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Abstract

In this paper, we present the estimation of Poisson intensity based on hypothesis testing in the wavelet domain

for any dimensional data. The testing framework for wavelet-based Poisson intensity estimation was first introduced

by Kolaczyk, where a thresholding estimator, which realizes the hypothesis testing, is derived for Haar wavelet

coefficients. Here we propose for the same wavelet a new thresholding estimator which is based on Fisher’s normal

approximation. Furthermore, we have demonstrated that non-normalized biorthogonal Haar coefficients converge in

distribution to non-normalized Haar coefficients as the scale increases. This allows us to directly apply the threshold

in the biorthogonal Haar domain. Therefore we gain, by usingthis more regular wavelet, a reconstruction with less

artifacts. Simulations show that on a wide range of intensity types, the proposed threshold combined with undecimated

biorthogonal Haar transform gives one of the best estimation result compared with existing estimators of various kinds.

Finally, potential applicability of our approach is illustrated on astronomical data.

Index Terms

Poisson intensity estimation, wavelet hypothesis testing, Fisher approximation, biorthogonal Haar wavelets

I. I NTRODUCTION

The ability to restore the underlying intensity from an inhomogeneous Poisson process is crucial for many

applications. We observe a discrete signal of countsv = (vi)i∈I whereI is the index set. Each countvi can be

thought of as coming independently from a Poisson distribution with a meanλi

vi ∼ P(λi)

We can then decompose the observed countvi into two parts, i.e.

vi = λi + bi, i ∈ I

wherebi is the Poisson noise, and the mean vectorΛ = (λi)i∈I is the source intensity which needs to be estimated

from v.

A host of estimation methods have been proposed in the literature. A common solution is to use a variance stabi-

lizing transform (VST), which “Gaussianizes” the Poisson noise before applying the standard wavelet thresholding

denoising [1][2] on the transformed signal. For example, Donoho [3] and Fryźlewicz and Nason [4] proposed

respectively the Anscombe transform [5] and the Fisz transform [6]. Rather than using a nonlinear VST, direct

wavelet filtering has been studied by Nowak and Baraniuk [7] and Antoniadis and Sapatinas [8]. The latter concerns

actually a wider distribution family, but it is essentiallyequivalent to the former in the Poisson case. The resulting

filter can be considered as a data-adaptive wavelet domain Wiener filter. The state-of-the-art methods are Bayesian

approaches [9][10][11][12] as reported by Besbeas et al. [13]. In effect a great part of above approaches are based on

Haar wavelet transform until recently, Jansen [14] introduced conditional variance stabilization, which generalizes

the idea of [4] and is applicable to any family of wavelet transforms. A Bayesian scheme was also derived within

this framework, which can be deemed as an extension of [9][10] and [11]. Other technique as maximum penalized
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likelihood estimation [15][16] can also be considered Bayesian, since the penalization term implicitly introduces a

certain prior on the underlying intensity. In general, Bayesian methods outperform (cf. [13]) those of direct wavelet

filtering [7][8]. However Bayesian approaches require having enough “useful signals” in the observations in order to

well fit the prior (usually by estimating prior parameters).For wavelet-based Bayesian estimation, “useful signals”

are those significant wavelet coefficients. In the low-intensity case where we generally lack such “useful signals”,

the final estimation can suffer from a large bias produced by aimproperly fitted model.

Another previous important contribution to this field is thewavelet-domain hypothesis testing framework first

introduced by Kolaczyk [17][18]. Thresholds based on user-specified false detection rate are derived for Haar

coefficients both in the constant and model-based background situations. It is then found out that universal thresholds

are also available in the above two cases [18][19]. Always inthe same framework, Kolaczyk [20] proposed the

Poisson-corrected version of the Gaussian-based threshold for any wavelet. But the asymptotic approximation used

in [20] may not allow reasonable threshold solution in a verylow-intensity setting.

In this paper, we adopt the same hypothesis testing framework as used in [17][20][18]. This approach is non-

parametric (model-free) where a binary hypothesis testingprocedure, which is based on the calculation of the

p-value of the wavelet coefficient, is applied on each coefficient. This testing procedure is actually realized by a

hard thresholding estimator. The coefficients with values bounded by the upper and lower thresholds are considered

insignificant and are thresholded to zero, while significantones are kept intact. The main advantage of this method

is that the user can control the false positive rate in a coefficient-by-coefficient manner. Global statistical error

rates could also be controlled if multi-test scheme is applied, such as Bonferroni correction [21] to control the

Family-Wise Error Rate (FWER) and Benjamini-Hochberg’s procedure [22][23] to control the False Discovery

Rate (FDR).

The contribution of this paper is threefold. First, we propose a new estimator for the testing procedure in the

Haar domain, which is based on Fisher’s normal approximation [24] and results in a higher sensitivity level than

Kolaczyk’s threshold [17][18]. The universal threshold isalso available, serving as a default choice. Second, unlike

Kolaczyk’s threshold, which requires prior background intensity and is only scale-dependent, our threshold estimates

local background from the observations and it depends on both wavelet scale and location. Third, toward the goal

of preserving the regularity of reconstructed data, which is of paramount importance for many applications, we

propose to apply the same threshold in the biorthogonal Haar(Bi-Haar) domain instead of in the classical Haar

domain. To justify this, we formally prove that non-normalized Bi-Haar coefficients converge in distribution to non-

normalized Haar coefficients as the scale increases for any dimensional data. We will see, from the experiments,

that the modified threshold combined with biorthogonal transform offers one of the best results compared with

other estimators.

