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Robust reduced order unbiased filtering for uncertain systems

M. Zasadzinski, H. Souley Ali, M. Darouach

Abstract

This paper presents a simple solution to the robust H∞ unbiased functional reduced order filtering
problem in the case of uncertain systems described by Integral Quadratic Constraint (IQC). The
existence condition of the unbiased filter is expressed through a rank relation. Then the filter is
designed via Linear Matrix Inequalities coupled with an equality constraint. The results obtained in
this paper are applicable to unstable systems. The approach is illustrated by a numerical example.

Keywords : Robust filtering, Reduced order observers, IQC, Uncertainties, LMI, Unbiasedness.

1 Introduction

This paper concerns the synthesis of robust reduced order H∞ filter for uncertain systems where
the uncertain variables are described by Integral Quadratic Constraints (IQC). The robust filtering gets
its importance from the necessity to still keep good performances even when uncertainties affect the
nominal system. These uncertainties can result from system identification, model reduction, time delays,
nonlinearities, . . . IQC are shown to well describe these types of uncertainties in numerous papers, notably
for signal processing applications Xie et al. (1998). Due to computational or real-time implementation
reasons, reduced order filter should be prefered to the full order one, specially in practical applications
for large scale systems Nagpal et al. (1987); Kim et al. (1992); Watson and Grigoriadis (1998).

Hence, we deal with the estimation of the functional z(t) = Lx(t), where z(t) ∈ IRr, r ! n and
x(t) ∈ IRn is the state of the system under consideration.

The functional unbiased filter is designed such that the H∞ norm from the disturbance inputs to the
estimation error is smaller than a given prescribed value. The problem of H∞ filtering has been widely
studied in the full order case Shaked (1990); Nagpal and Khargonekar (1991); Shaked and Theodor
(1992) and even in the reduced order one Kim et al. (1992); Grigoriadis and Watson (1997); Watson and
Grigoriadis (1998). The advantage of the H∞ filtering is that it does not require any knowledge on the
statiscal properties of the disturbances, they must only be of finite energy. Recall that this is not the
case in the standard Kalman filtering which needs statistical informations about the disturbances.

When nominal systems are affected by uncertainties, robust filters must be designed to ensure the
stability of the reconstruction error in spite of the presence of uncertainties (see Bolzern et al. (1996);
Geromel (1999); Geromel et al. (2000); El Ghaoui andCalafiore (2001); Li and Fu (1997); Savkin and
Petersen (1996); Wang and Balakrishnan (2002) for the full order robust filter and Savkin and Petersen
(1997); Tuan et al. (2001) for the reduced order one). Note that all these robust filters are biased, i.e.
the error dynamics contains a term depending directly on the system state in the nominal case. The
advantage of the robust unbiased filtering in comparison to the biased one is that it ensures a best
performance in the nominal case Shaked and de Souza (1995). The unbiasedness condition is derived
from the error dynamics. Its goal is to suppress the direct effect of the system state in this dynamics. The
unbiased robust filtering has been treated in Shaked and de Souza (1995) with a filter of order greater
than that of the system and in Bittanti and Cuzzola (2000) with a filter of the same order as the system.
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In this paper, our goal is twofold. First, we establish existence and stability conditions for the robust
functional filter of order r in presence of uncertainties described by IQC. These conditions are given
in such a way to avoid bilinearities between the filter parameters. As in Darouach (2000); Darouach
et al. (2001), the presence of a direct feedthrough term in the filter state-space realization allows us
to generalize the condition given in Watson and Grigoriadis (1998). A Linear Matrix Inequality (LMI)
method is thus applied to solve the filtering problem as a static output feedback problem. As inherent to
the later problem, the solution implies to solve also a non convex (equality) constraint Tuan et al. (2001).
This is the main difference with the full order robust filtering. Under appropriate condition, we show
that the presence of unstable modes can be taken into account since their effects on the estimation error
vanish because of the unbiasedness condition (see Xie et al. (1994) for the full order case). Note that the
choice of an H∞ filtering performance is not intrinsic. In fact, the approach can be easily extended to
the robust L2−L∞ filtering case.

This paper is organized as follows. Section 2 gives necessary and sufficient conditions for the unbiased-
ness of a functional filter for both continuous-time and discrete-time uncertain systems. Then section 3
gives the solution to the robust H∞ filtering problem whereas section 4 presents an illustrative example.
Section 5 concludes the paper.

2 Unbiasedness and stability conditions

2.1 Problem Statement

Consider the following uncertain linear system

σx1 = A1x1 +
s∑

i=1

H11ipi + B1w (1a)

σx2 = A21x1 + A2x2 +
s∑

i=1

H12ipi + B2w (1b)

y = C1x1 + C2x2 +
s∑

i=1

H2ipi + Dw (1c)

z = Lx = L1x1 + L2x2 (1d)

where x(t) =
[

x1(t)T x2(t)T
]T ∈ IRn (with x1(t) ∈ IRn1 and x2(t) ∈ IRn2) is the state vector, y(t) ∈ IRp

is the measured output and z(t) ∈ IRr is the vector of variables to be estimated where r ! n. The vectors
w(t) ∈ IRm and pi(t) ∈ IRki represent the disturbance and the uncertain variables respectively. We have
k =

∑s
i=1 ki where ki is the number of columns of matrices H11i, H12i and H2i. σx(t) = ẋ(t) is used

for the continuous-time case and σx(t) = x(t + 1) for the discrete-time one. Assume without loss of
generality that rankL = r.

