

i) the support of µ is a subset of Γ̃+.
ii) If supp µ ∩D 6= ∅, there exists Λ ∈ [λ2

min, 1] such that the eigenvalues (λN) satisfy

|λN |2 N→∞−−−→ Λ .

For any Borel subset S ⊂ T2 such that S ∩ ∂D = ∅, one has µ(B−1
r

(S)) = Λµ(S).
iii) If µ(∂D) = µ(B−1

r
∂D) = 0, then µ is an eigenmeasure of Br, with decay rate Λ.

Proof. In the proof we fix r, and write B = Br. To prove i), we will estimate the values of
the Husimi functions away from Γ̃+. For any small δ > 0, we consider the set

∁Γ̃+,δ
def
=

{
x ∈ T

2, dist(x, Γ̃+ ≥ δ
}
,

which is composed of several connected components, each of them inside one of the rectan-
gles B(Ri). It is easy to see that each point x in this set escapes at certain time 1 ≤ n(x)
through B−1, where n(x) is constant on each connected component of ∁Γ̃+,δ.

Using the fact that ψN is an eigenstate of BN and |λN | ≥ λmin, for any x ∈ ∁Γ̃+,δ we
rewrite Hσ

ψN
(x) as follows:

Hσ
ψN

(x) = N |λN |−2n(x) |〈ψx,σ, (BN )n(x) ψN〉|2(4.5)

= N |λN |−2n(x) |〈(B†
N)n(x)ψx,σ, ψN 〉|2 .(4.6)
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Figure 6. Top: Husimi functions of three eigenstates of Brsym,N

(black=large values, white=0). Bottom: Husimi functions of 2 eigenstates
of Br2,N . We give the sup and L2 norms of the Husimi functions. The grey
scale goes from white (zero) to black (maximum).

Slightly generalizing the estimates of [6], one can show that for any x ∈ ∁Γ̃+,δ, the coherent

state ψx,σ propagates semiclassically though B†
N . Precisely, there exists C(σ, δ) > 0 such

that, for any x ∈ ∁Γ̃+,δ,

(4.7) B†
N ψx,σ = χB(S)(x) eiθ ψx′,σ′ + O(e−N C(σ,δ)) .

The parameters x′, σ′ are as follows: x′ = B−1(x), σ′ = σ/r2
ǫ if x is in the rectangle B(Rǫ).

χB(S) is the characteristic function on the set B(S) = D. The center and squeezing of the
coherent state are thus transported through the classical dynamics B−1. The phase θ can
also be given explicitly. Notice that the new point x′ is situated in a set ∁Γ̃+,δ′ for some
δ′ > 0.
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Figure 7. On the left, we show the set Γ̃+ (∂D is indicated in thick red
lines). On the right, we show B−1

r
(∂D).

Iterating this estimate exactly n(x) times, we obtain

∀x ∈ ∁Γ̃+,δ, (B†
N)n(x) ψx,σ = O(e−CN ) .

Using the assumption |λN | ≥ λmin, we finally get the following exponential bound:

(4.8) Hσ
ψN

(x) = O(e−C N) uniformly for x ∈ ∁Γ̃+,δ .

Passing to the limit N → ∞ this estimate shows that µ(∁Γ̃+,δ) = 0. Since δ > 0 was
chosen arbitrary small, we have proven i).

The proof of the second statement uses the same methods. Take f ∈ C∞(T2) supported
inside ∁Γ̃+,δ, and such that µ(f) > 0 (such a choice is possible from the assumption in ii)).

Inserting λ−1
N BN on both sides of 〈ψN , OpAW,σ

N (f)ψN〉, we get

〈ψN , OpAW,σ
N (f)ψN〉 = |λN |−2

∫

T2

N dx f(x) |〈(B†
N)n(x)ψx,σ, ψN 〉|2(4.9)

= |λN |−2

∫

T2

N dx f(x)χB(S)(x) |〈ψx′,σ′ , ψN 〉|2 + O(e−C N) .(4.10)

Since the change of variables x 7→ x′ is symplectic on B(S), the last line can be rewritten
as

|λN |−2〈ψN ,OpAW,σ′(χS × (f ◦B))ψN〉 + O(e−C N) .

