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SUMMARY 

 

This paper presents an analytical frequency-domain method for harmonics modeling and evaluation in 

power electronic systems. The considered system is described by a set of differential equations, which 

are converted in the frequency domain and presented in a matrix form. Indeed, currents and voltages 

are described in terms of Fourier series and arranged in a vector form. The passive elements and the 

switching functions are then represented by harmonic transfer matrices. The resolution of the matrix 

equations leads to theoretical time and frequency expressions of the system voltages and currents. 

This method is applied to a closed-loop three phase AC/DC/AC PWM converter. The control loop of the 

converter is modeled by additional equations. The spectra of the switching functions, necessary to build 

the corresponding harmonic transfer matrices, are calculated through a double Fourier series 

decomposition. The matrix equations are solved and the results are compared to those obtained by real 

measurements and Matlab/Simulink simulations. 

 

Key words: power system harmonics, power electronic, linear time periodic modeling, PWM, control system   

 

1. INTRODUCTION 
 

The wide spread use of power electronic devices in power networks is due to their multiple functions: 

compensation, protection and interface for generators. Adapting and transforming the electric energy, 

they make possible the insertion in the power network of independent generators and renewable 

sources of energy. However, because of their switching components, power electronic converters 

generate current and voltage harmonics which may cause measurements, stability and control 

problems. 
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In order to avoid this kind of harmonic disturbances, a good knowledge on the harmonic generation 

and propagation is necessary. A better understanding of the harmonic transfer mechanisms could make 

the harmonic attenuation more efficient, optimizing filters and improving power electronic control. 

The harmonic study can be effectuated in the time domain or in the frequency domain. In the time 

domain, currents and voltages spectra are obtained by application of Fourier transform. This domain 

can not give an analytical harmonic solution for the considered system and the relations between 

harmonics can not be expressed.  

In the frequency domain, several methods for power network harmonic analysis exist [1]. The simplest 

consists to model the network presenting power electronic devices by known sources of harmonic 

currents. Another method presents converters by their Norton equivalent. 

These two methods are the most often used in the network harmonic analysis. They are simple, but not 

accurate, because they do not take into account the dynamics of the switching components. 

More precise models designed for the power electronic devices exist. Such a model is the transfer 

function model, which links the converter state variables by matrix equations. Another method 

proposed in [2] describes the converter by a set of nonlinear equations solved by Newton’s method. 

These models have a good accuracy, but because of their complexity they can not be applied to 

systems containing multiple converters.  

For an accurate network harmonic analysis, a simple and efficient method taking into account the 

harmonics induced by the switching process is required. 

The method proposed in this paper uses the periodicity of the converter variables in steady state in 

order to put them in a matrix form in the frequency domain. Previous researches in this area have been 

already made. In [3], the models of power electronic structures are built using harmonic transfer 

matrices and are implemented in Matlab/Simulink. This method is especially used for stability analysis 

and for that reason data are simplified and high frequencies are neglected. In [4], a method using the 

periodicity of the variables is presented, but it only gives a numerical solution and it is not applied in 

the case of switching circuits and network analysis. Both previous methods do not give analytical 

expressions of the harmonics. 

In this paper the presented method describes the considered system by differential equations, which are 

then converted in the frequency domain. Being periodic signals, currents and voltages are described in 

terms of Fourier series and then by vectors of harmonics. The passive elements and the switching 
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functions are described by matrices. The resolution of the matrix equations gives time and frequency 

expressions of voltages and currents. 

This paper is organized as follows: Section 2 describes the harmonic transfer via the different 

components of power electronic systems. The method for harmonics assessment is described in 

Section 3 and illustrated with a simple example. In section 4 the method is applied to a closed-loop 

three phase PWM AC/DC/AC converter. The obtained results are confirmed by real measurements 

and simulation in Section 5. 

 

2. HARMONIC TRANSFER VIA PASSIVE AND SWITCHING ELEMENTS 

Power electronic systems can be considered as combination of switching and passive components. In 

this section the harmonic propagation through these elements is analysed and the necessity of their 

matrix representation is demonstrated. 