To describe the effect of uncertainties on system (1), we consider s fictitious outputs qi(t) given by

qi = E11ix1 + E2ip + E3iw i = 1, . . . , s. (2)

The following notations will be used in the sequel

A =
[

A1 0
A21 A2

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
, p =




p1
...
ps



 , q =




q1
...
qs



 (3)

and
[
H1

H2

]
=





H11

H12

H2



 =





H111 . . . H11s

H121 . . . H12s

H21 . . . H2s



 ,




ET

11

ET
2

ET
3



 =




ET

111 . . . ET
11s

ET
21 . . . ET

2s

ET
31 . . . ET

3s



 . (4)
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Then system (1) can be rewritten in the following compact form

σx = Ax + H1p + Bw (5a)
y = Cx + H2p + Dw (5b)
z = Lx (5c)

It is assumed that the uncertainties satisfy the following admissible IQC
∫ T

0
‖pi(t)‖2 dt !

∫ T

0
‖E11ix1(t) + E2ip(t) + E3iw(t)‖2 dt (6)

in the continuous-time case and
T∑

k=0

‖pi(k)‖2 !
T∑

k=0

‖E11ix1(k) + E2ip(k) + E3iw(k)‖2 (7)

in the discrete-time case with T → ∞ and i = 1, . . . , s. Note that T is an integer in the discrete-time
case. A1, A21, A2, B1, B2, C1, C2, D and L are known constant matrices that represent the nominal
system, A2 may be an unstable matrix. H11i, H12i, H2i, E11i, E2i and E3i are known constant matrices
describing how the uncertainties affect the nominal system.

In this paper, the problem is to estimate the vector z(t) from the measurements y(t).
For this purpose, consider a functional filter described by the following state-space representation

ση = Nη + Jy (8a)
ẑ = η + Ey (8b)

where ẑ(t) ∈ IRr is the estimate of z(t). This filter differs from that of Watson and Grigoriadis (1998) and
has the form given in Darouach (2000); Darouach et al. (2001). Matrices N , J and E are of appropriate
dimensions. From remark 3.1 in de Souza (2000), we note an interest to consider a proper filter i.e. a filter
with direct feedforward (matrix E) from y to ẑ. Generally, the smallest level of disturbance attenuation
that can be achieved with a strictly proper filter is larger than that achieved with a proper filter.

Before proceeding, let us make the following assumption on system (1) (or (5)).

Assumption 1.

(i) The sub-system (1a) is quadratically stable Li and Fu (1997); Xie et al. (1994); Xie (1996).

(ii) Matrix A2 may be unstable. "
Let the filtering error be given by

e = z − ẑ (9)

then
e = Lx− ẑ = ε− EH2p− EDw (10)

where

ε = Ψx− η (11)
Ψ = L− EC. (12)

From (10), notice that the time derivative of the error e(t) is a function of the time derivative of the
disturbances w(t). To avoid the use of σw(t) in the dynamics of the error e(t), consider ε(t) as a new
“state vector”. Then the transfer function Twe from w(t) to e(t) has the following state space realization

{
σε = Nε + (ΨA−NΨ− JC)x + (ΨH1 − JH2)p + (ΨB − JD)w
e = ε− EH2p− EDw.

(13)

As in Watson and Grigoriadis (1998), the filter is said to be unbiased if the error dynamics is inde-
pendent of the system state x in the nominal case.

The problem of the robust unbiased functional H∞ filtering can now be stated as follows.
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Problem 1. Determine the filter matrices N , J and E (with Ψ = L− EC) such that

(i) the filter (8) is unbiased,

(ii) the filtering error (13) is stable and a given γ > 0 is an upper bound to the L2−L2 gain with zero
initial condition, i.e.

sup
w∈L2

‖e‖L2

‖w‖L2

< γ, ‖w‖L2
&= 0, (14)

where assumption 1 holds and the dynamics of the estimation error e is given by relation (13) for
any admissible IQC (see (6) or (7)). "

2.2 On the interest of the unbiasedness in filtering

We show here the meaning of the biased and the unbiased filters in robust filtering for uncertain
continuous-time systems (the discrete-time case is similar). For simplicity, consider the following system
with norm-bounded uncertainties

σx = (A + ∆A(t))x + Bw (15a)
y = (C + ∆C(t))x + Dw (15b)
z = Lx (15c)

where [
∆A(t)
∆C(t)

]
=

[
H1

H2

]
(Ik1 −∆(t)E2)−1∆(t)E11 and ‖∆(t)‖ ! 1. (16)

Notice that system (15) can be rewritten in the following IQC form (see (5))

σx = Ax + H1p + Bw (17a)
y = Cx + H2p + Dw (17b)
z = Lx (17c)

where s = 1. The fictituous output q is given by

q = E11x(t) + E2p(t) (18)

with p = ∆(t)q.
From (16), the uncertain variable p of (17) satisfies the following IQC

∫ T

0
‖p(t)‖2 dt !