The paper is organized as follows. We first review in Section II the hypothesis testing framework in the wavelet

domain. After presenting the original Kolaczyk’s threshold in Section II-A.1, our threshold is derived in Section II-

A.2. In Section III-A, we reveal the approximation propertybetween non-normalized Bi-Haar coefficients and those

of Haar. The entire estimation procedure is summarized in Section III-B and the results are shown in Section IV.
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Finally, a discussion is presented and some concluding remarks are drawn in Section V. The proofs of theoretical

results are deferred to the appendices.

II. H YPOTHESIS TESTING IN THE WAVELET DOMAIN

The thresholding estimator in the wavelet domain will be derived in a binary hypothesis testing framework. To

accomplish this denoising task, we need the information of the background emission rate in the data. In our case,

we will assume this background intensity to be locally constant (at least in the wavelet support). We will see that

this local intensity can be estimated from the approximation coefficients. It can also be obtained if the user knows

a priori the background rate. In any case, we can define respectively the null hypothesisH0 and the alternative

hypothesisH1 for each wavelet coefficientw

H0 : w is consistent with the background;

H1 : w is inconsistent with the background.

This means that ifw is judged to be consistent with the background (H0 accepted),w should be replaced by the

value obtained by computing a wavelet transform of the background without noise. As any wavelet has a zero

mean and due to the local-constancy hypothesis of the background rate,w should be set to zero ifH0 is true. In

other words, a non-zero value ofw when the null hypothesis is true means that this value must uniquely due to

the fluctuations of the counting statistics. Reversely, an observed coefficient verifyingH1 will be kept intact, since

it contains the information that reflects the variation of the underlying intensity.

We will use the conventional notation for a wavelet coefficient, i.e. the capital letterW denotes the random

variable while the lower-casew stands for the observed value.

A. Individual hypothesis testing (IHT)

After the wavelet transform, the IHT is carried out in a coefficient-by-coefficient manner. The user is supposed

to specify a false detection rate (false positive or type-I error rate) in the wavelet domain, i.e.p, meaning that the

probability that anH0 coefficient is misclassified toH1 will be upper bounded byp

E

(

N reject
H0

NH0

)

≤ p (1)

whereN reject
H0

is the number of coefficients verifyingH0 but rejected (false positives) andNH0
is the total number

of H0 coefficients. The lower and upper decision thresholds,tmin and tmax, are derived respectively from the

tail probabilitiesPr(W ≤ tmin|H0) ≤ p/2 and Pr(W ≥ tmax|H0) ≤ p/2. Then for any observedw verifying

w ≥ tmax or w ≤ tmin, w is deemed significant and will be classified toH1. Otherwise it is decided insignificant

and will be classified toH0.

For a general wavelet, the analytical form of the distribution of the wavelet coefficient conditioning onH0 of

a Poisson process has been derived in [25]. This implies thattheoretically, the hypothesis testing can be applied

on any wavelet transform. However, this model requires the computation of the auto-convolution of the normalized

wavelet histogram, which has to be evaluated numerically inpractice and this calculation can be very heavy. So
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we will seek a simple wavelet function that can result in a distribution having wieldy analytical form, and that

motivates us to use the Haar wavelet. In this case, the distribution has a closed-form expression [26][27]

pW (W = n;λ) = e−λIn(λ)

where the Haar coefficientW is the difference of two i.i.d. Poisson variablesW = X1 −X2, X1, X2 ∼ P(λ/2), λ

is the constant average counts in the dilated wavelet support andIn(·) is the modified Bessel function of the first

kind. For negative values ofW , pW can be obtained by symmetry since the distribution of Haar coefficient under

H0 is non-skewed. The tail probability is given by [28]

Pr(W ≥ n;λ) = Pr
(

χ2
(2n)(λ) < λ

)

, n ≥ 1 (2)

where χ2
(f)(∆) is the non-central chi-square distribution withf degrees of freedom and∆ as non-centrality

parameter.

1) Kolaczyk’s CLT-based threshold [17][20][18]:We first denote the low-pass filter of the discrete Haar transform

as h = 2−c[1, 1] and the corresponding high-pass filter asg = 2−c[−1, 1], where2−c(c ≥ 0) corresponds to a

certain normalization. The background intensity isλB , which is assumed constant and known in Kolaczyk’s constant

background model. The data dimension is denoted asd and the current scale index isj (j ≥ 1). We can see that

every Haar coefficient (of any band) at the scalej is in the form ofWj = 2−cjd(X1 − X2), whereX1 andX2

are independent Poisson random variables. More specifically, X1 andX2 are both the sum of2jd−1 independent

Poisson random variables. IfWj verifiesH0, we will haveE(X1) = E(X2) = λj/2 whereλj = 2jdλB . We want

to determine a thresholdtj > 0 such thatPr(Wj ≥ tj |H0) = p/2, or Pr(|Wj | ≥ tj |H0) = p since the distribution

of Wj is symmetric about zero. From (2), which corresponds to the casec = 0, we can easily deduce that

Pr(Wj ≥ tj|H0) = Pr
(

χ2
(2mj)

(λj) < λj

)

(3)

wheremj = 2cjdtj .

