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Abstract

We establish a generic theoretical tool to construct probabilistic bounds
for algorithms where the output is a subset of objects from an initial pool
of candidates (or more generally, a probability distribution on said pool).
This general device, dubbed “Occam’s hammer”, acts as a meta layer
when a probabilistic bound is already known on the objects of the pool
taken individually, and aims at controlling the proportion of the objects in
the set output not satisfying their individual bound. In this regard, it can
be seen as a non-trivial generalization of the “union bound with a prior”
(“Occam’s razor”), a familiar tool in learning theory. We give applica-
tions of this principle to randomized classifiers (providing an interesting
alternative approach to PAC-Bayes bounds) and multiple testing (where
it allows to retrieve exactly and extend the so-called Benjamini-Yekutieli
testing procedure).

1 Introduction

In this paper, we establish a generic theoretical tool allowing to construct prob-
abilistic bounds for algorithms which take as input some (random) data and
return as an output a set A of objects among a pool H of candidates (instead
of a single object h ∈ H in the classical setting). Here the “objects” could be
for example classifiers, functions, hypotheses. . . according to the setting. One
wishes to predict that each object h in the output set A satisfies a property
R(h, α) (where α is an ajustable level parameter); the purpose of the proba-
bilistic bound is to guarantee that the proportion of objects in A for which the
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prediction is false does not exceed a certain value, and this with a prescribed
statistical confidence 1− δ. Our setting also covers the more general case where
the algorithm returns a (data-dependent) probability density over H.

Such a wide scope can appear dubious in its generality at first and even seem
to border with abstract nonsense, so let us try to explain right away what is
the nature of our result, and pinpoint a particular example to fix ideas. The
reason we encompass such a general framework is that our result acts as a ’meta’
layer: we will pose that we already have at hand a probabilistic bound for single,
fixed elements h ∈ H. Assuming the reader is acquainted with classical learning
theory, let us consider the familiar example where H is a set of classifiers and
we observe an i.i.d. labeled sample of training data as an input. For each
fixed classifier h ∈ H, we can predict with success probability at least 1− δ the
property R(h, δ) that the generalization error of h is bounded by the training
error up to a quantity ε(δ), for example using the Chernoff bound. In the
classical setting, a learning method will return a single classifier h ∈ H. If
nothing is known about the algorithm, we have to resort to worst-case analysis,
that is, obtain a uniform bound over H; or in other terms, ensure that the
probability that the predicted properties hold for all h ∈ H is at least 1 − δ.
The simplest way to achieve this is to apply the union bound, combined with
a prior π on H (assumed to be countable in this situation) prescribing how
to distribute the failure probability δ over H. In the folklore, this is generally
referred to as Occam’s razor bound, because the quantity − log(π(h)), which can
be interpreted as a coding length for objects h ∈ H, appears in some explicit
forms of the bound.

The goal of the present work is to put forward what can be seen as an ana-
logue of the above “union bound with a prior” for the set output (or probability
output) case, which we call Occam’s hammer by remote analogy with the prin-
ciple underlying Occam’s razor bound. Occam’s hammer relies on two priors:
a complexity prior similar to the razor’s (except it can be continuous) and a
second prior over the output set size or inverse output density. We believe that
Occam’s hammer is not as immediately straightforward as the classical union
bound, and hope to show that it has potential for interesting applications. For
reasons of space, we will cut to the chase and first present Occam’s hammer
in an abstract setting in the next section (the reader should keep in mind the
classifiers example to have a concrete instance at hand) then proceed to some
applications and a discussion about tightness. A natural application field is
multiple testing, where we want to accept or reject (in the classical statistical
sense) hypotheses from a pool H; this will be developed in section 3.2. The
present work was motivated by the PASCAL theoretical challenge [1] on this
topic.
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2 Main result

2.1 Setting

Assume we have a pool of objects which is a measurable space (H, H) and observe
a random variable X (which can possibly represent an entire data sample) from
a probability space (X , X, P ). Our basic assumption is:

Assumption A: for every h ∈ H, and δ ∈ [0, 1], we have at hand a set
B(h, δ) ∈ X such that PX∼P [X ∈ B(h, δ)] ≤ δ. We call B(h, δ) “bad event at
level δ for h”. Moreover, we assume that the function (x, h, δ) ∈ X ×H×[0, 1] 7→
1{x ∈ B(h, δ)} is jointly measurable in its three variables. Finally, we assume
that for any h ∈ H we have B(h, 0) = ∅.