In the above expression, we can with no harm extend the definition of σ′ outside S into
a smooth function σ′(x′) > 0, therefore obtaining an “nice” anti-Wick quantization as
in Prop. 4. In the semiclassical limit, the above matrix elements (without the prefactor
|λN |−2) converge to µ(χS × f ◦ B), while the full expression should converge to µ(f) > 0.
This obviously implies that |λN |2 admits a limit Λ ∈ [λ2

min, 1], and that

µ(f) = Λ−1 µ(χS × (f ◦B)) .
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The statement ii) then follows by standard arguments. To obtain the last statement, it
suffices to decompose any measurable set A into A = (A∩∂D)∪(A\∂D). From ii), we have
µ(A\∂D) = Λ−B−1(A\∂D), while from the assumption, µ(A∩∂D) = µ(B−1(A∩∂D)) = 0.
We thus get µ(A) = Λ−1B−1(A) for any set. �

Remark 2. We cannot rule out the possibility that µ charges the discontinuity set ∂D ∪
B−1(∂D). Indeed, in some of the Husimi plots, we seem to see a “scar” (a strong peak of
the Husimi function) at the point (0, 0). On the other hand, all the Husimi functions we
computed were small on ∂D \ Γ+. We therefore conjecture that all semiclassical measures
are supported on Γ+, and are therefore eigenmeasures of Br.

4.3. Abundance of semiclassical measures. We now draw some consequences of the
above theorem, and the remark which follows. Statement ii) of the theorem strongly
constrains the converging sequences of eigenstates: the Husimi measures (H1

ψN
) can con-

verge to some (eigen)measure µ only if the corresponding eigenvalues (λN) asymptotically

approach the circle of radius
√

Λ.
From the density argument in Remark 1, for any Λ ∈ [λ2

min, λ
2
max] it is possible to contruct

sequences of eigenstates of Brasym,N , such that |λN |2 N→∞−−−→ Λ. Any semiclassical measure
extracted from such a sequence will be an eigenmeasure with decay rate Λ. Therefore, two
converging sequences (ψN ), (ψ′

N ) associated with limiting decays Λ 6= Λ′ will necessarily
converge to different eigenmeasures. This already shows that the semiclassical measures
generated by all possible sequences in the annulus {λmin ≤ |λ| ≤ λmax} form an uncountable
family. This should generalize to any open baker Br.

In section 2.3.2, we show that for each Λ ∈ (0, 1), there are (uncountably) many possible
eigenmeasures. A natural question thus concerns the variety of semiclassical measures, for
a fixed Λ ∈ [λ2

min, λ
2
max]:

Question 2.

• For a given Λ ∈ [λ2
min, λ

2
max], what are the semiclassical measures of Br of decay

rate Λ?
• is there a unique such measure? Otherwise, is some measure “favored”, in the sense

that “almost all” sequences (ψN ) with |λN |2 → Λ converge to µ?
• can the natural measure µnat be obtained as a semiclassical measure?

The same type of questions appear in [13]. At present we are unable to answer them for
the open baker Br,N . In the next section we try to address them for a solvable model, the
Walsh-quantized open baker.

In the next section, we construct quasimodes for the quantum baker Br,N .

4.4. Quasimodes. From the explicit representation of eigenmeasures given in Proposi-
tion 2, it is tempting to construct approximate eigenstates by propagating backwards

wavepackets localized on the set Γ
(0)
+ . For ν an arbitrary probability measure supported on

Γ
(0)
+ , assume that we can construct a family of states (ψν,N) such that the Husimi measures
H1
ψν,N

converge to the measure ν. For any λ ∈ C, 0 < |λ| < 1, we construct the following
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state by mimicking Eq. (2.7):

(4.11) Ψλ,ν,N
def
=

√
1 − |λ|2

∑

n≥0

λnA−n
r,N ψν,N .

Through Egorov’s property, for n ∈ N fixed and N → ∞, the Husimi measures of the states
A−n

r,N ψν,N converge to the measures (A∗
r
)n ν, so the states (Ψλ,ν,N) obviously converge to

the eigenmeasure µ given in (2.7).
However, the state Ψλ,ν,N is not an exact eigenstate of Br,N , but only a quasimode. To

check that statement, we need to apply Br,N = Ar,N ΠS,N to that state:

Br,NΨλ,ν,N =
∑

n≥0

λnAr,N ΠS,N A
−n
r,N ψν,N .