Then two stages of approximation are used

Pr
(

χ2
(2mj)

(λj) < λj

)

≈ Pr(αχ2
(f) < λj) (4)

≈ Pr

(

Z >
f − λj/α√

2f

)

(5)

whereα = (2mj +2λj)/(2mj +λj), f = (2mj +λj)
2/(2mj +2λj) , χ2

(v) is a central chi-square random variable

andZ ∼ N (0, 1) is the standard normal distribution. The first approximation (4) is due to Patnaik [29] where

the non-central chi-square distribution in (3) is approximated by a central one. The second (5) comes from the

central limit theorem (CLT). Therefore in the sequel, the corresponding threshold will be called CLT-based (CLTB)

threshold.

A simple calculation from the equationf−λj/α√
2f

= zp/2 shows that the unique threshold solution is

tj = 2−cjd−1
(

z2
p/2 +

√

z4
p/2 + 4 · λjz2

p/2

)

(6)
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where zp/2 is the critical value of the standard normal distribution atthe significance levelp/2, i.e. zp/2 =

Φ−1(1−p/2), whereΦ is the standard normal cumulative distribution function. Now the universal threshold can be

obtained by settingzp/2 =
√

2 lnNj in (6) whereNj is the number of Haar coefficients of one band at the scale

j. This is a direct consequence of the well known fact in extreme value theory (cf. [30]) that forn independent

standard normal variables(Xi)i=1,...,n, we havePr(max1≤i≤n |Xi| >
√

2 lnn) → 0 as n → ∞. Unlike the

universal threshold in the Gaussian case [1], only band-dependent version can be expected in the Poisson case,

since the inter-band wavelet coefficients are not independent.

2) Proposed threshold:Kolaczyk’s method assume a global constant background intensity λB . Therefore this

method is only well adapted to burst-like intensities characterized by occasional peaks on an almost flat re-

gion [17][19]. In addition, prior information onλB is not always available in practice. One straightforward way

to generalize the above threshold to non-constant background situation without using a prior background model, is

to estimate the local background from the observations and derive a threshold depending both on the scalej and

on the locationk. Charles and Rasson [19] introduced a preprocessing step todo this. The observation interval

is first segmented in a way that the counts are almost stationary in each subinterval. Then follows the subinterval

background estimation. This preprocessing is actually based on the tests of synthetic data. In our case, due to the

local constancy hypothesis, we must estimate the local intensity λj,k in the support of the wavelet generating the

coefficientWj,k = 2−cjd(X1 − X2), X1, X2 ∼ P(λj,k/2). Instead of using a preprocessing,λj,k can be easily

estimated from approximation coefficients (cf. Section II-B). Thus, the background estimation and the thresholding

are essentially combined in a seamless way in our entire algorithm (cf. Section III-B). In the following,λj,k is

assumed to be already estimated.

In the two approximations (4) and (5), the former has been shown to be very accurate even in a low-intensity

setting [31]. But the convergence rate of the latter (CLT) isknown to be low (also true for the method of Charles

and Rasson [19] since the same approximation is used). A widely-known faster version is given by Fisher [24]
√

2χ2
(f) → N (

√

2f − 1, 1), f → ∞ (7)

From the same derivation as above, we should change the equation (5) to

Pr
(

αχ2
(f) < λj,k

)

≈ Pr

(

Z >
√

2f − 1 −
√

2λj,k

α

)

(8)

whereα = (2mj,k + 2λj,k)/(2mj,k + λj,k), f = (2mj,k + λj,k)2/(2mj,k + 2λj,k) andmj,k = 2cjdtj,k.

Let’s denote

G(mj,k) :=
√

2f − 1 −
√

2λj,k

α

=

√

(2mj,k + λj,k)2

mj,k + λj,k
− 1 −

√

λj,k(2mj,k + λj,k)

mj,k + λj,k
(9)

Therefore, it remains to solve the equationG(mj,k) = zp/2, to obtain the new Fisher approximation-based (FAB)

threshold. A direct algebraic rearrangement shows thatmj,k necessarily satisfies the following quartic polynomial
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equation

16m4
j,k +

[

16λj,k − 8(z2
p/2 + 1)

]

m3
j,k +

[

(z2
p/2 + 1)2 − (20z2

p/2 + 12)λj,k + 4λ2
j,k

]

m2
j,k +

[

2(z2
p/2 + 1)2λj,k − 16z2

p/2λ
2
j,k − 4λ2

j,k

]

mj,k +

(z2
p/2 + 1)2λ2

j,k − 4z2
p/2λ

3
j,k = 0 (10)

The final FAB thresholdtj,k is obtained from the solution ofmj,k. A closed-form expression formj,k is certainly

too complicated to write out from (10). Fortunately, according to the following results, we don’t even need such

an expression.