When building the harmonic transfer matrices, some assumptions are made: the switching and the 

passive components are supposed ideal, the considered system is supposed to be in steady state and 

periodically time-variant. 

2.1 Harmonic transfer matrix throughout switching elements  

For the simple switching process presented in Fig.1, the relation between ac and dc currents )(tiac  and 

( )
dc

i t  is given by: 

)()()( tituti acdc  ,             (1) 

where )(tiac  is supposed iT -periodic (periodic with period of iT  seconds) and the switching function 

)(tu  is uT -periodic with ui NTT  . In the following, N  is an integer so that )(tu  can be also considered 

as iT -periodic. 

iac

idc

iac

idc

 

Figure 1: a simple switching process 
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Therefore, the previous signals can be decomposed in Fourier series as a function of the same 

fundamental frequency 
i

T

1
 and Eq. (1) finally becomes: 
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where 
i

i
T




2
 , and 1

( ) i

i

jk t

k

i T

x x t e dt
T


     is the k

th
 harmonic component of the iT -periodic 

signal )(tx . 

Eq. (2) shows that )(tidc  can be viewed as a iT  periodic signal with the following Fourier coefficients: 









n

nacnkkdc
iui

.             (3) 

By using this relation, Eq. (2) can also be written in a matrix form as follows: 
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or with a shorter notation: 

  acdc IUI ][ .              (5) 

The matrix [U] is called the “harmonic transfer matrix” of the considered switching elements. It only 

depends on the Fourier coefficients of the switching function u(t), and follows a Toeplitz structure, 

which means that its elements situated on the same diagonal are equal. 

2.2 Harmonic transfer matrix for passive elements 

For passive elements, for example a capacitor, the relation between current and voltage harmonics is 

given by the formulae:  

k
k

k

k vCjk
dt

vd
C

dt

dv
Ci

dt

dv
Ci 


  .         (6) 

As the system is considered in its steady state, the harmonics do not vary with time, which implies the 

following simplification: 

kk
k

k vCjki
dt

vd
constv 


 0 ,         (7) 
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and the relation between the voltage and current harmonics can be expressed in the following matrix 

form: 
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Analogically, harmonic transfer matrices through an inductor and a resistor can be expressed by matrix 

Eq. (9) and (10) respectively. 
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This shows that transfer matrices of passive elements have a diagonal structure. 

The matrix form used here to represent the transfer function of passive components has to be used in 

order to describe the whole considered system because of the presence of switching components. 

 

3. METHOD FOR HARMONICS EVALUATION 

In this section, the method for harmonics evaluation is presented in details and applied to a simple 

converter structure in order to illustrate its properties. 

3.1 Algorithm 

The method is composed of the following steps [5,6]: 

- The considered converter structure is described by differential equations. The equations number 

depends on the number of inductances and capacitors in the system. 
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- The differential equations are converted in the frequency domain and represented in a matrix 

form. Currents and voltages are represented by vectors of harmonics, passive elements become 

matrices with diagonal structure, and the switching functions become matrices with Toeplitz 

structure. 

- The matrix equations are solved in the frequency domain, and the frequency expression of the 

currents and voltages is obtained. Their time expression can also be deduced by Fourier series. 

3.2 Example 

In order to be better illustrated, the previous method is applied to the simple converter structure 

described in Fig. 2 and containing both passive and switching elements. 

 

Figure 2: a simple converter structure 

The matrix equations describing the considered system are: 

    

    

       
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




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dcacac

dcac

dcdc

VUVIL

IUI

VCI

, where         (11) 

 C  and  L  are the capacitor and the inductor diagonal matrices, 

 U  is the switching function matrix with a Toeplitz structure, 

 dcV ,  acV ,  dcI  et  acI  are vectors containing the harmonics of the corresponding state variables. 

A problem which may occur in this case is the non inversibility of the matrices corresponding to the 

inductor and the capacitor when the dc component (harmonic of rang 0) is taken into account. 