That state would be equal to λΨλ,ν,N if we had simultaneously

(4.12) ΠS,N ψν,N = 0 and Πhole,N A
−n
r,N ψν,N = 0 for all n ≥ 1 .

These conditions can not be exactly fulfilled: if the first one is true (meaning that ψν,N
is strictly localized in R1), then the “diffraction” effects of the quantum baker imply that
the state A−1

r,N ψν,N has nonzero components in R1 too.
However, the conditions can be satisfied up to a semiclassically small remainder, at least

for n not too large. Instead of starting a general discussion, we will simply take for ψν,N a

coherent state ψxo,σ at some point xo ∈ Γ
(0)
+ . The “pure point quasimode” Ψλ,xo

constructed
by propagating this coherent state will converge to the pure point measure (2.8).

Let us take xo away from ∂R1, which ensures that ΠS,N ψxo,σ = O(e−C N). We then
evolve xo backwards into x−n = A−n

r
xo. The results of [6] show that, as long as x−n stays

away from ∂D, and the squeezing σ−n is not too large, the backwards evolution of ψxo,σ

remains a coherent state:

(4.13) A−n
r,N ψxo,σ = eiθn ψx−n,σ−n

+ O(e−C N) .

Because xo was in Γ
(0)
+ , the points x−n are automatically in Γ

(n)
+ , therefore far from the

hole. As a consequence, Πhole,N ψx−n,σ−n
= O(e−CN ), so that

(4.14) Br,N A
−n
r,N ψxo,σ = A−n+1

r,N ψxo,σ + O(e−CN) .

There remains to estimate the maximal n up to which the estimates (4.13,4.14) are correct.
The estimate in [6, Prop.4.4] shows that (4.13) is valid as long as the distances between
the momentum p(x−n) and the discontinuity points 0, r0, r0 + r1 remain much larger than√
σ−n/N , the “height” of the coherent state in (4.13). A favorable choice for xo = Jr(ǫ)

consists in a sequence ǫ such that the indices ǫ−i regularly jump between 0 and 2 when
i→ −∞. For simplicity we assume that both indices asymptotically occur with the same
frequency. This ensures that the momenta p(x−n) stay at finite distance from 0, r0, r0 + r1.
Yet, the squeezing parameter σ−n = σ(rǫ−1 · · · rǫ−n

)−2 exponentially increases with n, more
or less like σ(r0 r2)

−n. If we take an initial state ψxo,σ very elongated along the horizontal,
by selecting σ = N−1+δ, the estimates (4.13,4.14) are valid until the time nbreak = (2 −
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δ) logN
| log r0r2|

, which is a sort of Ehrenfest time. Summing (4.14) over these times, we get the

quasimode estimate

(4.15) Br,N Ψλ,xo
= λΨλ,xo

+ O(λnbreak) .

The remainder is of order ~α with α = (2 − δ) log |λ|
log r0r2

. We thus have a better quasimode if

the quasi-eigenvalue λ is small.
In our numerical texts, we never found an eigenstate which would seem close to such a

“pure point quasimode”.

5. A solvable toy model: walsh quantization of the open baker

We now present an alternative (Walsh) quantization of the open symmetric baker Brsym
,

introduced in [23, 24]. A similar quantization of the standard (closed) baker was proposed
and studied in [29, 38]. We will drop the index rsym from our notations, and call B = Brsym

.
We first recall the “Walsh quantum kinematics”.