Fact 1: The feasible condition is

mj,k ≥ 1

8

[

z2
p/2 − 2λj,k + 1 +

√

z4
p/2 + (12λj,k + 2)z2

p/2 + 4λ2
j,k + 12λj,k + 1

]

(11)

Proposition 1: The feasible solution for FAB threshold exists and is unique.

The feasible condition (11) and the uniqueness of the feasible solution imply that we can use any numerical routine

that solves quartic polynomial equations, e.g. Hacke’s method [32]. Then the four solutions of (10) will be tested

by the condition (11) and there will be one and only one winner. The universal threshold can also be obtained

by solving (10) wherezp/2 =
√

2 lnNj . We refer the reader to Appendix II for the proofs of Fact 1 andof

Proposition 1.

To have an idea of the refinement achieved by the modified FAB threshold, let’s give the values of the two

thresholds in a toy exampled = 1, c = 1/2, zp/2 = 3 and λB = 1. This corresponds to use the classical Haar

transform on the1D data of a constant background rate (= 1) with a 3σ detection level. Forj = 1, 2, 3, the values

of CLTB threshold are given byt1 = 7.56, t2 = 6.00 and t3 = 4.99, while those of the proposed version are

t1 = 4.28, t2 = 3.84 and t3 = 3.54. In the extreme case where the underlying intensity is zero,a threshold as

low as possible is expected since we effectively observe zero-count data and no noise is present. In this situation,

CLTB threshold givestj = 9 · 2−j/2 while the FAB threshold yieldstj = 2.5 · 2−j/2. The former is almost three

times higher than the latter. The lower values imply that a potential more sensitive decision may be achieved by

the proposed threshold. This will be verified in Section IV-A.

B. Background emission rate estimation

We will now determineλj,k as required in the modified threshold. Since we useh = 2−c[1, 1] as the low-pass

Haar filter, the approximation coefficient at the scalej is in the form ofAj,k = 2−cjd(X1 +X2), whereX1 andX2

are both the sum of2jd−1 independent Poisson variables. When dealing with constantbackground case with known

λB , λj,k is obviously2jdλB . In other cases,λj,k must be estimated. Notice that underH0, λ̂B := Aj,k/2
jd(1−c)

can be treated as an estimate of the background rate per data point in the current wavelet support, since this is in

effect the mean of2jd i.i.d. Poisson variables. Thenλj,k is estimated bŷλj,k := 2jdλ̂B = Aj,k/2
−cjd, which is

just the total counts in the wavelet support. However these coefficients may contain noise, so the denoising must
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be carried out from coarser scales to finer ones. More specifically, after we have denoised the wavelet coefficients

at the scalej + 1, the approximation coefficients at the scalej are reconstructed. These reconstructed coefficients

normalized by2−cjd and submitted to a positivity projection (sinceλj,k ≥ 0) serve as the estimates ofλj,k in the

denoising process at the scalej.

III. R EGULARITY PRESERVATION

A. Biorthogonal Haar transform

The main disadvantage of using the Haar transform is that thereconstructed data can have “staircase” artifacts.

To achieve a more regular reconstruction, we propose to use the Bi-Haar wavelet instead of the classical Haar

wavelet. It appears that we must redesign the threshold since the Bi-Haar coefficients are no more differences

of i.i.d. Poisson variables. However we can apply straightforwardly the above proposed threshold in the Bi-Haar

domain owing to the following result.

Theorem 1: Supposeh = 2−c[1, 1] and g = 2−c[−1, 1] to be respectively the low and high-pass decomposition

filters of the Haar transform; those of the Bi-Haar transformare respectively denoted ash = 2−c[1, 1] and

g = 2−c[1/8, 1/8,−1, 1,−1/8,−1/8]. Then for any dimensional data, withc > 1, the Bi-Haar coefficients converge

in distribution to those of Haar as the scale increases.

This theorem is proved in Appendix I. It justifies that we can treat non-normalized Bi-Haar coefficients as if they

were coming from a non-normalized Haar transform. Therefore, the thresholds derived in the case of Haar can be

used in the Bi-Haar transform without modification.

B. Summary of the estimation algorithm

The proposed intensity estimation procedure is outlined asfollows. We usej as the scale index where0 ≤ j ≤ J .

j = 0 corresponds to the initial scale before wavelet decomposition.aj,k andwj,k stand for respectively the observed

approximation coefficient and wavelet coefficient at the scale j and locationk.

Algorithm 1. FAB threshold Poisson denoising

1: Initialize j = J

2: Wavelet transform ofv to obtainaJ,· andwi,· (1 ≤ i ≤ J)

3: Do the following

• calculatezp/2

• λj,k = 2jdλB if λB is known; otherwiseλj,k = max(aj,k/2
−cjd, 0)

• Solve (10) to obtain the unique feasible solutiontj,k

• wj,k = wj,k · 1{|wj,k|≥tj,k}

• Reconstructaj−1,k by the inverse wavelet transform

4: j = j − 1 and if j > 0 goto Step3

5: Λ̂ = max(a0,·, 0)
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zp/2 is obtained either from a user-specified error ratep or from the universal setting,1S is the identity function

on S and Λ̂ is the estimated intensity. Notice that the last step corresponds to the positivity constraint on the

underlying intensity.