∫ T

0
‖E11x(t) + E2p(t)‖dt. (19)

Then the estimation error e(t) = z(t)− ẑ(t) has the following uncertain dynamics (see (13))





σε = Nε + (ΨA−NΨ− JC)︸ ︷︷ ︸
=Φ

x + (Ψ∆A(t)− J∆C(t))x + (ΨB − JD) w

e = ε− E∆C(t)x− EDw.
(20)

If Φ = 0 (this relation is also called the Sylvester equation (see (21))), then the estimation error e(t) is
unbiased in the nominal case (∆A(t) = 0 and ∆C(t) = 0) since its dynamics does not depend on the state
x(t). In this case, if matrix N is stable, the estimation error e(t) converges asymptotically to zero even
if matrix A is unstable. This is not the case when Φ &= 0 (i.e. if the Sylvester equation is not satisfied),
and, in this case, the filter is a biased one. Thus, it is obvious that in the nominal case the unbiased filter
has a better behaviour than the biased one.

Consider now the case where there are uncertainties in the system (∆A(t) &= 0 and ∆C(t) &= 0). Then
the error dynamics (20) has an additional term depending on x(t) and matrices Ψ, N and J must be chosen
such that the term Φx(t) in (20) fights against the effect of x(t) introduced by the uncertainties through
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(Ψ∆A(t) − J∆C(t))x(t). The ideal case is when Φ = −(Ψ∆A(t) − J∆C(t)), thus the estimation error
e(t) will not have any term depending explicitely on x(t) in (20). This situation can not be guaranteed
as the uncertainties are unknown. But, the unbiased filter can still be used in the uncertain case as it
will be the best one in the nominal case and may reduce the effect of x(t) on the error dynamics even
in the uncertain case. Moreover, the unbiasedness condition will permit to parameterize all the filter
matrices through a single gain matrix in the sequel and to consider an unstable matrix A2 as in item (ii)
of assumption 1.

2.3 Derivation of the unbiased functional filter conditions

The unbiasedness of the filter (8) is achieved if and only if the following Sylvester equation

ΨA−NΨ− JC = 0 (21)

holds O’Reilly (1983), while the stability requirement of the filter is satisfied if the matrix N is Hurwitz.
Since matrix L is of full row rank, equation (21) is equivalent to

0 = ΨAL† −NΨL† − JCL† (22a)
0 = ΨA + NEC − JC (22b)

with

A = A(In − L†L), (23a)
C = C(In − L†L). (23b)

Using the definition of Ψ, relation (22a) can be rewritten as

N = A−KC (24)

where

A = LAL†, (25a)

C =
[
CAL†

CL†

]
, (25b)

K =
[
E K

]
with K = J −NE. (25c)

Then using relations (12) and (25c), equation (22b) can be rewritten as

KΣ =
[
E K

]
Σ = LA (26)

where
Σ =

[
CA
C

]
, (27)

and a general solution to equation (26), if it exists, is given by
[
E K

]
= LAΣ† + Z(I2p − Σ Σ†). (28)

where Z is an arbitrary matrix of appropriate dimensions.
From the definition of Ψ and using (25) and (28), relation (24) can be rewritten as

N = Ã− ZC̃ (29)

where

Ã = A− LAΣ†C, (30a)

C̃ = (I2p − ΣΣ†)C. (30b)
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The transfer function Twe from w(t) to e(t), given by (13), becomes





σε = (Ã− ZC̃)ε + (LH1 − ÃEH2 − ECH1 −KH2 + ZC̃EH2)p
+(LB − ÃED − ECB −KD + ZC̃ED)w

e = ε− EH2p− EDw

(31)

where E and K are given by (28).
In system (31), the filtering error is bilinear in the gain parameter Z due to the product ZC̃E. This

bilinearity is intrinsically linked to the unbiasedness condition (21). Indeed, the “bilinearity” NΨ in (21)
yields a gain K (see (25c)) containing the product NE. In order to avoid this kind of “bilinearity”, we
consider the following constraint

E
[
H2 D

]
= 0. (32)

Adding the constraint E [ H2 D ] = 0, relations (26), (27) and (28) become
[
E K

]
Σ̂ =

[
0 0 LA

]
, (33a)

Σ̂ =
[
H2 D CA
0 0 C

]
, (33b)

[
E K

]
=

[
0 0 LA

]
Σ̂† + Z(I2p − Σ̂ Σ̂†), (33c)

with K = J −NE.
Notice that with E [ H2 D ] = 0, the transfer function Twe from w(t) to e(t), given by (31), has no

feedthrough term and becomes

σe = (F̂1 − ZF̂2)e + (M̂1 − ZM̂2)p + (Ĝ1 − ZĜ2)w (34)

where

F̂1 = A−
[
0 0 LA

]
Σ̂†C, F̂2 = (I2p − Σ̂ Σ̂†)C, (35a)

Ĝ1 = LB −
[
0 0 LA

]
Σ̂†

[
CB
D

]
, Ĝ2 = (I2p − Σ̂ Σ̂†)

[
CB
D

]
, (35b)

M̂1 = LH1 −
[
0 0 LA

]
Σ̂†

[
CH1

H2

]
, M̂2 = (I2p − Σ̂ Σ̂†)

[
CH1

H2

]
. (35c)

From relations (33a), the necessary and sufficient condition for the existence of an unbiased filter (8)
verifying E [ H2 D ] = 0 is given by the following theorem.