5.1. Walsh quantization of the torus. Walsh quantization is possible for Planck’s con-
stant taking values N = 3k, k ∈ N. It uses the tensor product decomposition of the Hilbert
space HN = (C3)⊗k. As notice in §2.1, each discrete position qj = j/N can be represented
by its ternary sequence qj ≡ · ǫ0ǫ2 · · · ǫk−1, with symbols ǫi ∈ {0, 1, 2}. Accordingly, each
position eigenstate qj can be represented as a tensor product:

qj = eǫ0 ⊗ eǫ2 ⊗ . . .⊗ eǫk−1
= | · ǫ0ǫ2 . . . ǫk−1〉 ,

where {e0, e1, e2} is the canonical (orthonormal) basis of C3. Walsh quantization consists
in replacing the discrete Fourier transform (3.1) by the Walsh(-Fourier) transform WN ,
which is a unitary operator preserving the tensor product structure of HN . We define it
through its inverse W ∗

N , which maps the position basis to the orthonormal basis of “Walsh
momentum states”:

p̃j = W ∗
N qj

def
= F ∗

3 eǫk−1
⊗ F ∗

3 eǫk−2
⊗ . . .⊗ F ∗

3 eǫ1 ⊗ F ∗
3 eǫ0

(here F ∗
3 is the inverse Fourier transform on C3). To agree with our notations of §2.1, we

will index the symbols relative to the momentum coordinate by negative integers, so the
Walsh momentum states will be denoted by

p̃j = |ǫ−k . . . ǫ−1 ·〉 , where pj = j/N ≡ · ǫ−1 . . . ǫ−k .

Each position (resp. momentum) state is microlocalized in a “quantum rectangle” of
width (resp. height) 3−k = 1/N and height (resp. width) unity. More generally, for
any ℓ ∈ {0, . . . , k}, one can construct an orthonormal basis of ℓ-(Walsh-)coherent states,
localized in rectangles [ǫ] = [ǫ]ℓ, where ǫ = ǫ−k+l . . . ǫ−1 · ǫ0 . . . ǫℓ−1. Such rectangles also
have “quantum area” 1/N . The ℓ-coherent state supported by the rectangle [ǫ]ℓ takes the
form

|[ǫ]ℓ〉 def
= eǫ0 ⊗ . . . eǫℓ−1

⊗ F ∗
3 eǫ−k+ℓ

⊗ . . . F ∗
3 eǫ−1 .

Like the squeezing parameter σ in the Gaussian case (see section 3), the index ℓ describes
the “aspect ratio” of the coherent state. One important difference between Gaussian and
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Walsh coherent states lies in the fact that the latter is strictly localized both in momentum
and position. Another difference is that, for each ℓ, the ℓ-coherent states make up an
orthonormal basis, instead of an overcomplete family.

Each ℓ-basis of coherent states can be used to define a Walsh-anti-Wick quantization
and Walsh-Husimi functions. The latter are constant in each ℓ-rectangle:

(5.1) WHℓ
ψN

(x) = 3k |〈ψN |[ǫ]ℓ〉|2 , x ∈ [ǫ]ℓ .

In the semiclassical limit, we will consider Walsh-Husimi representations such that ℓ ∼ k/2
(which corresponds to σ ∼ 1). Semiclassical measures are defined as the weak limits of
sequences (WHℓ

ψN
) of Walsh-Husimi measures, where N = 3k → ∞, and ℓ = ℓ(k) ∼ k/2.

It is shown in [1] that the precise choice of ℓ = ℓ(k) does not affect the limit measure, as
long as both

(5.2) ℓ(k) → ∞ and k − ℓ(k) → ∞ as k → ∞ .

5.2. Walsh quantization of the open baker. Here we recall the Walsh quantization of
the open baker B = Brsym

[24, 1]. Mimicking the standard quantization (3.4), we simply
replace the Fourier transforms F ∗

N , FN/3 by their Walsh analogues WN , WN/3 (with N = 3k,
k ≥ 0), so that the Walsh-quantized open baker is given by the following matrix in the
position basis:

(5.3) B̃N
def
= W ∗

N



WN/3

0
WN/3


 .

For any set of vectors v0, . . . vk−1 ∈ C3, this operator acts as follows on the tensor product
state v0 ⊗ . . .⊗ vk−1:

(5.4) B̃N

(
v0 ⊗ v1 . . .⊗ vk−1

)
= v1 ⊗ . . .⊗ vk−1 ⊗ F̃ ∗

3 v0 .

Here F̃ ∗
3 = F ∗

3 π02, where π02 is the orthogonal projector on Ce0 ⊕ Ce2 in C3.

This simple expression allows one to completely analyze the spectrum of B̃N (see [24,

Prop. 5.5]). It is determined by the two nontrivial eigenvalues λ−, λ+ of the matrix F̃ ∗
3 .