IV. RESULTS

This part is arranged as follows. Section IV-A gives the performance evaluation of the statistical decision

procedures employed in CLTB threshold and FAB one. The improvement achieved by using Bi-Haar is discussed in

Section IV-B. Then a thorough comparison of our approach with various existing estimators is shown in Section IV-

C. Finally in Section IV-D, applicability of our method is explored on astronomical imaging.

A. Sensitivity analysis

Let’s assess the statistical power corresponding to the twothresholding policies CLTB and FAB. We will

show their true detection rate (or true positive rate) in thewavelet domain for different signals. To achieve a

fair comparison, we first adopt the “Bursts” intensity [17](cf. Fig. 1(a)) whose minimum (maximum) intensity

is λmin = 0.795 (λmax = 5.3) in our experiment. The background levelλB is thus set toλmin. Notice that

the ground truth of the significant coefficients is known, since they are simply those non-zero coefficients of the

intensity function. During our experiment, we generated100 noisy signals from the intensity and for each signal, we

measured the true detection rate of the two thresholds at different presetp-values. The mean rate is thus obtained and

is shown in Fig. 1(b). The same procedure is applied on another intensity “Spikes”, containing spikes and smooth

parts [13](cf. Fig. 1(c)) with the result shown in Fig. 1(d).Fig. 1(b)(d) compare also the mean rates given by the

universal thresholds. It is clear that the true detection rate given by FAB (universal FAB) significantly exceeds that

of CLTB (universal CLTB). Consequently, FAB (universal FAB) results in a more powerful decision than CLTB

(universal CLTB).

B. Haar vs. Bi-Haar transform

Since the data reconstructed by Haar transform tend to have “staircase” artifacts, we have proposed to use the

Bi-Haar transform instead of Haar. To justify that Bi-Haar really improves the reconstruction regularity, we generate

noisy signals from the “Smooth” intensity function [13](cf. Fig. 2(a)) and measure the Normalized Mean Integrated

Square Error (NMISE) per bin from the estimates under the twodifferent transforms. NMISE is defined as follows

whereλ(x) is the ground truth and̂λ(x) is the estimated intensity

E

[∫

(

λ̂(x) − λ(x)
)2

/λ(x) dx

]

(12)

Unlike the usual adopted criterion of MISE (Mean IntegratedSquare Error), NMISE takes the noise variance of the

Poisson process (λ(x)) into account. This variance stabilization is necessary for evaluating inhomogeneous Poisson

process estimation because otherwise, large relative errors in a low intensity region can be totally masked by even

a small relative error in a high intensity zone.
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In using universal FAB threshold, denoising examples with corresponding NMISE (measured from100 repli-

cations) are shown in Fig. 2. It is evident, visually and quantitatively, that Bi-Haar based denoising outperforms

that of the classical Haar in every intensity level, which clearly confirms the significant regularity improvement by

Bi-Haar. Thus, this transform should be preferred as long asone deals with non piecewise constant intensities.

C. Comparison with other estimators

In Tab. II, we list the methods to compare, which cover most kinds of existing estimators. The first three, i.e.

CLTB, FAB and FAB-BH, are hypothesis testing methods; ANS, FISZ and CVS-GCV are based on VST, and the

last one BCVS is a Bayesian approach. We do not include the method of direct wavelet filtering [7][8] since it

performs poorly in general and are surpassed by most above estimators. We adopt the same six types of intensity

as those used in [13], i.e. “Angles”, “Bumps”, “Bursts”, “Clipped Blocks”, “Smooth” and “Spikes”. A background

is added on each one and then, the intensities are multipliedby the scaling factorss = 0.1, 1, 10 and100 to create

different intensity levels. Maximum and minimum intensityvalues before being scaled are shown in Tab. I. The

intensities scaled bys = 100 with examples of generated noise are shown in Fig. 3. During the experiments, the

coarsest scale is set toJ = 5. Fig. 4 shows the NMISE calculated from100 replications at each intensity level.

Let’s summarize our conclusions in the following take-awaymessages.

1) For all the intensity levels, FAB-BH offers one of the bestperformance in all the intensity types except for

“Clipped Blocks”. It is clear that the performance gain by using FAB-BH instead of CLTB is significant. The

same conclusion can be drawn from the comparison of translation-invariant (TI) denoising (not shown here).

We refer the reader to Section V for more detailed discussionon TI estimation.

2) The fair performance of FAB-BH on “Clipped Blocks” is due to the conflict between its higher regularity

reconstruction property and the piecewise constancy nature of this intensity. As a result, good performance

is expected for Haar-based estimators in this case. We observed that FAB gives the best performance in most

intensity levels. Although Fisz transform is also based on Haar wavelet, it merely gives average results in

our experiments. This is likely due to the “internal” denoising wavelet Daubechies-4, which is less adapted

to this piecewise constant case.