Theorem 1. Under constraint (32), the unbiasedness of filter (8) for system (1) (or (5)) is guaranteed
if and only if

rank





0 0 LA
H2 D CA
0 0 C
0 0 L



 = rank




H2 D CA
0 0 C
0 0 L



 . (36)

Proof. From the linear algebra theory Lancaster and Tismenetsky (1985), there exists a solution [ E K ]
to equation (33a) if and only if [

0 0 LA
]
(In+2p − Σ̂†Σ̂) = 0

or if and only if

rank



 0 0 LA

Σ̂



 = rankΣ̂. (37)

Then, right-multiplying each side of equation (36) by
[

Ik 0 0 0
0 Im 0 0
0 0 L† In−L†L

]
gives (37).
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Remark 1. The case E = 0 in the filter equation (8), considered in Watson and Grigoriadis (1998), is
a special case. Indeed, if E = 0, equations (25c) and (33b) become K = K = J and Σ = C, respectively.
Then the unbiasedness condition is given by

rank




LA
C
L



 = rank
[
C
L

]
. (38)

This condition is contained in that of theorem 1. So, it is interesting to consider the general case
where E &= 0 for a global approach. "

According to the previous developments, the augmented state vector ξ given by

ξ =
[
x
e

]
=




x1

x2

e



 (39)

has the following uncertain dynamics (see (1))





σξ =




A1 0 0
A21 A2 0
0 0 N



 ξ +




H11

H12

(ΨH1 − JH2)



 p +




B1

B2

(ΨB − JD)



w

q =
[
E11 0 0

]
ξ + E2p + E3w

e =
[
0 0 Ir

]
ξ

(40)

where the matrix Ψ given by (see (12))

Ψ =
[
Ψ1 Ψ2

]
=

[
L1 L2

]
− E

[
C1 C2

]
(41)

satisfies the unbiasedness condition (21) for the nominal system (1) with H1 = 0 and H2 = 0, i.e.

[
Ψ1 Ψ2

] [
A1 0
A21 A2

]
−N

[
Ψ1 Ψ2

]
− J

[
C1 C2

]
= 0. (42)

3 Robust reduced order unbiased H∞ filtering

This section is dedicated to the design of a robust functional unbiased filter.
Here, we assumed that the existence condition of filter (8) is achivied i.e. relation (36) is verified.
Now,from (40), let us introduce the following parametrized system






σξ̂ =




A1 0 0
A21 A2 0
0 0 N



 ξ̂ +




H11Π−1/2

H12Π−1/2

(ΨH1 − JH2)Π−1/2



 p +




γ−1B1

γ−1B2

γ−1(ΨB − JD)



w

q =
[
Π1/2E11 0 0

]
ξ̂ + Π1/2E2Π−1/2p + γ−1Π1/2E3w

e =
[
0 0 Ir

]
ξ̂

(43)

where γ ∈ IR+ is given and
q =

[
qT
1 · · · qT

s

]T (44)

is a fictitious output, and
Π = bdiag{µ1Ik1 , · · · , µsIks} (45)

where the µi > 0, i = 1, 2, · · · , s, are scaling parameters to be chosen and bdiag(#) represents a block-
diagonal matrix. Note that Π ∈ IRk×k with k =

∑s
i=1 ki.

Using this parametrized system and problem 1, let us give the following lemma.
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Lemma 1. Under assumption 1 and assuming that relation (36) is verified, the filter (8) solves the robust
H∞ filtering stated in problem 1 for any admissible IQC (see (6) or (7)) if, for a given γ > 0, there exists
Π > 0 given by (45) such that the system (8) is a γ-suboptimal H∞ stable unbiased functional filter for
the parametrized system (43) achieving the following L2−L2 gain

sup
[ pT wT ]T∈L2

∥∥∥
[
qT eT

]T
∥∥∥
L2∥∥∥

[
pT wT

]T
∥∥∥
L2

< 1,

∥∥∥∥

[
p
w

]∥∥∥∥
L2

&= 0. (46)

Proof. From relation (36) and using (1), (41) and (42), the dynamics of the state vector ξ(t) defined in
(39) is given by system (40) which is associated to the parametrized system (43).