These eigenvalues have moduli |λ+| ≈ 0.8443, |λ−| ≈ 0.6838. The spectrum of B̃N has a
gap: the long-living eigenvalues are contained in the annulus {|λ−| ≤ |λ| ≤ |λ+|}, while the
rest of the spectrum lies at the origin. Most of the eigenvalues are degenerate. If we count
multiplicities, the long-living spectrum satisfies the following asymptotics when k → ∞:

∀r > 0, #
{
λj ∈ Spec(B̃N ) , |λj| ≥ r

}
= Cr 2k + o(2k) ,

Cr =

{
1 , r < r0

0 , r > r0
, r0

def
= |λ−λ+|1/2 = 3−1/4 .

(5.5)

This nontrivial spectrum is carried by a subspace HN,long of exact dimension 2k. Since the

trapped set for B = Brsym
has dimension 2d = 2 log 2

log 3
, the above asymptotics agrees with

the Fractal Weyl law (3.5), when N is restricted to the values 3k. Although the density
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of resonances is peaked on the circle {|λ| = r0}, the spectrum densely fills the annulus
{|λ−| ≤ |λ| ≤ |λ+|} as k → ∞ (see Figure 8). In the next section we construct some long-
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-3 -2 -1  0  1  2  3

k=10
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Figure 8. Nontrivial spectrum of the Walsh open baker B̃N for
N = 310 (circles) and 315 (crosses), using a logarithmic representation
(horizontal=arg λj, vertical=log |λj|). We plot horizontal lines at the ex-
tremal radii |λ±| of the spectrum (dashed), at the radius r0 = |λ−λ+|1/2 of
highest degeneracies (dotted) and at the radius corresponding to the natural
measure (full).

living eigenstates of B̃N and analyze their Walsh-Husimi measures. Notice that, due to the
degeneracies of the spectrum, there is generally a large freedom to select eigenstates (ψN )
associated with a sequence of eigenvalues (λN). Intuitively, that freedom should provide
more possibilities for semiclassical measures.

We mention that J. Keating and coworkers have recently studied the eigenstates of a

slightly different version of the Walsh-baker, namely a matrix B̃′
N obtained by replac-

ing F3 by the “half-integer Fourier transform” (G3)jj′ = N−1e−2iπ(j+1/2)(j′+1/2)/3 (private
communication).

5.3. Resonance eigenstates of the Walsh open baker. We first provide the analogue
of Theorem 1 for the Walsh-baker. We remind that a semiclassical measure µ is now a
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weak limit of some sequence of Walsh-Husimi measures (WHℓ
ψN

)N=3k→∞, where ψN is an
eigenstate of BN , and the index ℓ ≈ k/2.

Theorem 2. Let µ be a semiclassical measure for a sequence of long-living eigenstates of

the Walsh-baker B̃N . Then µ is an eigenmeasure for B = Brsym
, and the corresponding

decay rate Λ satisfies Λ = limN→∞ |λN |2.
Notice that all problems due to the discontinuities of B have disappeared.

Sketch of Proof. The proof is very similar with that of Theorem 1. The main ingredient is
the (now exact) propagation of Walsh coherent states through B̃N . For any 0 ≤ ℓ ≤ k− 1,
consider an ℓ-rectangle [ǫ]ℓ. Classically, this rectangle is either killed by B−1 (if ǫ−1 = 1),
or it is mapped to the rectangle [ǫ]ℓ+1 = [ǫ−k+ℓ . . . ǫ−2 · ǫ−1ǫ0 . . . ǫℓ−1]. From the expression

(5.4), one easily checks that the coherent state |[ǫ]ℓ〉 is transformed accordingly by B̃†
N :

B̃†
N |[ǫ]ℓ〉 = (1 − δǫ−1,1) |[ǫ]ℓ+1〉 .

This exact expression, which is the quantum counterpart of the classical shift (2.4), should
be compared with the approximate expression (4.7). The rest of the proof is the same as
for Theorem 1, using the family of Walsh-anti-Wick quantizations introduced in [1].