3) At the very low intensity level, all the methods are comparable except for CVS-GCV, which generates

systematically large errors. The BCVS gives the second largest NMISE, which is due to the bias of the

poorly fitted prior as we have discussed in Section I for Bayesian approaches. BCVS performs well on

smooth intensities, but is eclipsed by others for less smooth signals such as “Bumps”, “Clipped Blocks” and

“Spikes”.
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TABLE I

INTENSITIES

Angles Bumps Bursts Clipped Blocks Smooth Spikes

λmin 0.882 0.877 0.795 0.918 0.706 0.882

λmax 5.882 5.850 5.299 6.118 4.706 5.882
.

TABLE II

ESTIMATORS

Name Brief Description Wavelet Threshold References

CLTB Kolaczyk’s method (λB known) Haar Universal Hard [17][18][20]

FAB Our method (estimated background) Haar Universal Hard Section II-A.2

FAB-BH Our method (estimated background) Bi-Haar Universal Hard Section II-A.2, III-A

ANS VST : Anscombe transform Daubechies-4a Universal Hard [5][3]

FISZ VST : Fisz transform Daubechies-4 Universal Hard [4]

CVS-GCV Conditional variance stabilization Daubechies-4 General Cross Validation Soft [14][33]

BCVS Bayesian conditional variance stabilizationDaubechies-4 Bayesian Shrinkageb [14]

a Daubechies wavelet of4 vanishing moments
b To be more precise, Bayesian posterior median shrinkage

D. Application to astronomical imaging

In this experiment, we have simulated an image with circle-like X-ray sources (cf. Fig. 5(a)) for XMM-Newton

telescope, which is currently the most powerful X-ray satellite. Each source along any radial branch has the same

flux and has a more and more extended support as we go farther from the center. The flux reduces as the branches

turn in the clockwise direction. In effect, this image can beseen as a model for celestial objects of different sizes

and of different flux. The observed image of counts is shown inFig. 5(b). Fig. 5(c) and (d) present respectively

the estimated intensity by CLTB and by FAB-BH, while the results of TI estimations (cf. Section V) are shown in

Fig. 6(c)(d).

The local zooms of the estimates presented in Fig. 5(e) and (f) confirm that the reconstruction of FAB-BH has

less “staircase” artifacts. When TI denoising is applied, the reconstructions are almost artifact-free (Fig. 6(e)(f)).

Fig. 5(g)(h) and Fig. 6(g)(h) show that for those low-flux sources (i.e. those located in the upper-right part of

Fig. 5(a)), more significant responses are given by FAB-BH (TI FAB-BH) than by CLTB (TI CLTB) thanks to the

higher sensibility of FAB.

V. D ISCUSSION AND CONCLUSION

We have presented a Poisson intensity estimation method ford-dimensional data based on hypothesis testing in

the wavelet domain. A more sensitive thresholding estimator realizing the hypothesis testing, i.e. FAB threshold, has

been derived. In particular, the universal threshold exists and serves as a default value. The IHT controls the error
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rate in a coefficient-by-coefficient manner and there is no correction for multiple comparison. To control a global

statistical error rate, we could resort to multiple hypothesis testing (MHT). For example, the Bonferroni correction

controls the probability of erroneously rejecting even oneof the true null hypothesis, i.e. FWER. Alternatively,

one can use the Benjamini and Hochberg [22][23] procedure tocontrol the FDR. The control of FDR has many

advantages over the control of FWER. For example, usually ithas a greater detection power and it can handle

correlated data easily [23]. It has also been demonstrated in the Gaussian case (or the Poisson case with a high

intensity), that the FDR estimator achieves asymptotic minimaxity, when the total number of tests tends to infinity

and that the controlled FDR tends to zero. We refer the readerto [22][23][34][35] for more details.

To achieve a higher reconstruction regularity, we have proposed to use the biorthogonal Haar transform instead

of the Haar transform, after proving the approximation property of the biorthogonal coefficients to those of Haar.

Our experiments suggest that the FAB universal threshold combined with undecimated biorthogonal Haar transform

gives one of the best denoising result among existing estimators for a wide range of intensity types.

Amelioration of a wavelet denoiser can be gained by using TI transforms. In our case, TI denoising helps further

eliminate the “staircase” artifacts in the reconstruction. A possible way to achieve TI denoising is by employing the

cycle-spinning procedure [36]. However our method allows amore straightforward and computationally efficient

way by using the undecimated wavelet transform (UWT). It is important to notice that in our case, cycle-spinning

and UWT are not strictly equivalent and offer slightly different results. This is due to our special way of multiscale

background estimation at the current scale, which depends on the denoising results in all the coarser scales. Another

observation is that the UWT does not change the statement of Theorem 1. From some experiments that we carried

out (not shown here), Bi-Haar estimation can even challengethat of TI Haar. Indeed, unlike the orthogonal Haar case

whose performance can be considerably enhanced by using theTI version of the transform, translation invariance

is less beneficial to the case of Bi-Haar.

One further improvement of this algorithm may be gained by using iterative restoration. In the case of Gaussian

denoising, several authors have proposed regularized iterative methods with constraints in multiscale transforms. For

instance, a total variation (TV) constraint has been respectively introduced in wavelet denoising [37], in wavelet

packet denoising [38] and in curvelet denoising [39]. AnL1 constraint in the wavelet domain is proposed by

Starck [40], which has the advantage of free from the creation of staircase-like structures during the TV minimization

in the above approaches.