It should be understood that “bad events” represent regions where a cer-
tain desired property does not hold, such as the true error being larger than
the empirical error plus ε(δ) in the classification case. Note that this ’desir-
able property’ implicitly depends on the assigned confidence level 1 − δ. We
should keep in mind that as δ decreases, the set of observations satisfying the
corresponding property grows larger, but the property itself loses significance
(as is clear once again in the generalization error bound example). Of course,
the ’properties’ corresponding to δ = 0 or 1 will generally be trivial ones, i.e.
B(h, 0) ≡ ∅ and B(h, 1) ≡ X . Let us reformulate the union bound in this setting:

Proposition 1 (Abstract Occam’s razor). Let π be a prior probability dis-
tribution on H and assume (A) holds. Then

PX∼P [∃h ∈ H, X ∈ B(h, δπ({h}))] ≤ δ.

In particular, for any algorithm taking X as an input and returning hX ∈ H as
an output (in a measurable way as a function of X), we have

PX∼P [X ∈ B(hX , δπ({hX}))] ≤ δ.

Proof. In the first inequality we want to bound the probability of the event
⋃

h∈H

B(h, δπ({h})) .

Since we assumed B(h, 0) = ∅ the above union can be reduced to a countable
union over the set {h ∈ H : π({h}) > 0}. It is in particular measurable. Then,
we apply the union bound over the sets in this union. The event in the second
inequality can be written as

⋃

h∈H

({X : hX = h} ∩ B(h, δπ({h}))) .

It is measurable by the same argument as above, and a subset of the first
considered event.

Note that Occam’s razor is obviously only interesting for atomic priors, and
therefore essentially only useful for a countable object space H.

3



2.2 False prediction rate

Let us now assume that we have an algorithm taking X as an input and return-
ing as an output a subset AX ⊂ H; we assume the function (X, h) ∈ X ×H 7→
1{h ∈ AX} is bimeasurable. What we are interested in is upper bounding the
proportion of objects in AX falling in a “bad event”. Here the word ’propor-
tion’ refers to a volume ratio, where volumes are measured through a reference
measure µ on (H, H). Like in Occam’s razor, we want to allow the set level to
depend on h and possibly on AX . Here is a formal definition for this:

Definition 1 (False prediction rate). Pose assumption (A). Let a function
∆ : H × R+ → [0, 1], jointly measurable in its two parameters, be fixed, called
the level function. Let µ be a volume measure on H; we adopt the notation
|S| ≡ µ(S) for S ∈ H. We define the false prediction rate for level function ∆
as

ρ∆(X, A) =
|A ∩ {h ∈ H : X ∈ B(h, ∆(h, |A|))} |

|A|
, if |A| ∈ (0,∞);

and ρ∆(X, A) = 0, if |A| = 0 or |A| = ∞.

The name false prediction rate was chosen by reference to the notion of false
discovery rate (FDR) in the multitesting framework (see below more details in
section 3.2). We will drop the index ∆ to lighten notation when there is no
ambiguity from the context. The pointwise false discovery rate for a specific
algorithm X 7→ AX is therefore ρ(X, AX). In what follows, we will actually
upper bound the expected value EX [ρ(X, AX)] over the drawing of X . In some
cases, controlling the averaged FPR is a goal of its own right. Furthermore,
if we have a bound on EX [ρ], then we can apply straightforwardly Markov’s
inequality to obtain a confidence bound over ρ:

EX [ρ(X, AX)] ≤ γ ⇒ ρ(X, AX) ≤ γδ−1 with probability 1 − δ.

