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Abstract

In this paper, we present the estimation of Poisson intesised on hypothesis testing in the wavelet domain
for any dimensional data. The testing framework for wavbketed Poisson intensity estimation was first introduced
by Kolaczyk, where a thresholding estimator, which realitee hypothesis testing, is derived for Haar wavelet
coefficients. Here we propose for the same wavelet a newhbidiag estimator which is based on Fisher's normal
approximation. Furthermore, we have demonstrated thatnoomalized biorthogonal Haar coefficients converge in
distribution to non-normalized Haar coefficients as thdesogreases. This allows us to directly apply the threshold
in the biorthogonal Haar domain. Therefore we gain, by usiig more regular wavelet, a reconstruction with less
artifacts. Simulations show that on a wide range of intgrtgipes, the proposed threshold combined with undecimated
biorthogonal Haar transform gives one of the best estimatisult compared with existing estimators of various kinds
Finally, potential applicability of our approach is illuated on astronomical data.

Index Terms

Poisson intensity estimation, wavelet hypothesis tesftiigher approximation, biorthogonal Haar wavelets

I. INTRODUCTION

The ability to restore the underlying intensity from an infmgeneous Poisson process is crucial for many
applications. We observe a discrete signal of counts (v;);c; where! is the index set. Each counf can be

thought of as coming independently from a Poisson distiobutvith a mean\;
v; ~ P(\)
We can then decompose the observed ceuyrimto two parts, i.e.
v, =N +b;, €I

whereb; is the Poisson noise, and the mean vedier ()\;);c; is the source intensity which needs to be estimated
from v.

A host of estimation methods have been proposed in thetliteraA common solution is to use a variance stabi-
lizing transform (VST), which “Gaussianizes” the Poissaise before applying the standard wavelet thresholding
denoising [1][2] on the transformed signal. For examplen@mw [3] and Fryzlewicz and Nason [4] proposed
respectively the Anscombe transform [5] and the Fisz tansf[6]. Rather than using a nonlinear VST, direct
wavelet filtering has been studied by Nowak and Baraniuk ifid] Antoniadis and Sapatinas [8]. The latter concerns
actually a wider distribution family, but it is essentiakguivalent to the former in the Poisson case. The resulting
filter can be considered as a data-adaptive wavelet domanet/filter. The state-of-the-art methods are Bayesian
approaches [9][10][11][12] as reported by Besbeas et 8]. [h effect a great part of above approaches are based on
Haar wavelet transform until recently, Jansen [14] intbl conditional variance stabilization, which generalize
the idea of [4] and is applicable to any family of wavelet sfotims. A Bayesian scheme was also derived within

this framework, which can be deemed as an extension of [PH&A [11]. Other technique as maximum penalized
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likelihood estimation [15][16] can also be considered Bag®, since the penalization term implicitly introduces a
certain prior on the underlying intensity. In general, Bsige methods outperform (cf. [13]) those of direct wavelet
filtering [7][8]. However Bayesian approaches require hgwenough “useful signals” in the observations in order to
well fit the prior (usually by estimating prior parametefSdr wavelet-based Bayesian estimation, “useful signals”
are those significant wavelet coefficients. In the low-istgncase where we generally lack such “useful signals”,
the final estimation can suffer from a large bias produced bymoperly fitted model.

Another previous important contribution to this field is thavelet-domain hypothesis testing framework first
introduced by Kolaczyk [17][18]. Thresholds based on sgeeified false detection rate are derived for Haar
coefficients both in the constant and model-based backgdrsitirations. It is then found out that universal thresholds
are also available in the above two cases [18][19]. Alwayshim same framework, Kolaczyk [20] proposed the
Poisson-corrected version of the Gaussian-based thoefhrodny wavelet. But the asymptotic approximation used
in [20] may not allow reasonable threshold solution in a Very-intensity setting.

In this paper, we adopt the same hypothesis testing frankea®used in [17][20][18]. This approach is non-
parametric (model-free) where a binary hypothesis testiracedure, which is based on the calculation of the
p-value of the wavelet coefficient, is applied on each coeffiti This testing procedure is actually realized by a
hard thresholding estimator. The coefficients with valuegraed by the upper and lower thresholds are considered
insignificant and are thresholded to zero, while significams are kept intact. The main advantage of this method
is that the user can control the false positive rate in a adeffi-by-coefficient manner. Global statistical error
rates could also be controlled if multi-test scheme is &ghlsuch as Bonferroni correction [21] to control the
Family-Wise Error Rate (FWER) and Benjamini-Hochberg'sqadure [22][23] to control the False Discovery
Rate (FDR).