It is also possible to attain additional reconstruction improvement by applying different reconstruction filters in

the undecimated transform. Since a redundant transform allows actually an infinite number of inverse operator, we

can construct data-adapted reconstruction filter to achieve a more regular reconstruction [41].

However, in the Poisson denoising case, we have not obtainedso far outspoken results worth being reported

here, either from iterative scheme of [40] or from redesigning the Haar reconstruction filters (we triedB3-Spline

as reconstruction scaling function [41]).

One aspect of our future research is to seek for iterative schemes and alternative reconstruction filters adapted to

Poisson case. We are also currently investigating the possibility of extending this methodology to the deconvolution
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of Poisson noise contaminated data.

APPENDIX I

PROOF OFTHEOREM 1

The final proof is based on the cumulant-generating function(CGF).

A. Cumulant-Generating Function

Let’s first recall the CGF of a real random variableX .

Definition 1: (CGF) Let φ(t) be the characteristic function ofX . The CGF of (the distribution of)X is

ψ(t) := lnφ(t) (t ∈ R).

Definition 2: (Cumulants) Let ψ be the CGF ofX , and let’s assume thatψ can be developed into a Maclaurin

series

ψ(t) =
∑

p≥1

κp
(it)p

p!

The coefficientκp is then called thep-th cumulant ofX .

Proposition 2: Let(Xn)n≥1 be a sequence of random variables. Assumingφn and ψn as respectively the

characteristic function and the CGF ofXn. Assume furthermore that thep-th cumulants ofXn is κn,p. LetX0 be

a random variable with the characteristic functionφ0, the CGFψ0 and thep-th cumulantκ0,p. If κn,p → κ0,p as

n→ ∞ and if the convergence is uniform with respect top, thenXn
D→ X0.

Proof: Since

ψn(t) =
∑

p≥1

κn,p
(it)p

p!

ψ0(t) =
∑

p≥1

κ0,p
(it)p

p!

we have

|ψn(t) − ψ0(t)| ≤
∑

p≥1

|κn,p − κ0,p|
|t|p
p!

(13)

As κn,p → κ0,p (n → ∞) and the convegence is uniform onp, we have whenn is sufficient large

∀p, |κn,p − κ0,p| < ǫ ⇒ (13) < ǫ(e|t| − 1)

Hence, the sequenceψn converges pointwisely toψ0. By the continuity of the functionx 7→ ex, we have thatφn

converges pointwisely toφ0. Notice thatφ0 is always continuous at the origin, so we can apply Lévy’s theorem [42]

to conclude thatXn
D→ X0.

The following proposition shows the cumulants of the outputof a linear filter.

Proposition 3: Suppose that we have a sequence of independent random variables(Xn)n≥1. Let’s denote

the p-th cumulant ofXn as κX
n,p and the impulse response of a filterh as (hk)k∈Z. Assume that for eachi,
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∑

k∈Z
|κX

i−k,p||hk|p is uniformly bounded with respect top. If (Yi)i∈Z is the output of the filterh by usingXn as

input, i.e.Yi =
∑

k∈Z
hkXi−k, then

κY
i,p =

∑

k∈Z

κX
i−k,ph

p
k

is thep-th cumulant ofYi.

Proof: By the definition of the CGF ofYi, we have

ψYi
(t) = ln E(Πk∈Ze

it·hkXi−k)

From the dominated convergence and the independence ofXn, we have

ψYi
(t) = lim

(m,n)→(∞,∞)
ln Π−m≤k≤nE(eit·hkXi−k)

= lim
(m,n)→(∞,∞)

∑

−m≤k≤n

ψXi−k
(hkt)

= lim
(m,n)→(∞,∞)

∑

−m≤k≤n

∑

p≥1

κX
i−k,ph

p
k

(it)p

p!

= lim
(m,n)→(∞,∞)

∑

p≥1

(it)p

p!





∑

−m≤k≤n

κX
i−k,ph

p
k



 (14)

Since
∑

k∈Z
|κX

i−k,p||hk|p is uniformly bounded with respect top, the dominated convergence can be applied to

(14) and results in

ψYi
(t) =

∑

p≥1

(

∑

k∈Z

κX
i−k,ph

p
k

)

(it)p

p!

Immediately we identify that

κY
i,p =

∑

k∈Z

κX
i−k,ph

p
k

We are at the point to prove Theorem 1 and we first consider one dimensional data.

B. Proof for1D case

Let’s consider a sequence of1D Poisson independent random variables(Xn)1≤n≤N , whereN = 2J . The

approximation coefficient (A) of the Haar transform at the scale1 ≤ j ≤ J is in the form of

A = 2−cjY

whereY is the sum of2j independent Poisson random variables (of(Xn)1≤n≤N ). The wavelet or detail coefficient

(W ) is in the form of

W = 2−cj(Z1 − Z2)

whereZ1 and Z2 are independent Poisson random variable and each is the sum of 2j−1 independent Poisson

random variables (of(Xn)1≤n≤N ).
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Now for biorthogonal case, the approximation coefficient has the same form as that of Haar. But its detail

coefficient (Wb) is

Wb = 2−cj(Z1 − Z2 +
1

8
(Z3 − Z4))

whereZ1 andZ2 are respectively the sum of2j−1 independent Poisson random variables (of(Xn)1≤n≤N ), and

Z3 andZ4 are respectively the sum of2j independent Poisson random variables (of(Xn)1≤n≤N ). Moreover,Z1,

Z2, Z3 andZ4 are mutually independent.