Since the filter (8) is unbiased, then relation (21) holds. As the existence and stability conditions of the
filter (8) are assumed to be fulfilled, there exists a stable matrix N which is solution to the unbiasedness
equation (21). By rewriting this relation as (42), we have

Ψ2A2 −NΨ2 − JC2 = 0. (47)

Recall that A2 may be unstable. Then in systems (40) and (43), the unstable subspace spanned by[
0 xT

2 (t) 0
]T has no effect on the outputs q(t) and e(t). To evaluate the induced gain given by

sup
[ pT wT ]∈L2

∥∥∥[ qT eT ]T
∥∥∥
L2∥∥∥[ pT wT ]T

∥∥∥
L2

< 1,
∥∥∥[ pT wT ]T

∥∥∥
L2

&= 0, x2(t) can be cancelled in systems (40) and (43) which

become 




σξ =
[
A1 0
0 N

]
ξ +

[
H11

(ΨH1 − JH2)

]
p +

[
B1

(ΨB − JD)

]
w

q =
[
E11 0

]
ξ + E2p + E3w

e =
[
0 Ir

]
ξ

(48)

and 




˙̂
ξ =

[
A1 0
0 N

]
ξ̂ +

[
H11Π−1/2

(ΨH1 − JH2)Π−1/2

]
p +

[
γ−1B1

γ−1(ΨB − JD)

]
w

q =
[
Π1/2E11 0

]
ξ̂ + Π1/2E2Π−1/2p + γ−1Π1/2E3w

e =
[
0 Ir

]
ξ̂

(49)

respectively, where ξ̂(t) is of the same dimension as ξ(t) and

ξ =
[
xT

1 eT
]T

. (50)

Since the uncertain subsystem given by (1a) is quadratically stable from assumption 1, the lemma is
proved by applying theorem 3 and theorem 4 of Li and Fu (1997).

Note that relation (49) can be rewritten as





σξ =
[
A1 0
0 (F̂1 − ZF̂2)

]
ξ +

[
H11Π−1/2 γ−1B1

(M̂1 − ZM̂2)Π−1/2 γ−1(Ĝ1 − ZĜ2)

]
w

z =
[
Π1/2E11 0

0 Ir

]
ξ +

[
Π1/2E2Π−1/2 γ−1Π1/2E3

0 0

]
w

(51)

where
z =

[
qT eT

]T and w =
[
pT wT

]T
. (52)

In system (51), the determination of the gain matrix Z can be transformed into the following static
output feedback control problem 





σξ = Aξ + Bww + Buu
z = Czξ + Dz ww
y = Cyξ + Dy ww

(53)
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with
u = −Zy (54)

where Z is the static output feedback controller to be designed in order to achieve stability and the
attenuation from the perturbation w(t) to the controlled output z(t). The vectors u(t) and y(t) are the
“control input” and the “measured output”, respectively. The matrices and the vectors introduced in
(53) are given by

A =
[
A1 0
0 F̂1

]
, Bw =

[
H11Π−1/2 γ−1B1

M̂1Π−1/2 γ−1Ĝ1

]
, Bu =

[
0
Ir

]
, (55a)

Cz =
[
Π1/2E11 0

0 Ir

]
, Dz w =

[
Π1/2E2Π−1/2 γ−1Π1/2E3

0 0

]
Cy =

[
0 F̂2

]
, (55b)

Dy w =
[
M̂2Π−1/2 γ−1Ĝ2

]
. (55c)

Before proceeding, let us decompose some of the above matrices as follows

Bw =
[
BpΠ−1/2 γ−1Bw

]
with Bp =

[
H11

M̂1

]
and Bw =

[
B1

Ĝ1

]
, (56a)

Cz =
[
Π1/2Cq

Ce

]
with Cq =

[
E11 0

]
and Ce =

[
0 Ir

]
, (56b)

Dz w =
[
Π1/2DqpΠ−1/2 γ−1Π1/2Dqw

DepΠ−1/2 γ−1Dew

]
with Dqp = E2, Dqw = E3 and Dep = Dew = 0, (56c)

Dy w =
[
DypΠ−1/2 γ−1Dyw

]
with Dyp = M̂2 and Dyw = Ĝ2. (56d)

In order to unify the notations, we also put Bu = Bu and Cy = Cy.
Then the following theorems 2 and 3 give the solution, in terms of the gain matrix Z, to the robust

H∞ filtering problem in the continuous and discrete-time cases, respectively.

Theorem 2 (Robust functional H∞ filtering : continuous-time case). Consider that assumption 1 holds.
Under relation (36), there exists a continuous-time γ-suboptimal robust H∞ functional unbiased filter (8)
for the uncertain system (1) if there exist matrices P = PT > 0 and Q = QT > 0, P, Q ∈ IR(n1+r)×(n1+r)

such that

Υc1 =
[Ky 0

0 Ik+r

]T





AT P + PA PBp PBw CT
q Π CT

e

BT
p P −Π 0 DT

qpΠ DT
ep

BT
wP 0 −γ2Im DT

qwΠ DT
ew

ΠCq ΠDqp ΠDqw −Π 0
Ce Dep Dew 0 −Ir





[Ky 0
0 Ik+r

]
<0, (57a)

Υc2 =
[Ku 0

0 Ik+m

]T





QAT + AQ QCT
q QCT

e BpΠ
−1 Bw

CqQ −Π−1 0 DqpΠ
−1 Dqw

CeQ 0 −Ir DepΠ
−1 Dew

Π−1BT
p Π−1DT

qp Π−1DT
ep −Π−1 0

BT
w DT

qw DT
ew 0 −γ2Im





[Ku 0
0 Ik+m

]
< 0, (57b)