The contribution of this paper is threefold. First, we prep@ new estimator for the testing procedure in the
Haar domain, which is based on Fisher's normal approximd@d] and results in a higher sensitivity level than
Kolaczyk’s threshold [17][18]. The universal thresholdiiso available, serving as a default choice. Second, unlike
Kolaczyk’s threshold, which requires prior backgrouneirgity and is only scale-dependent, our threshold estgmate
local background from the observations and it depends ol Wwatelet scale and location. Third, toward the goal
of preserving the regularity of reconstructed data, whihofi paramount importance for many applications, we
propose to apply the same threshold in the biorthogonal KBiaHaar) domain instead of in the classical Haar
domain. To justify this, we formally prove that non-normzalil Bi-Haar coefficients converge in distribution to non-
normalized Haar coefficients as the scale increases for emgngional data. We will see, from the experiments,
that the modified threshold combined with biorthogonal sfarm offers one of the best results compared with
other estimators.

The paper is organized as follows. We first review in Sec@me hypothesis testing framework in the wavelet

domain. After presenting the original Kolaczyk’s threshai Sectior{ 1I-A 1, our threshold is derived in Section II-

L 1
A.2.In Sectior IlI-A, we reveal the approximation propebgtween non-normalized Bi-Haar coefficients and those

of Haar. The entire estimation procedure is summarized oti@e[lll-B and the results are shown in Sectior] IV.
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Finally, a discussion is presented and some concludingrienzae drawn in SectioE|V. The proofs of theoretical

results are deferred to the appendices.

Il. HYPOTHESIS TESTING IN THE WAVELET DOMAIN

The thresholding estimator in the wavelet domain will beidst in a binary hypothesis testing framework. To
accomplish this denoising task, we need the informatiorhefliackground emission rate in the data. In our case,
we will assume this background intensity to be locally cansiat least in the wavelet support). We will see that
this local intensity can be estimated from the approxinmatioefficients. It can also be obtained if the user knows
a priori the background rate. In any case, we can define respectivelyull hypothesidi, and the alternative
hypothesisH; for each wavelet coefficient

Hy : w is consistent with the background;

H, : w is inconsistent with the background.
This means that ifv is judged to be consistent with the backgrouiif (accepted)w should be replaced by the
value obtained by computing a wavelet transform of the bemlgd without noise. As any wavelet has a zero
mean and due to the local-constancy hypothesis of the bagkdrrate,w should be set to zero ifl, is true. In
other words, a non-zero value af when the null hypothesis is true means that this value musfuety due to
the fluctuations of the counting statistics. Reversely, bseoved coefficient verifyingZ;, will be kept intact, since
it contains the information that reflects the variation of tmderlying intensity.

We will use the conventional notation for a wavelet coeffitid.e. the capital lettei’ denotes the random

variable while the lower-case stands for the observed value.

A. Individual hypothesis testing (IHT)

After the wavelet transform, the IHT is carried out in a cardfint-by-coefficient manner. The user is supposed
to specify a false detection rate (false positive or typerbrerate) in the wavelet domain, i.e, meaning that the

probability that anH, coefficient is misclassified té/; will be upper bounded by

Nreject
E( ﬁ; )Sp 1)
0

whereN;Iij“t is the number of coefficients verifying, but rejected (false positives) aidy, is the total number

of H, coefficients. The lower and upper decision thresholgs, andt,..., are derived respectively from the
tail probabilitiesPr(W < t,,in|Ho) < p/2 andPr(W > t4.|Ho) < p/2. Then for any observed verifying
W > tmas OF w < tin, w is deemed significant and will be classified#g. Otherwise it is decided insignificant
and will be classified tdd,.

For a general wavelet, the analytical form of the distributof the wavelet coefficient conditioning di, of
a Poisson process has been derived in [25]. This impliestkieairetically, the hypothesis testing can be applied
on any wavelet transform. However, this model requires tiraputation of the auto-convolution of the normalized

wavelet histogram, which has to be evaluated numericallgractice and this calculation can be very heavy. So
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we will seek a simple wavelet function that can result in aritigtion having wieldy analytical form, and that

motivates us to use the Haar wavelet. In this case, thellisivh has a closed-form expression [26][27]
pw(W =n;\) = e ,(\)

where the Haar coefficieiV is the difference of two i.i.d. Poisson variabldé = X; — X5, X7, X5 ~ P(\/2), A
is the constant average counts in the dilated wavelet stpar/,,(-) is the modified Bessel function of the first
kind. For negative values d¥, py, can be obtained by symmetry since the distribution of Haaffaient under

Hy is non-skewed. The tail probability is given by [28]
Pr(W >n;\) =Pr (X%Qn)(/\) < /\) ) n>1 2

where X%f)(A) is the non-central chi-square distribution with degrees of freedom and as non-centrality
parameter.