2.3 Warming up: algorithm with constant volume output

To begin with, let us consider the easier case where the set ouput given by the
algorithm has a fixed size, i.e. |AX | = a is a constant instead of being random.

Proposition 2. Suppose assumption (A) holds and that (X, h) ∈ X × H 7→
1{h ∈ AX} is bimeasurable.. Assume |AX | = µ(AX) ≡ a a.s. Let π be a
probability density function on H with respect to the measure µ. Then putting
∆(h, |A|) = min(δaπ(h), 1), it holds that

EX∼P [ρ(X, AX)] ≤ δ.
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Proof: Obviously, ∆ is bimeasurable. We then have

EX∼P [ρ(X, AX)] = EX∼P

[
a−1|AX ∩ {h ∈ H, X ∈ B(h, ∆(h, |AX |))} |

]

≤ EX∼P [| {h ∈ H : X ∈ B(h, min(δaπ(h), 1))} |] a−1

=

∫

h

PX∼P [B(h, min(δaπ(h), 1))] dµ(h)a−1

= Eh∼µ [PX∼P [B(h, δa)]] a−1

≤ δ

∫

h

π(h)dµ(h) = δ.

As a sanity check, consider a countable set H with µ the counting measure,
and an algorithm returning only singletons, AX = {hX}, so that |AX | ≡ 1.
Then in this case ρ ∈ {0, 1}, and with the above choice of ∆, we get ρ(X, {h}) =
1{X ∈ B(h, δπ(h))}. Therefore, EX [ρ(X, AX)] = PX [X ∈ B(hX , δπ(hX))] ≤ δ,
i.e., we have recovered Occam’s razor.

2.4 General case

The previous section might let us hope that ∆(h, |A|) = δ|A|π(h) would be a
suitable level function in the more general situation where the size |AX | is also
variable; but things get more involved. The observant reader might have noticed
that, in Proposition 2, the weaker assumption |AX | ≥ a a.s. is actually sufficient.
This thefore suggests the following strategy to deal with variable size of AX : (1)
consider a discretization of sizes through a decreasing sequence (ak) converging
to zero; and a prior γ on the elements of the sequence; (2) apply Proposition 2
for all k with (ak, γ(ak)δ) in place of (a, δ); (3) define ∆(h, |A|) = δπ(h)akγ(ak)
whenever |A| ∈ [ak, ak−1); then by summation over k (or, to put it differently,
the union bound) it holds that E [ρ] ≤ δ for this choice of ∆.

This is a valid approach, but we will not enter into more details concerning
it; rather, we propose what we consider to be an improved and more elegant
result below, which will additionally allow to handle the more general case where
the algorithm returns a probability distribution over H instead of just a subset.
However, we will require a slight strengthening of assumption (A):

Assumption A’: like assumption (A), but we additionaly require that for
any h ∈ H, B(h, δ) is a nondecreasing sequence of sets as a function of δ, i.e.,
B(h, δ) ⊂ B(h, δ′) for δ ≤ δ′.

The assumption of nondecreasing bad events as a function of their probability
seems quite natural and is satisfied in the applications we have in mind; in
classification for example, bounds on the true error are nonincreasing in the
parameter δ (so the set of samples where the bound is violated is nondecreasing).
We now state our main result (proof found in Appendix):

Theorem 1 (Occam’s hammer). Pose assumption (A’) satisfied. Let:
(i) µ be a nonnegative reference measure on H (the volumic measure);
(ii) π be a probability density function with respect to µ (the complexity

prior);
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(iii) γ be a probability distribution on (0, +∞) (the inverse density prior).
Put β(x) =

∫ x

0 udγ(u) for x ∈ (0, +∞). Define the level function

∆(h, θ) = min(δπ(h)β(θ−1), 1).