Fortunately, the inversion of these matrices can be avoided by simple mathematical permutations. The 

solution of the matrix equations avoiding the inversion of the capacitor and inductor matrices is in this 

case: 
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It can be noted that this method directly leads to an analytical solution of the harmonics of the different 

electrical quantities. For this reason, this frequency domain method can be considered as more 

accurate and rapid than the time domain one, where time waveforms of the state variables are first 

obtained, and then corresponding spectra are deduced. Another advantage of this method is that the 

harmonics analytical expression can be used to increase the efficiency in harmonics reduction and 

elimination. 

 

 

4. APPLICATION OF THE METHOD TO AN AC/DC/AC CONVERTER 

In order to completely illustrate the previous method, the model of a closed-loop AC/DC/AC PWM 

converter is elaborated. The considered structure is chosen because of its complexity and its wide 

spread use as power interface. The considered system is composed of two converters having the same 

structure (see Fig. 3), so that the application of the method is presented only for the AC/DC converter. 

The method can be analogically applied to the whole converter structure by using similar equations for 

the second converter. 

 

 

 

 

 

 

Figure 3: AC/DC/AC three phase converter used as power interface 

 

 

4.1 Modeling the AC/DC PWM converter 

The method is first applied to the AC/DC converter described in Fig.4, where the DC/AC converter of 

Fig.3 has been replaced by a resistor.  
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Figure 4: AC/DC converter 

By supposing switching components, passive elements, and network voltage as ideal, the converter can 

be described by the set of following differential equations: 
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where )(tu i
 is the switching function of the th

i  converter leg: 








1

1
)(tu i

.            (14) 

In steady state, these equations can be converted in the frequency-domain and presented in the 

following matrix form: 
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The state variables are represented by a set of vectors of harmonics, and the system parameters by 

matrices as described in the previous section: 

  3,2,1......][
21012




kIIIIII
T

kkkkkk
 

 Tdcdcdcdcdcdc VVVVVV ......][
21012 

  

R
1

R
2

R
3

L
1

L
2

L
3

E
2

E
3

E
1

C R
V

dc

i
1

i
2

i
3

i
dc

R
1

R
2

R
3

L
1

L
2

L
3

E
2

E
3

E
1

C R
V

dc

i
1

i
2

i
3

i
dc



 9 
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where ][H  is a vector containing the ranks of the harmonics: 

 ...21012...][ H .         (17) 

Matrices ][ 1U , ][ 2U  and ][
3

U  contain the Fourier coefficients of the different switching functions: 
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These Fourier coefficients are obtained by using Fourier series decomposition in the case of periodic 

switching function (for example full-wave converters). In the case of PWM converters, the switching 

function is not exactly periodic, but it can be represented as a two-dimensional function of the career 

and the reference waveforms, which are periodic. Therefore, the Fourier coefficients can be obtained 

through a double Fourier series decomposition. For example, the switching function of a naturally 

sampled PWM is given by [7]: 
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where 

M  is the magnitude of the modulating signal, 

 and 
c c

   are the carrier pulsation and phase, 

 and   are the fundamental pulsation and phase, 

 
n

J  is the Bessel function of order n. 

By supposing that the career frequency 
c

  is an integer multiple of the fundamental frequency  , the 

Fourier coefficients of ( )
i

u t  can be easily determined from Eq. (19). 

4.2 Control modeling 

In open loop, the magnitude M  and phase   of the modulating signal used for the calculation of the 

Fourier coefficients of the switching function are known and constant. In closed loop these two 

parameters are used to control the magnitudes of the converter state variables, usually the ac current. 

For that reason they are not fixed, but depend on the real and the desired (reference) values of the 

controlled state variables. 
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In this section the impact of the control system is taken into account by calculating the phase and 

magnitude of the modulating signal. In the proposed algorithm, the converter Eq. (13) are first solved 

for the fundamental frequency, and the fundamental of the switching function is found by replacing the 

converter state variables by their reference values. The modulating signal parameters are found using 

the fact that the modulating signal is the fundamental of the switching function. By knowing M  and   

the real switching function can be calculated and the method for harmonics estimation presented in 

Section 3 can be applied. The described algorithm is given in details in this section.  