In1+r = PQ, (57c)

where Ky and Ku are two matrices whose columns span the null spaces of [ Cy Dyp Dyw ] and
[

BT
u 0 0

]
,

respectively. All gains Z are given by

Z = B†
RKC†

L + Z− B†
RBRZCLC†

L (58)
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where

K = −R−1
1 BT

LS1C
T
R

(
CRS1C

T
R

)−1
+ R−1

1 S1/2
2 R2

(
CRS1C

T
R

)−1/2
(59a)

S1 =
(
BLR−1

1 B†
L −Q

)−1
> 0 (59b)

S2 = R1 − BT
L

(
S1 − S1C

T
R

(
CRS1C

T
R

)−1
CRS1

)
BL (59c)

[
B Q
• C

]
=





−Bu AQ + QAT QCT
q QCT

e BpΠ
−1 Bw

0 CqQ −Π−1 0 DqpΠ
−1 Dqw

0 CeQ 0 −Ir DepΠ
−1 Dew

0 Π−1BT
p Π−1DT

qp Π−1DT
ep −Π−1 0

0 BT
w DT

qw DT
ew 0 −γ2Im

• CyQ 0 0 DypΠ
−1 Dyw





(59d)

and R1, R2 and Z are arbitrary matrices of appropriate dimensions satisfying R1 = RT
1 > 0 and ‖R2‖ < 1.

Matrices BL, BR, CL and CR are any full rank matrices such that B = BLBR and C = CLCR.

Proof. Recall that assumption 1 holds and relation (36) is verified. From lemma 1, problem 1 is solved
if the closed-loop system (53)-(54) given by

{
σξ = (A− BuZCy)ξ + (Bw − BuZDy w)w
z = Czξ + Dz ww

(60)

is stable with an H∞ norm less than 1. From the bounded real lemma Xie (1996), this is verified if and
only if there exists a matrix P = PT > 0 such that





PA + AT P PBpΠ−1/2 γ−1PBw CT
q Π1/2 CT

e

Π−1/2BT
p P −Ik 0 Π−1/2DT

qpΠ
1/2 Π−1/2DT

ep

γ−1BT
wP 0 −Im γ−1DT

qwΠ1/2 γ−1DT
ew

Π1/2Cq Π1/2DqpΠ−1/2 γ−1Π1/2Dqw −Ik 0
Ce DepΠ−1/2 γ−1Dew 0 −Ir




< 0 (61)

with

A = A− BuZCy =
[

A1 0
0 bF1−Z bF2

]
, Bp = Bp − BuZDyp =

[
H11

cM1−Z cM2

]
, Bw = Bw − BuZDyw =

[
B1

bG1−Z bG2

]
.
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Using Q = P−1 (see (57c)), the inequality (61) is equivalent to





In1+r 0 0 0 0
0 0 0 Ik 0
0 0 0 0 Ir

0 Ik 0 0 0
0 0 Im 0 0









Q 0 0 0 0
0 Π−1/2 0 0 0
0 0 γIm 0 0
0 0 0 Π−1/2 0
0 0 0 0 Ir





×





PA + AT P PBpΠ−1/2 γ−1PBw CT
q Π1/2 CT

e

Π−1/2BT
p P −Ik 0 Π−1/2DT

qpΠ
1/2 Π−1/2DT

ep

γ−1BT
wP 0 −Im γ−1DT

qwΠ1/2 γ−1DT
ew

Π1/2Cq Π1/2DqpΠ−1/2 γ−1Π1/2Dqw −Ik 0
Ce DepΠ−1/2 γ−1Dew 0 −Ir





×





Q 0 0 0 0
0 Π−1/2 0 0 0
0 0 γIm 0 0
0 0 0 Π−1/2 0
0 0 0 0 Ir









In1+r 0 0 0 0
0 0 0 Ik 0
0 0 0 0 Im

0 Ik 0 0 0
0 0 Ir 0 0





=





QAT + AQ QCT
q QCT

e BpΠ−1 Bw

CqQ −Π−1 0 DqpΠ−1 Dqw

CeQ 0 −Ir DepΠ−1 Dew

Π−1BT
p Π−1DT

qp Π−1DT
ep −Π−1 0

BT
w DT

qw DT
ew 0 −γ2Im





︸ ︷︷ ︸
Q

+





−Bu

0
0
0
0





︸ ︷︷ ︸
B

Z
[
CyQ 0 0 DypΠ−1 Dyw

]
︸ ︷︷ ︸

C

+





QCT
y

0
0

Π−1DT
yp

DT
yw





︸ ︷︷ ︸
CT

ZT [
−BT

u 0 0 0 0
]

︸ ︷︷ ︸
BT

<0.

The LMI (57a) and (57b) are then obtained by applying the projection lemma Iwasaki and Skelton
(1994) to the above inequality, whereas equations (58) and (59) are deduced from relation (22) in Iwasaki
and Skelton (1994).

The filter (8) is finally obtained by using relations (33) and (35) verifying (32).