Then for any algorithm X 7→ θX returning a probability density θX over H with
respect to µ, and such that (X, h) 7→ θX(h) is bimeasurable, it holds that

PX∼P,h∼θX .µ [X ∈ B(h, ∆(h, θX(h)))] ≤ δ.

Comments: an algorithm returning a probability density distribution over
H is more general than an algorithm returning a set, as the latter case can be
cast into the former by considering a constant density over the set, θA(h) =
|A|−11{h ∈ A}. This specialization gives a maybe more intuitive interpretation
of the inverse density prior γ, which then actually becomes a prior on the vol-
ume of the set output. We can thus recover the case of constant set volume a of
Proposition 2 by using the above specialization and taking a Dirac distribution
for the inverse density prior, γ = δa. In particular, Occam’s razor is a spe-
cialization of Occam’s hammer (up to the minor strengthening in assumption
(A’)).

To compare with the “naive” strategy described earlier based on a size dis-
cretization sequence (ak), we get the following advantages: Occam’s hammer
also works with the more general case of a probability output; it avoids any dis-
cretization of the prior; finally, if even we take the discrete prior γ =

∑
k γkδak

in
Occam’s hammer, the level function for |A| ∈ [ak, ak−1) will be proportional to
the partial sum

∑
j≤k γjaj , instead of only the term γkak in the naive approach

(remember that the higher the level function, the better, since the corresponding
’desirable property’ is more significant for higher levels).

3 Applications

3.1 Randomized classifiers: an alternate look at PAC-

Bayes bounds

Our first application is concerned with our running example, classifiers. More
precisely, assume the observed variable is actually an i.i.d. sample S = (Xi, Yi)

n
i=1,

and H is a set of classifiers. Let E(h), resp. Ê(h, S) denote the generalization,
resp. training, error. We will consider a randomized classification algorithm,
consisting in selecting a probability density function θS on H based on the sam-
ple, then drawing a classifier at random from H using the distribution θS .µ,
where µ is here assumed to be a reference probability measure. For example, we
could return the uniform density on the set of classifiers AS ⊂ H having their
empirical error less than a (possibly data-dependent) threshold. We obtain the
following result:

Proposition 3. Let µ be a probability measure over H; for any algorithm S 7→
θS returning a probability density θS over H (wrt. µ), if hS is a randomized
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classifier drawn according to θS .µ, the following inequality holds with probability
1 − δ over the draw of S and hS:

D+(Ê(hS , S)||E(hS)) ≤
log n

δ

n
+

log+ θS(hS)

n − 1
,

where log+ is the positive part of the logarithm; and D+(q||p) = q log q
p

+ (1 −

q) log 1−q
1−p

if q < p and 0 otherwise.

Proof. Define the bad events B(h, δ) =
{

S : D+(Ê(h, S)||E(h)) ≤ log δ−1

n

}
, sat-

isfying assumption (A’) by Chernoff’s bound (see, e.g., [6]); choose π ≡ 1

and γ the probability distribution on [0, 1] having density 1
n−1x−1+ 1

n−1 , so that

β(x) = 1
n

min(x
n

n−1 , 1), and apply Occam’s hammer.

Comparison with PAC-Bayes bounds. The by now quite well-established
PAC-Bayes bounds ([8], see also [6] and references therein, and [5, 2] for recent
developments) deal with a similar setting of randomized classifiers. In these
bounds typically comes a complexity term of the form D(θS ||µ), D denoting
the KL divergence. If we forget about the positive part, the expectation of the
second term in the above bound with respect to the drawing of h is precisely
D(θS ||µ). We actually deliberately picked priors and bad events in the above
proposition in order to obtain a result that is formally as close as possible to
a tight expression of the PAC-Bayes bound given in [6], Theorem 5.1. The
similarity is striking, so that a discussion is in order.