�
From the structure of the spectrum, we can construct sequences of eigenvalues (λN)

converging to any circle of radius λ ∈ [|λ−|, |λ+|]. We also know that any semiclassical
measure is an eigenmeasure of B, so we can ask Questions 2 in the present framework
(setting λmax /min = |λ±|). In the next section we give partial answers to these questions.

Concerning the last point in Question 2, we notice that the decay rate of the natural
measure for B = Brsym

is Λnat = 2/3, which is contained in the interval [|λ−|2, |λ+|2] (see
figure 8). It is therefore relevant to ask whether µnat can be a semiclassical measure. At
present we are not able to answer that question.

5.4. Construction of some eigenstates of B̃N . In this section we construct one par-

ticular eigenbasis of B̃N , restricted to the subspace HN,long of long-living eigenstates (i.e.
the subspace carrying the nontrivial spectrum).

The construction starts from the (right) eigenvectors v−, v+ ∈ C3 of F̃ ∗
3 associated with

λ±. Notice that these two vectors (which we assume normalized) are not orthogonal to
each other. For any sequence η = η0 . . . ηk−1, ηi ∈ {±}, we form the tensor product state

|η〉 def
= vη0 ⊗ vη1 . . .⊗ vηk−1

.

The action (5.4) of B̃N implies that

B̃N |η〉 = λη0 |τ(η)〉 ,
where τ acts as a cyclic shift on the sequence: τ(η0 . . . ηk−1) = η1 . . . ηk−1η0. The orbit
{τ j(η), j ∈ Z} contains ℓη elements, where the period ℓη of the sequence η necessarily di-
vides k. The states {|τ j(η)〉, j = 0, . . . , ℓη − 1} are not orthogonal to each other, but form

a linearly independent family, which generates the B̃N -invariant subspace Hη ⊂ HN,long.
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The eigenvalues of B̃N restricted to Hη are of the form λη,r = e2iπr/ℓη
(∏ℓη−1

j=0 ληj

)1/ℓη
(with

indices r = 1, . . . , ℓη), and the corresponding (non-normalized) eigenvectors read

(5.6) |ψη,r〉 =

ℓη−1∑

j=0

cη,r,j |τ j(η)〉 , cη,r,j =

j−1∏

m=0

ληm

λη,r
.

Up to a normalization factor, this state is unchanged if η is replaced by τ(η). In the
next subsections we investigate the localization properties of some of these eigenstates, by
computing their Walsh-Husimi functions.

Figure 9. Walsh-Husimi functions of the extremal eigenstates ψ+,N , ψ−,N

of B̃N , for N = 36, ℓ = 3. These are coarse-grained versions of the Bernoulli
measures ρP+ and ρP−

.

5.4.1. Extremal eigenstates. The simplest case is provided by the sequence η = + + · · ·+,
which has period 1, so that |ψ+,N〉 = |η〉 = v⊗k+ is the (unique) eigenstate associated with
the largest eigenvalue λ+ (the longest-living resonance, see fig. 8). |ψ+,N〉 is normalized
since v+ is so. For any choice of index 0 ≤ ℓ ≤ k, the Walsh-Husimi function of |ψ+,N〉
factorizes:

∀x ∈ [ǫ]ℓ, WHℓ
ψ+,N

(x) = 3k
ℓ−1∏

j=0

|〈v+, eǫj〉|2
−k+ℓ∏

j=−1

|〈v+, F
∗
3 eǫj〉|2 .



24 S. NONNENMACHER AND MATHIEU RUBIN

The second product involves the vector w+
def
= F3v+, with components w+,ǫ = (1 −

δǫ,1)v+,ǫ/λ+. Following the formalism of §2.3.5, let ρP+ = ρrsym,P+ be the Bernoulli eigen-
measure of B, with weights P+,ǫ = |v+,ǫ|2, P ∗

+,ǫ = |w+,ǫ|2. The above expression shows

that the Husimi measure WHℓ
ψ+,N

is equal to the measure ρP+ , conditioned on the grid
formed by the ℓ-rectangles. Since the diameters of the rectangles decrease to zero as k → ∞
(assuming ℓ(k) ∼ k/2), the Husimi measures (Hℓ

ψ+,N
) therefore converge to ρP+ .