Theorem 3 (Robust functional H∞ filtering : discrete-time case). Consider that assumption 1 holds.
Under relation (36), there exists a discrete-time γ-suboptimal robust H∞ functional unbiased filter (8) if
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there exist matrices P = PT > 0 and Q = QT > 0, P, Q ∈ IR(n1+r)×(n1+r) such that

Υd1 =
[

In1+r+k+r 0
0 Ky

]T





−P 0 0 PA PBpΠ PBw

0 −Π 0 Cq DqpΠ Dqw

0 0 −Ir Ce DepΠ Dew

AT P CT
q CT

e −P 0 0
ΠBT

p PΠDT
qp ΠDT

ep 0 −Π 0
BT

wP DT
qw DT

ew 0 0 −γ2Im





[
In1+r+k+r 0

0 Ky

]
< 0, (62a)

Υd2 =
[Ku 0

0 In1+r+k+m

]T





−Q 0 0 AQ BpΠ
−1 Bw

0 −Π−1 0 CqQ DqpΠ
−1 Dqw

0 0 −Ir CeQDepΠ
−1 Dew

QAT QCT
q QCT

e −Q 0 0
Π−1BT

p Π−1DT
qp Π−1DT

ep 0 −Π−1 0
BT

w DT
qw DT

ew 0 0 −γ2Im





×
[Ku 0

0 In1+r+k+m

]
< 0, (62b)

In1+r = PQ, (62c)

where Ky and Ku are two matrices whose columns span the null spaces of [ Cy Dyp Dyw ] and
[

BT
u 0 0

]
,

respectively. All gains Z are given by (58) where matrices K, S1, S2 are given by (59a), (59b) and (59c).
Matrices B, C and Q are given by

[
B Q
• C

]
=





−Bu −Q 0 0 AQ BpΠ
−1 Bw

0 0 −Π−1 0 CqQ DqpΠ
−1 Dqw

0 0 0 −Ir CeQ DepΠ
−1 Dew

0 QAT QCT
q QCT

e −Q 0 0
0 Π−1BT

p Π−1DT
qp Π−1DT

ep 0 −Π−1 0
0 BT

w DT
qw DT

ew 0 0 −γ2Im

• 0 0 0 CyQDypΠ
−1 Dyw





. (63)

R1, R2 and Z are arbitrary matrices of appropriate dimensions satisfying R1 = RT
1 > 0 and ‖R2‖ < 1.

Matrices BL, BR, CL and CR are any full rank matrices such that B = BLBR and C = CLCR.

Proof. The proof is similar to that of theorem 2.

Remark 2. Notice that the constraints (57c) and (62c) are not convex. The relation is a bilinearity but
it is of different form from that of the filter derivation (see section 2.3, equation (31)). In section 2.3
we have intrinsic bilinearity (in fact it is a nonlinearity of “type Z2”) without any well-known tool for
solving it whereas in the case of the static output feedback (see equations (57c) and (62c)), there exists
some heuristic which can be applied to try to solve the bilinearity. Thus in section 4, the matrices P and
Q are obtained by using the cone complementary linearization technique El Ghaoui et al. (1997). "

4 Numerical example

In this section, we give a numerical example in the continuous-time case to illustrate our approach for
the synthesis of an unbiased robust reduced order H∞ filter for a linear system having uncertain variables
described by IQC.
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Let us consider the following uncertain linear system (see (1))

ẋ1 =




−10 1 0
2 −12 1
0 −3 −2



x1 +




0.7
−0.1
−0.5



 p1 +




0.7
−0.1
−0.5



 p2 +




0.7
−0.1
−0.5



 p3 +




0 1 0
0 0 0
4 −1 1



w (64a)

ẋ2 =
[
−4 0 −5

]
x1 + 0.5x2 + 0.7p1 + 0.8p2 + 0.3p3 +

[
2 1 0

]
w (64b)

y =
[
−2 0 1
1 1 0

]
x1 +

[
0
1

]
x2 +

[
0.1
−0.1

]
p1 +

[
0.1
−0.1

]
p2 +

[
0.1
−0.1

]
p3 +

[
1 0 0
−1 0 0

]
w (64c)

z =
[
0 1 −10
1 −1 2

]
x1 +

[
1

0.5

]
x2 (64d)

with the uncertainties pi(t) ∈ IR, i = 1, . . . , 3 (that is k1 = k2 = k3 = 1, k = k1 + k2 + k3 = 3) and
p1(t) &= p2(t) &= p3(t). A2 = 0.5 is unstable (see item (ii) of assumption 1).

To describe the effect of these uncertainties on the system (64), we take three unknown functions of
time f1(t), f2(t) and f3(t) belonging to [−1, 1], ∀t $ 0. In the nominal case, fi(t) = 0. Notice that
qi(t) = pi(t)/fi(t) (fi(t) &= 0 except for the nominal case) are fictitious outputs given by

qi = E11ix1 + E2ip + E3iw i = 1, . . . , 3. (65)

So p1(t), p2(t) and p3(t) are as follows

pi = fi (E11ix1 + E2ip + E3iw) i = 1, . . . , 3 (66)

and satisfy the admissible IQC given by (6) for i = 1, . . . , 3 where (see (4))




E111 E21 E31

E112 E22 E32

E113 E23 E33



 =





1 0.2 0.1 0.02 0.03 0.01 0.3 0.1 1

0.1 0.3 0.1 0.02 0.05 0.03 0.2 0.1 0.2

0.1 0.3 0.4 0.26 0.1 0.14 2 0.1 0.3




.