• PAC-Bayes bounds are generally concerned with bounding the average
error Eh∼θS .µ [E(h)] of the randomized procedure. Occam’s hammer, on the
other hand, bounds directly the true error of the randomized output. In other
words, Proposition 3 appears (almost) as a pointwise version of [6], Theorem 5.1;
this is an essential difference. Pointwise results using the PAC-Bayes approach
have also appeared in recent work [2, 5]; it is not entirely clear to us however
if the methodology developed there is precise enough to recover a pointwise
version of [6], Theorem 5.1. The point of the present discussion is that, while
these different bounds have an identical behavior in an asymptotic point of view,
it is important for practice to have bounds that are as sharp as possible at finite
horizon. We believe the Occam’s hammer approach could be particularly useful
to this regard, and plan to make an extensive comparison on simulations in
future work.

• Technically, PAC-Bayes bounds more or less rely on two main ingredients:
(1) the entropy extremal inequality EP [X ] ≥ log EQ

[
eX

]
+ D(P ||Q) and (2)

inequalities on the Laplace transform of i.i.d. sums. Occam’s hammer is, in a
sense, less sophisticated since it only relies on simple set measure manipulations
and contains no exponential moment inequality argument. On the other hand,
it acts as a ’meta’ layer into which any other bound family can be plugged in.
These could be inequalities based on the Laplace transform (Chernoff method),
or not: in the above example, we could have plugged in the binomial tail inver-
sion bound (which is the most accurate deterministic bound possible for esti-
mating a Bernoulli parameter). In classical PAC-Bayes, there is no such clear
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separation between the bound and the randomization; they are intertwined in
the analysis.

We hope this short discussion is enough to convince that Occam’s hammer
and PAC-Bayes bounds, although closely related, are of a somewhat different
nature. Apparently one does not subsume the other, although we certainly
believe that the relation between the two should be explored more thoroughly
in future work.

3.2 Multiple testing: a family of “step-up” algorithms

with distribution-free FDR control

We now change gears and switch to the context of multiple testing. H is now
a set of null hypotheses concerning the distribution P . In this section we will
assume for simplicity that H is finite and the volume measure µ is the counting
measure, although this could be obviously extended. The goal is, based on
oberved data, to discover a subset of hypotheses which are predicted to be
false (or “rejected”). To have an example in mind, think of microarray data,
where we observe a small number of i.i.d. repetitions of a variable in very high
dimension d (the total number of genes), corresponding to the expression level
of said genes, and we want to find a set of genes having average expression level
bigger than some fixed threshold t. In this case, there is one null hypothesis h

per gene, namely that the average expression level for this gene is lower than t.
We assume that we already have at hand a family of tests T (X, h, α) of

level α for each individual h. That is, T (X, h, α) is a function taking values
in {0, 1} (the value 1 corresponds to “null hypothesis rejected”) such that for
all h ∈ H, for all distributions P such that h is true, PX∼P [T (h, α) = 1] ≤ α .
To apply Occam’s hammer, we suppose that the family T (h, α) is increasing,
i.e. α ≥ α′ ⇒ T (h, α) ≥ T (h, α′) . This is generally statisfied, as typically tests
have the form T (X, h, α) = 1{F (h, X) > φ(α)}, where F is some test statistic
and φ(α) is a nonincreasing threshold function (as, for example, in a one-sided
T-test).

For a fixed, but unknown, data distribution P , let us define

H0 = {h ∈ H : P satisfies hypothesis h}

the set of true null hypotheses, and H1 = H\H0 its complementary. An impor-
tant and relatively recent concept in multiple testing is that of false discovery
rate (FDR) introduced in [3]. Let A : X 7→ AX ⊂ H be a procedure returning
a set of rejected hypotheses based on the data. The FDR of such a procedure
is defined as

FDR(A) = EX∼P

[
|AX ∩H0|

|AX |

]
.