One can similarly show that the Husimi functions of the eigenstates ψ− = v⊗k− , associated
with the eigenvalue λ−, converge to the Bernoulli eigenmeasure ρP−

, with weights P−,ǫ =
|v−,ǫ|2, P ∗

−,ǫ = |w−,ǫ|2, where w−,ǫ = (1 − δǫ,1) v−,ǫ/λ−.
In figure 9 we plot the Husimi functions for ψ+,N and ψ−,N using the “isotropic squeezing”

ℓ = k/2.
Considering the fact that the eigenvalues λN close to the circles of radii |λ+| and |λ−|

have small degeneracies, we propose the following

Conjecture 2. Any sequence of eigenstates (ψN ) with eigenvalues such that |λN | → |λ+|
(resp. |λN | → |λ−|) converges to the semiclassical measure ρP+ (resp. ρP−

).

This conjecture has been partially proven for the quantum baker B̃′
N studied by Keating

et al.: in that case the two eigenvectors of G̃∗
3 replacing v± are orthogonal to each other,

which greatly simplifies the computations. The limit measure ρP
′

+
is then the “uniform”

measure on the trapped set K, with P′
+ = P′

+
∗ = (1/2, 0, 1/2).

5.4.2. Non-unique semiclassical measures in the “bulk”. In this section, we choose a ratio-
nal number t = m

n
with n > 0, 1 ≤ m ≤ n − 1 (nonnecessarily coprime), and construct

some families of eigenstates with eigenvalues of modulus λt = |λ−|1−t |λ+|t. In particular,
we show that there exist several semiclassical measures of decay rate Λ = λ2

t . This partially
answers (in the case of the Walsh baker) the second point in Question 2.

For simplicity we only consider subsequences along the values k = nk′, with k′ ∈ N. To
construct our sequence η, we select an n-sequence ηn containing m (+) and n −m (−),
and repeat it k′ times: we then obtain η = (ηn)

k′, which has the same period ℓη as the
sequence ηn (so that ℓη|n). For this sequence η we can construct ℓη eigenstates ψη,r, using
the formula (5.6). The corresponding eigenvalues λη,r all have modulus λt.

Proposition 5. i) Select ηn as above. All sequences of eigenstates {ψη,r}k=nk′→∞, with

η = (ηn)
k′ and r = r(k′) arbitrary, converge to the same semiclassical measure ρηn

, which
is a linear combination of Bernoulli measures for Bn (see (5.11)).

ii) If ηn and η
′
n are two n-sequences with m (+), which are not related by a cyclic

permutation, then the semiclassical measures ρηn
, ρη′

n
(which share the same decay rate)

are mutually singular.

In Figure 10 we plot the Husimi functions of two states ψη,0 constructed by periodizing
two 4-sequences not cyclically related. The two measures visibly do not “charge” the same
parts of the phase space.
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Figure 10. Walsh-Husimi functions of two eigenstates ψη,r constructed by
periodizing η4 = +−+− (left) and η4 = + +−− (right), taking k′ = 2 and
r = 0 in both cases.

Proof. From (5.6), each state ψη,r is a combination of ℓη states |τ j(η)〉. When k′ → ∞,
these ℓη states are asymptotically orthogonal to each other. Indeed, their overlaps can be
decomposed as

〈η|τ j(η)〉 =
(
〈ηn|τ j(ηn)〉

)k′
j = 0, . . . , ℓη − 1 ,

and for any j 6= 0 mod ℓη we have ηn 6= τ j(ηn), which implies |〈ηn|τ j(ηn)〉| ≤ |〈v+, v−〉|2 <
1. As a result, the asymptotic normalization of ψη,r is

‖ψη,r‖2 =

ℓη−1∑

j=0

|cη,r,j|2 + o(1) , k′ → ∞ .

To study the phase space distribution of ψη,r, it is sufficient [1] to fix some rectangle
[α] = [α−l′ . . . α−1 · α0 . . . αl−1] and compute the weight of ψη,r on that rectangle:

(5.7)

∫

[α]

Hℓ
ψη,r

(x) dx = 〈ψη,r|Π[α]|ψη,r〉 =

n−1∑

j,j′=0

cη,r,j c̄η,r,j′ 〈τ j
′

(η)|Π[α]|τ j(η)〉 .