The objective is to apply theorem 2 to obtain a robust functional unbiased H∞ filter for the system
(64).

First of all, it is obvious that condition (36) is verified. Relations (57a), (57b) and (57c) are solved
using the (iterative) cone complementarity method El Ghaoui et al. (1997). After three iterations, we
get

PQ =





1 −1.244× 10−11 −1.278× 10−11 5.606× 10−11 5.777× 10−11

6.861× 10−12 1 6.726× 10−11 6.642× 10−11 −1.106× 10−10

1.013× 10−11 −1.010× 10−11 1 1.941× 10−10 6.051× 10−11

−7.385× 10−13 5.176× 10−13 4.822× 10−13 1 1.738× 10−11

1.781× 10−12 −1.135× 10−12 3.390× 10−12 −2.541× 10−11 1




,

where

P =





5.2548118 −10.986408 1.6067552 −0.0473975 −0.0806303
−10.986408 77.091606 −6.9391407 0.1738354 −0.2137849
1.6067552 −6.9391407 2.5020225 −0.0332746 0.1270482
−0.0473975 0.1738354 −0.0332746 0.0557124 −0.1848252
−0.0806303 −0.2137849 0.1270482 −0.1848252 0.8017079




,

Q =





0.3067791 0.0321291 −0.1088573 1.2064261 0.3348008
0.0321291 0.0209583 0.0373041 −0.0260725 −0.0031023
−0.1088573 0.0373041 0.5765746 −0.7274441 −0.2600759
1.2064261 −0.0260725 −0.7274441 82.421173 19.230982
0.3348008 −0.0031023 −0.2600759 19.230982 5.7548939




,

and with µ1 = 9.4, µ2 = 17.65, µ3 = 17.65 and γ = 17.3.
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Next, using relations (58), (59a), (59b), (59c) and (59d), we obtain the following gain matrix Z

Z =
[
13.106351 13.106351 29.957374 99.233803
3.3102008 3.3102008 7.5661734 25.062949

]
.

It remains to use relations (33) and (35) to deduce the filter matrices (8) which are

N =
[
−34.492857 −142.51574
−6.9317996 −35.986032

]
, J =

[
−790.76245 −717.93454
−173.13327 −161.7179

]
, E =

[
11.89537 11.89537
2.8623665 2.8623665

]
. (67)

To illustrate the behaviour of the robust reduced order H∞ filter defined by (67), f(t) is chosen as
follows

f(t) =




f1(t) 0 0

0 f2(t) 0
0 0 f3(t)



 =





α 0 0
0 −α 0

0 0
2α

2.1



 , (68)

for constant values of α ∈ [−1, 1]. Then, the maximum singular values of the transfer between the
reconstruction error e(t) and the disturbance w(t) are drawn in figure 1.

10-2 10-1 100 101 102 103 104
0

2

4

6

8

10

12

Frequency [rad/sec]
 

Figure 1: Maximum singular values of the transfer functions from w(t) to e(t) for α ∈ [−1, 1] (with an
increment of 0.2).

The maximal L2 gain of the filter defined by (67) is given by γ = 11.0775. This values is lower than
γ = 17.3 which was used during the filter synthesis. It is probably possible to solve the problem with
γ < 17.3 but there is some conservatism due to the use of the cone complementary heuristic El Ghaoui
et al. (1997).

For the simulations purpose, we use α = −1 in the uncertain case and α = 0 in the nominal one. The
disturbance w(t) is given by figure 2.
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Time [sec]

w1 −→

←− w2

←− w3

 

Figure 2: Unmeasurable perturbation w(t).

For scaling reasons, the reconstruction error e(t) obtained with the robust H∞ filter is described by
figures 3 and 4 for the uncertain system (∆ &= 0) and the nominal one (∆ = 0).

Time [sec]
 

Figure 3: Reconstruction error e(t) for the robust H∞ filter : nominal and uncertain systems.

Time [sec]

←− e1 (∆ &= 0)

←− e2 (∆ &= 0)

←− e1 (∆ = 0)

e2 (∆ = 0) −→

 

Figure 4: Zoom on the reconstruction error e(t) given in figure 3.
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5 Conclusion

A method to design a robust unbiased H∞ reduced order filter is given in this paper. The uncertainties
of the system are described by Integral Quadratic Constraints (IQC). The filter is of the same order as the
functional to be estimated. The unbiasedness of the proposed filter is obtained from the error dynamics
and permits to parameterize all the filter matrices through a single gain matrix. An additional constraint
on the filter structure is added to avoid bilinearities in the filtering error and the unbiased filter is shown
to converge despite the presence of unstable mode in the system state. Then the robust filtering problem
is transformed into a static output feedback one. So, LMI method is applied with the cone complementary
linearization heuristic to obtain the filter matrices. A numerical example is given to show the effectiveness
of the proposed approach.
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