Note that, in contrast to our notion of FPR introduced in section 2.2, the FDR
is already an averaged quantity. A desirable goal is to design testing procedures
where it can be ensured that the FDR is controlled by some fixed level α. The
rationale behind this is that, in practice, one can afford that a small proportion
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of rejected hypotheses are actually true. Before this notion was introduced, in
most cases one would instead bound the probability that at least one hypothesis
was falsely rejected: this is typically achieved using the (uniform) union bound,
known as “Bonferroni’s correction” in the multitesting literature. The hope is
that, by allowing a little more slack in the acceptable error by controlling only
the FDR, one obtains less conservative testing procedures as a counterpart. We
refer the reader to [3] for a more extended discussion on these issues.

Let us now describe how Occam’s hammer can be put to use here. Let π be a
probability distribution over H, γ be a probability distribution over the integer
inteval [1 . . . |H|], and β(k) =

∑
i≤k iγ(i). Define the procedure returning the

following set of hypotheses :

A : X 7→ AX = sup {G ⊂ H : ∀h ∈ G, T (X, h, απ(h)β(|G|)) = 1} . (1)

(This type of procedure is called “step-up” and can be implemented through a
simple water-emptying type algorithm; see also the discussion below.) We have
the following property:

Proposition 4. The set of hypotheses returned by the procedure defined by (1)
has its false discovery rate bounded by π(H0)α ≤ α.

Proof. Define the collection of “bad events” B(h, δ) = {X : T (h, δ)(ω) = 1} if
h ∈ H0, and B(h, δ) = ∅ otherwise. It is an increasing family by the assumption
on the test family. Obviously, for any G ⊂ H, and any level function ∆:

G∩{h ∈ H : X ∈ B(h, ∆(h, |G|))} = G∩H0∩{h ∈ H : T (X, h, ∆(h, |G|)) = 1} ;

therefore, if G ⊂ {h ∈ H : T (X, h, ∆(h, G)) = 1}, it holds that

|G ∩ {h ∈ H : X ∈ B(h, ∆(h, |G|))} | = |G ∩H0| .

Since AX satisfies the above condition, the averaged FPR for level function ∆ co-
incides with the FDR. Define the modified prior π̃(h) = 1{h ∈ H0}π(H0)

−1π(h).
Apply Occam’s hammer with priors µ, π̃, γ and δ = π(H0)α to finish the
proof.

Interestingly, the above result specialized to the case where π is uniform
on H and γ(i) = κ−1i−1, κ =

∑
i≤|H| i

−1 results in β(i) = κ−1i, and yields

exactly what is known as the Benjamini-Yekutieli (BY) step-up procedure [4].
Unfortunately, the interest of the BY procedure is mainly theoretical, because
the more popular Benjamini-Hochberg (BH) step-up procedure [3] is generally
preferred in practice. The BH procedure is in all points similar to BY, except
the above constant κ is replaced by 1. The BH procedure was shown to result
in controlled FDR at level α if the test statistics are independent or positively
correlated [4]. In contrast, the BY procedure is distribution-free. Practitioners
usually favor the less conservative BH, although the underlying statistical as-
sumption is disputable. For example, in the interesting case of microarray data
analysis, it is reported that the amplification of genes during the process can
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be very unequal as genes “compete” for the amount of polymerase available.
A few RNA strands can “take over” early in the RT-PCR process, and, due
to the exponential reaction, can let other strands non-amplified because of a
lack of polymerase later in the process. Such an effect creates strong statisti-
cal dependencies between individual gene amplifications, in particular negative
correlations in the oberved expression levels.