Above we assume that ℓ > l and k − ℓ > l′. The projector on [α] is given by:

Π[α] = πα0 ⊗ πα1 . . . παl−1
⊗ (I)⊗k−l−l

′ ⊗ F ∗
3 πα−l′

F3 . . . F
∗
3 πα−1F3 .

The tensor factor (I)k−l−l
′−1 implies that each matrix element 〈τ j′(η)|Π[α]|τ j(η)〉 contains

k′ − O(1) factors 〈τ j′(ηn)|τ j(ηn)〉 = 〈ηn|τ j−j
′

(ηn)〉; for the same reasons as above, this
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element is small if j 6= j′ and k′ >> 1. We are then lead to consider only the diagonal
elements j = j′, which are easily computed:

(5.8) 〈τ j(η)|Π[α]|τ j(η)〉 =
l−1∏

i=0

Pηj+i,αi

l′∏

i′=1

P ∗
ηj−i,α−i′

.

Here we used as above the weights P±,ǫ = |v±,ǫ|2, P ∗
±,ǫ = |w±,ǫ|2, and extended the definition

of ηi to i ∈ Z by periodicity. The right hand side exactly corresponds to ρ̃τ j(ηn)([α]), where
ρ̃τ j(ηn) is a Bernoulli eigenmeasure for the map Bn, which we now describe. The symbolic
dynamics for Bn uses 3n symbols, which are in one-to-one correspondence with n-sequences
{ǫ0 . . . ǫn−1}. Adapting the formalism of §2.3.5 to this new symbol space, one constructs

the Bernoulli measure ρ̃τ j(ηn) using the following weight distributions P̃, P̃∗:

(5.9) P̃ǫ0...ǫn−1 =

n−1∏

i=0

Pηj+i,ǫi and P̃ ∗
ǫ−1...ǫ−n

=

n∏

i=1

P ∗
ηj−i,ǫ−i

.

One easily checks that the weight (5.8) is equal to ρ̃τ j(ηn)([α]).
The ℓη measures ρ̃τ j(ηn) are related to one another through the map B:

(5.10) B∗ ρ̃τ j(ηn) = |ληj
|2 ρ̃τ j+1(ηn) .

Finally, the (non-normalized) semiclassical measure associated with the sequence {ψη,r}k′→∞

(with r = r(k′) arbitrary) is the weighted sum

(5.11) ρηn
=

ℓη−1∑

j=0

Cηn,j ρ̃τ j(ηn) , where Cηn,j =
∣∣∣
j−1∏

m=0

ληm

λt

∣∣∣
2

.

This is an eigenmeasure of B, with decay rate Λ = λ2
t and total mass

∑n−1
j=0 Cηn,j.

The proof of the second statement uses the following fact: for any j, j′ ∈ Z, the weight
distributions P̃ and P̃′ defining respectively the Bernoulli measures ρ̃τj(ηn) and ρ̃τ j′ (η′

n) (see

(5.9)) are different. As a result, these two measures are mutually singular (see the end of
§2.3.5), and so are the two linear combinations ρηn

, ρη′

n
. �

6. Concluding remarks

Our understanding of semiclassical measures associated with long-living resonant eigen-
states remains very partial. The only “robust” result we obtain is the fact that these
measures are eigenmeasures of the classical dynamics, and their decay rate is directly re-
lated with those of the corresponding resonant eigenstates. This result, which derives from
Egorov’s theorem, can be proven as well for Hamiltonian scattering systems [25, Theo-
rem 3].

Like for “closed chaotic systems”, there remains to understand which eigenmeasures can
be obtained as semiclassical limits of resonant eigenstates (Question 2). The nongeneric ex-
ample of the Walsh-quantized baker provides some answers (e.g. the existence of Bernoulli
semiclassical measures, their nonunicity of semiclassical measures for decay rates in the
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“bulk” of the spectrum), but we have no idea whether these results apply to more gen-
eral systems. The “natural eigenmeasure” does not seem to play a particular role at the
quantum level.

A tempting way of constraining the possible semiclassical measures would be to adapt
the “entropic” methods of [1] to the present nonunitary framework. A desirable output of
these methods would be, for instance, to forbid semiclassical measures from being of the
pure point type described in §2.3.3. We leave such an approach to further study.
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