1) Kolaczyk’s CLT-based threshold [17][20][18W\Ve first denote the low-pass filter of the discrete Haar tizmnsf
ash = 27¢[1,1] and the corresponding high-pass filter as= 27¢[—1, 1], where2=¢(¢ > 0) corresponds to a
certain normalization. The background intensity}s, which is assumed constant and known in Kolaczyk’s constant
background model. The data dimension is denoted aad the current scale index js(; > 1). We can see that
every Haar coefficient (of any band) at the scalis in the form of W; = 2-94(X; — X3), where X; and X,
are independent Poisson random variables. More spedjficé)l and X, are both the sum o#/?~! independent
Poisson random variables. I¥; verifies Hy, we will haveE(X;) = E(X3) = A;/2 where); = 274\ 5. We want
to determine a threshold > 0 such thatPr(W; > ¢;|Hy) = p/2, or Pr(|W;| > t;|Hy) = p since the distribution

of W; is symmetric about zero. Frorﬂ (2), which corresponds to #s=c= 0, we can easily deduce that
Pr(W; > t;|Ho) = Pr (X?zmj)(/\j) < )\j) 3)

wherem; = 2¢74¢;.

Then two stages of approximation are used

Pr (W) ) <Ai) & Prlady) < ) (4)
< pe(z> 1240 ©)

wherea = (2m; +2;)/(2m; + ;). f = (2m; +X;)?/(2m; +2X;) , x{, is a central chi-square random variable
and Z ~ N(0,1) is the standard normal distribution. The first approximat@) is due to Patnaik [29] where
the non-central chi-square distribution iﬂ (3) is approaxied by a central one. The secorﬂj (5) comes from the
central limit theorem (CLT). Therefore in the sequel, theresponding threshold will be called CLT-based (CLTB)
threshold.

A simple calculation from the equatioﬁ}# = z,/2 Shows that the unique threshold solution is

ty =279 (22 \f2h 4 A2 ) 6)
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where z,,/, is the critical value of the standard normal distributiontla¢ significance levep/2, i.e. z,/, =
®~1(1—p/2), whered is the standard normal cumulative distribution functiomvhthe universal threshold can be
obtained by setting,, /> = \/m in @) whereN; is the number of Haar coefficients of one band at the scale
j. This is a direct consequence of the well known fact in exgemlue theory (cf. [30]) that for. independent
standard normal variable§X;),—;. ., we havePr(max;<;<,|X;| > v2Inn) — 0 asn — oo. Unlike the
universal threshold in the Gaussian case [1], only baneidggnt version can be expected in the Poisson case,
since the inter-band wavelet coefficients are not indepsnde

2) Proposed thresholdKolaczyk’'s method assume a global constant backgroundsitieAz. Therefore this
method is only well adapted to burst-like intensities chtgazed by occasional peaks on an almost flat re-
gion [17][19]. In addition, prior information or\z is not always available in practice. One straightforward/ wa
to generalize the above threshold to non-constant backdrsituation without using a prior background model, is
to estimate the local background from the observations amiyeda threshold depending both on the scaknd
on the locationk. Charles and Rasson [19] introduced a preprocessing stép this. The observation interval
is first segmented in a way that the counts are almost stajionseach subinterval. Then follows the subinterval
background estimation. This preprocessing is actuallydas the tests of synthetic data. In our case, due to the
local constancy hypothesis, we must estimate the locahsitie\; , in the support of the wavelet generating the
coefficientW; ,, = 279X — Xo), X1, Xo ~ P(N;k/2). Instead of using a preprocessing,; can be easily
estimated from approximation coefficients (cf. Sec)l-Thus, the background estimation and the thresholding
are essentially combined in a seamless way in our entireritigo (cf. Section). In the following.,)\; j is
assumed to be already estimated.

In the two approximations[](4) an([|(5), the former has beemvshto be very accurate even in a low-intensity
setting [31]. But the convergence rate of the latter (CLTknswn to be low (also true for the method of Charles

and Rasson [19] since the same approximation is used). Alywich®wn faster version is given by Fisher [24]

From the same derivation as above, we should change theicaml@) to

Pr(axtyy < i) = Pr <Z>\/2f—1— —”-’*’“) @)

«

wherea = (ijyk + 2)\j_,k)/(2mj7k + )\j.,k)' f = (ijyk + )\j_’k)Q/(Qmjyk + 2/\j,k) andmj_,k = Qdetj_’k.