This dicussion aside, we think there are several interesting added benefits in
retrieving the BY procedure via Occam’s hammer. First, in our opinion Occam’s
hammer sheds a totally new light on this kind of multi-testing procedure as the
proof method followed in [4] was different and very specific to the framework
and properties of statistical testing. Secondly, Occam’s hammer allows us to
generalize straightforwardly this procedure to an entire family by playing with
the prior π and more importantly the size prior γ. In particular, it is clear
that if something is known a priori over the expected size of the output, then
this should be taken into account in the size prior γ, possibly leading to a
more powerful testing procedure. Further, there is a significant hope that we
can improve the accuracy of the procedure by considering priors depending on
unknown quantities, but which can be suitably approximated in view of the
data, thereby folowing the general principle of “self-bounding” algorithms that
has proved to be quite powerful ([7], see also [5, 2] where this idea is used as
well under a different form, called “localization”). This is certainly an exciting
direction for future developments.

4 Tightness – the sharp edge of the hammer

It is of interest to know whether Occams’ hammer is accurate in the sense
that the bound can be achieved in some (worst case) situations. A simple
argument is that Occam’s hammer is a generalization of Occam’s razor: since
the razor is sharp [6], so is the hammer. . . This is somewhat unsatisfying since
this ignores the situation Occam’s hammer was designed for. In this section,
we address this point by imposing an (almost) arbitrary inverse density prior
ν and exhibiting an example where the bound is tight. Furthermore, in order
to represent a “realistic” situation, we want the “bad sets” B(h, α) to be of
the form {Xh > t(h, α)} where Xh is a certain real random variable associated
to h. This is consistent with situations of interest described above (confidence
intervals and hypothesis testing). We have the following result:

Proposition 5. Let H = [0, 1] with interval extremities identified (i.e. the unit
circumference circle). Let ν be a probability distribution on [0, 1], and α0 ∈ [0, 1]
be given. Put β(x) =

∫ x

0
udν(u). Assume that β is a continuous, increasing

function. Then there exists a family of real random variables (Xh)h∈H , having
identical marginal distributions P and a random subset A ⊂ [0, 1] such that, if
t(α) is the upper α-quantile of P (i.e., P (X > t(α)) = α ), then

E(Xh)

[
| {h ∈ A and Xh > t(α0β(|A|))} |

|A|

]
= α0 .
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Furthermore, P can be made equal to any arbitrary distribution without atoms.

Comments. In the proposed construction (see the proof in appendix), the
FPR is a.s. equal to α0 , and the marginal distribution of |A| is precisely ν. This
example shows that Occam’s hammer can be sharp for the type of situation it
was crafted for (set output procedures), but is not entirely satisfying for two
reasons. The first one is that the way A is constructed is somewhat artificial:
it would be more convincing if A was selected by some criterion based purely
on the observed data (Xh) . A more problematic point is that in the above
construction, we are basically oberving a single sample of (Xh) , while in most
interesting applications we have statistics based on averages of i.i.d. samples.
If we could construct an example in which (Xh) is a Gaussian process, it would
be fine, since observing an i.i.d. sample and taking the average would amount
to a variance rescaling of the original process. In the above, although we can
choose each Xh to have a marginal Gaussian distribution, the whole family
is unfortunately not jointly Gaussian (inspecting the proof, it appears that
for h 6= h′ there is a nonzero probability that Xh = Xh′ , as well as Xh 6=
Xh′ , so that (Xh, Xh′) cannot be jointly Gaussian). Finding a good sharpness
example using a Gaussian process (e.g. using some suitable modification of the
Brownian bridge process, maybe having the same covariance structure as the
above construction) is an interesting open problem.

5 Conclusion

We hope to have shown convincingly that Occam’s hammer is a powerful and
versatile theoretical device. It allows an alternate, and perhaps unexpected,
approach to PAC-Bayes type bounds, as well as to multiple testing procedures.
The fact that we retrieve exactly the BY distribution-free multitesting proce-
dure and extend it to a whole family shows that Occam’s hammer has a strong
potential for producing practically useful bounds and procedures. In particular,
a very interesting direction for future research is to include in the priors knowl-
edge about the typical behavior of the output set size. At any rate, a significant
feat of Occam’s hammer is to provide a strong first bridging between the worlds
of learning theory and multiple hypothesis testing.