The converter state variables and switching functions are supposed symmetrical, only the fundamental 

component is taken into account: 
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The passive elements in the three phase are considered as equal: 

k

k

RRRR

LLLL






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321

321            (21) 

By using (20) and (21), only one phase of the converter can be considered. Then, Eq. (13) become: 
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The converter variables and switching function are transformed in the dq0 frame in order to make 

them appear as constant: 
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Equations (22) transformed in the dq0 frame become: 
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The magnitudes of the state variables are constant in the dq0 frame, so that their derivatives are equal 

to zero: 

0
dt

did   0
dt

diq   0
dt

dV dc         (25) 

By supposing the ac current equal to its reference value (the PI controllers are ideal), the d  and q  

components of the switching functions can be found.  
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From the obtained values of 
d

u  and q
u , the fundamental magnitude and phase of the switching 

function are then calculated: 
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           (27) 

4.3 Application of the method to the whole converter structure 

The resistor of Fig.4 is replaced by DC/AC converter. Similar equations are used to describe the whole 

system. The converter structure is connected to the grid and a resistor is used as load. The PWM 

frequency is 2kHz. The obtained results are compared with those obtained by measurements and 

simulation, and are presented in the following section. 

 

5. SIMULATION AND PRACTICAL RESULTS 
 

The results obtained from the theoretical method, the Matlab/Simulink simulation, and the 

experimental bench are compared in this section. 

5.1 Theoretical method 

The matrix equations describing the converter and its control system are implemented. The switching 

functions and the known state variables as the input voltage are decomposed in Fourier series and the 

corresponding harmonic transfer matrices and vectors are built. The resolution of the matrix system 

equations leads to the frequency expression of the converter state variables, and the corresponding 
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time waveforms can be eventually determined by inverse Fourier transform. The calculation time 

depends on the number of harmonics considered in the different signals. 

5.2 Matlab/Simulink simulation 

A model of the converter based on its differential equations is implemented under Matlab/Simulink. 

The obtained results are in the time domain and a Fourier transformation is used to obtain the currents 

and voltages spectra. 

5.3 Experimental bench 

The experimental bench is presented in Fig. 5 and its structure in Fig. 6. The network voltage is 

adapted through autotransformers.  
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Figure 5: Experimental bench Figure 6: Experimental bench description 

5.4 Results 

Theoretical results are compared to those obtained by measurements and Matlab/Simulink simulations. 

In Fig. 7, the spectrum of the ac current from the network side is shown between 1500 and 6500 Hz 

(around PWM harmonics). In the three cases, the harmonics are situated at the same frequencies and 

have almost the same magnitudes. The small differences are due to the assumptions used in our 

method, the simulation errors, and the disturbances in the real system (non-ideal components, noises, 

etc.). The results obtained for the dc voltage and the ac current from the load side are quite similar. 
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Figure 7: AC current spectrum from the network side; theoretical, simulation, and experimental results 

 

6. CONCLUSION 

A new analytical frequency-domain method for harmonics modeling and evaluation in power electronic 

systems has been presented in this paper. The considered system is described by a set of differential equations, 

which are converted in the frequency domain and presented in a matrix form. The resolution of these matrix 

equations leads to theoretical expressions of the different voltages and currents. It can be noted that this 

method is designed for power systems with periodically switching components, and leads to an 

analytical expression of the different electrical quantities, which is one of its main advantages. Indeed, 

this allows to determine the influence of the system parameters (control strategy, passive elements, 

etc.) on the harmonic contents of the converter state variables. It can be successfully applied for power 

quality assesment, harmonic filters optimisation and converter control design. 

 

7. LIST OF SYMBOLS 

aci , acI   Alternative current 

dci , acI   Direct current 

L   Inductance 

M   Magnitude of the modulating signal 

R   Resistor 

C   Capacitor 

u , U    Switching function of one leg 

v   Voltage 
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acV   Alternative voltage 

dcV   Direct voltage 

   Fundamental pulsation   

c   Carrier pulsation 

    Fundamental phase  

c   Carrier phase 
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