By Proposition 3, we can write thep-th cumulant ofWb, i.e. κWb
p

κWb
p = 2−cpj

(

κZ1

p + (−1)pκZ2

p + 8−p(κZ3

p + (−1)pκZ4

p )
)

= κW
p + 2−cpj8−p

(

κZ3

p + (−1)pκZ4

p

)

Therefore we have,

|κWb
p − κW

p | = 2−cpj8−p|κZ3

p + (−1)pκZ4

p |

≤ 2−cpj8−p2 max(κZ3

p , κZ4

p )

≤ 2−cpj8−p · 2j2λmax

= 2j(1−cp)−3p+1λmax

=: r

whereλmax is the maximum intensity of(Xn)1≤n≤N . We can see thatr → 0 exponentially whenp increases.

The greatest error is reached whenp = 1. Notice that if we wantκWb
p → κW

p for any p, c must be greater than

one. In this case, the approximation error decreases exponentially as the scale, i.e.j, increases. Now Proposition 2

can be applied here. Notice that the uniform convergence with respect top is verified. Immediately we conclude

that for 1D data, whenc > 1, the wavelet coefficients of non-normalized biorthogonal Haar transform converge in

distribution towards those of non-normalized Haar transform.

C. Proof fordD case

Now let’s look at the multi-dimensional case. We begin with the 2D case. We have a2D Poisson signal

(Xm,n)1≤m,n≤N whereN = 2J . Clearly, we can only consider the approximation on detail coefficients, since

the approximation coefficients of the two wavelet transformare identical. Let’s denote thep-th cumulant of the

Haar coefficient of the bandhg, gh andgg respectively asκHG
p , κGH

p andκGG
p . Those of biorthogonal coefficient

will be denoted respectively asκHGb
p , κGHb

p and κGGb
p . Similar calculation as that in the1D case shows the

following results. At thej-th scale,

for the bandhg,

|κHGb
p − κHG

p | ≤ 22j(1−cp)−3p+1λmax
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for the bandgh,

|κGHb
p − κGH

p | ≤ 22j(1−cp)−3p+1λmax

and for the bandgg,

|κGGb
p − κGG

p | ≤ 22j(1−cp)−3p+2(1 + 8−p)λmax

If we repeat the same reasoning as that in the1D case, we will again find that whenc > 1, the wavelet coefficients

of non-normalized biorthogonal Haar transform converge indistribution towards those of non-normalized Haar

transform. It is clear that the above calculation and reasoning can be extended tod-dimensional (d > 2) case

without difficulty, and the conclusion is the same.

APPENDIX II

PROOF OFPROPOSITION1

A. Proof of Fact 1

After an algebraic rearrangement ofG(mj,k) = zp/2 and with the factzp/2 > 0, it is found out that feasible

solutions necessarily satisfy

2mj,k(2mj,k + λj,k)

mj,k + λj,k
− (z2

p/2 + 1) ≥ 0

The above inequality combined with2f − 1 ≥ 0, mj,k > 0 andλj,k ≥ 0 shows Fact 1.

B. Proof of Proposition 1

First let’s denote the right hand side of (11) asβ. Whenmj,k = β, we have

G(mj,k) =

√

z2
p/2 +

λj

2mj,k
(z2

p/2 + 1) −
√

λj

2mj,k
(z2

p/2 + 1) ≤ zp/2

Second, we can verify thatG is a strictly increasing function under the condition (11) sinceG′(mj,k) > 0, and

clearlyG(mj,k) → ∞ asmj,k → ∞.

Obviously, the above results guarantee immediately the existence and uniqueness of the feasible solution of the

equationG(mj,k) = zp/2. This solution is contained in the solutions of (10).
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Fig. 1. Sensitivity of the thresholds. Decimated Haar transform is used whereJ = 5. (a) Bursts intensity; (b) mean true detection rate of

Bursts; (c) Spikes intensity; (d) mean true detection rate of Spikes.
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Fig. 4. NMISE of the estimators. In each group of bars, the barfrom left to right (or from dark to bright) corresponds to theNMISE of CLTB,
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Fig. 5. XMM image denoising (shown with logarithmic intensity). Image size= 512×512. J = 7. (a) intensity image(λmin = 0.05, λmax =

200.05); (b) Poisson noisy image; (c) intensity estimated by CLTB whereλB = λmin; (d) intensity estimated by FAB-BH; (e)(g) local zoom

of (c); (f)(h) local zoom of (d).
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Fig. 6. XMM image TI denoising (shown with logarithmic intensity). Image size= 512 × 512. J = 7. (a) intensity image(λmin =

0.05, λmax = 200.05); (b) Poisson noisy image; (c) intensity estimated by CLTB (TI) whereλB = λmin; (d) intensity estimated by FAB-BH

(TI); (e)(g) local zoom of (c); (f)(h) local zoom of (d).
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