Finally, we want to underline once again that, like Occam’s razor, Occam’s
hammer is a meta device that can apply on top of other bounds. This feature
is particularly nice and leads us to expect that this tool will prove to have
meaningful uses for other applications.

6 Appendix – proofs

Proof of Theorem 1. The proof of Occam’s hammer is in essence an inte-
gration by parts argument, where the “parts” are level sets over X ×H of the
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output density θX(h). We have

PX∼P,h∼θX.µ [1{X ∈ B(h, ∆(h, θX(h)))}]

=

∫

(X,h)

1{X ∈ B(h, ∆(h, θX(h)))}θX(h)dµ(h)dP (X)

=

∫

(X,h)

1{X ∈ B(h, ∆(h, θX(h)))}

∫

y>0

y−21{y ≥ θX(h)−1}dydP (X)dµ(h)

=

∫

y>0

y−2

∫

(X,h)

1{X ∈ B(h, ∆(h, θX(h)))}1{θX(h) ≥ y−1}dP (X)dµ(h)dy

≤

∫

y>0

y−2

∫

(X,h)

1{X ∈ B(h, ∆(h, y−1))}dP (x)dµ(h)dy

=

∫

y>0

y−2

∫

h

PX∼P [B(h, min(δπ(h)β(y), 1))] dµ(h)dy

≤

∫ ∞

y=0

y−2δβ(y)

∫

h

π(h)dµ(h)dy

= δ

∫

y>0

∫

u>0

1{u ≤ y}y−2udydγ(u) = δ

∫

u>0

dγ(u) = δ .

For the first inequality, we have used assumption (A’) that B(h, δ) is an increas-
ing family and the fact ∆(h, θ) is a nonincreasing function in θ (since β is an
nondecreasing function). In the second inequality we have used the assumption
on the probability of bad events.

Proof of Proposition 5. Let ν and α0 be fixed. We will construct explicitly
the family (Xh)h∈H . First, let us denote Q the image probability distribution
on [0, α0] of ν by the linear rescaling x 7→ α0x . Now, let x be a random variable
uniformly distributed in [0, 1] and u an independent variable with distribution
Q . We now define the family (Xh) given (x, u) the following way:

Xh =

{
G(u) if h ∈ [x, x + u] ,

Y otherwise,

where G(u) is an increasing real function [0, 1] → [T, +∞) , and Y is a random
variable independent of (x, u) , and with values in (−∞, T ] . We will show that it
is possible to choose G, Y, T to satisfy the claim of the proposition. In the above
construction, remember that since we are working on the circle, the interval
[x, x + u] should be “wrapped around” if x + u > 1 .

First, let us compute explicitly the quantile t(α) of Xh for α ≤ α0 . We have
assumed that Y < T a.s., so that for any h ∈ H , t ≥ T ,

P [Xh > t] = Eu [P [Xh > t|u]] = Eu [P [G(u) > t ; h ∈ [x, x + u]|u]]

=

∫ G−1(t)

0

udQ(u) = α0β(α−1
0 G−1(t)) .
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Setting the above quantity equal to α , entails that t(α) = G(α0β
−1(α−1

0 α)) .

Now, let us choose A = [x, x + α−1
0 u] . Then |A| = α−1

0 u , hence

t(α0β(|A|)) = G(α0β
−1(α−1

0 α0β(α−1
0 u))) = G(u) .

This entails that we have precisely A ∩ {h : Xh > t(α0(β(|A|)))} = [x, x + u] ,
so that | {h ∈ A and Xh > t(α0β(|A|)} | |A|−1 = α0 a.s. Finally, if we want a
prescribed marginal distribution P for Xh, we can take T as the upper α0-
quantile of P , Y a variable with distribution the conditional of P (x) given
x < T , and, since β is continuous increasing, we can choose G so that t(α)
matches the upper quantiles of P for α ≤ α0 .
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