Let’s denote

Glmys) = VI —1- 22

«

_ \/(Qmj_k + Xjk)? i \/)\jﬂk(ijyk + k) ©)

Mk + Ajk Mk + Ajk
Therefore, it remains to solve the equatiGiim; ») = 2,2, to obtain the new Fisher approximation-based (FAB)

threshold. A direct algebraic rearrangement shows ithiai necessarily satisfies the following quartic polynomial
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equation

16mi, + [16/\-k — 822, + 1)} m3,, +

j.k 75 p/2 j,k

[(zg/Q +1)% = (20225 + 12) N + 4)\3,6] m2, +

{2(23/2 12N — 1622502, — 4A§7,€} g +

(20)0 +1)°A7 p — 4z )5A3 =0 (10)
The final FAB threshold; ; is obtained from the solution of:; ;. A closed-form expression far.; ;, is certainly
too complicated to write out fronﬂllO). Fortunately, acéogdto the following results, we don’t even need such

an expression.

Fact 1: The feasible condition is

mjg > é {zf,/g -2\ + 1+ \/z§/2 + (12X +2)22 5 + 47, + 12X + 1J (12)

Proposition 1: The feasible solution for FAB threshold &xiand is unique.

The feasible conditiormll) and the uniqueness of the fasiddution imply that we can use any numerical routine
that solves quartic polynomial equations, e.g. Hacke'sho@{32]. Then the four solutions oﬂlO) will be tested
by the condition @1) and there will be one and only one winfiére universal threshold can also be obtained
by solving (1) wherez,,» = /2InN;. We refer the reader to Appendfj Il for the proofs of Ffict 1 arfd
Proposition{J1.

To have an idea of the refinement achieved by the modified FA8sHold, let's give the values of the two
thresholds in a toy examplé = 1, ¢ = 1/2, 2,/ = 3 and A\g = 1. This corresponds to use the classical Haar
transform on the D data of a constant background rate {) with a 30 detection level. Foy = 1, 2, 3, the values
of CLTB threshold are given by, = 7.56, to = 6.00 andt3 = 4.99, while those of the proposed version are
t; = 4.28, t2 = 3.84 andt; = 3.54. In the extreme case where the underlying intensity is zarthreshold as
low as possible is expected since we effectively observe-zeunt data and no noise is present. In this situation,
CLTB threshold gives; = 9-277/2 while the FAB threshold yields; = 2.5 - 277/2, The former is almost three
times higher than the latter. The lower values imply that teptial more sensitive decision may be achieved by
the proposed threshold. This will be verified in Secv-A

B. Background emission rate estimation

We will now determine); ; as required in the modified threshold. Since we hse 27°[1, 1] as the low-pass
Haar filter, the approximation coefficient at the scais in the form ofA; ;, = 27449 ( X + X5), whereX; and X
are both the sum af’¢~! independent Poisson variables. When dealing with conbtarkground case with known
AB, Aj i IS obviously279) 5. In other cases);  must be estimated. Notice that undég, g = Aj /2740 =€)
can be treated as an estimate of the background rate per @atarpthe current wavelet support, since this is in
effect the mean o’¢ i.i.d. Poisson variables. Thek; ; is estimated by}, , := 279\z = A; /24, which is

just the total counts in the wavelet support. However themdficients may contain noise, so the denoising must
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be carried out from coarser scales to finer ones. More spaltjfiafter we have denoised the wavelet coefficients
at the scalej + 1, the approximation coefficients at the scalare reconstructed. These reconstructed coefficients
normalized by2~</¢ and submitted to a positivity projection (singe;, > 0) serve as the estimates &f . in the

denoising process at the scale

Ill. REGULARITY PRESERVATION
A. Biorthogonal Haar transform

The main disadvantage of using the Haar transform is thatebenstructed data can have “staircase” artifacts.
To achieve a more regular reconstruction, we propose to heseBi-Haar wavelet instead of the classical Haar
wavelet. It appears that we must redesign the thresholc dime Bi-Haar coefficients are no more differences
of i.i.d. Poisson variables. However we can apply stramftardly the above proposed threshold in the Bi-Haar
domain owing to the following result.

Theorem 1: Suppose= 2"°[1,1] andg = 27¢[—1, 1] to be respectively the low and high-pass decomposition
filters of the Haar transform; those of the Bi-Haar transforme respectively denoted ds = 27¢[1,1] and
g=2"°1/8,1/8,—1,1,-1/8,—1/8]. Then for any dimensional data, wittt> 1, the Bi-Haar coefficients converge
in distribution to those of Haar as the scale increases.

This theorem is proved in Append|}< I. It justifies that we cegat non-normalized Bi-Haar coefficients as if they
were coming from a non-normalized Haar transform. Theggftire thresholds derived in the case of Haar can be

used in the Bi-Haar transform without modification.

B. Summary of the estimation algorithm
The proposed intensity estimation procedure is outlinefiémvs. We usej as the scale index whete< j < J.
j = 0 corresponds to the initial scale before wavelet decomiposii; . andw; ;. stand for respectively the observed

approximation coefficient and wavelet coefficient at thdesgaand locationk.

Algorithm 1. FAB threshold Poisson denoising
1: Initialize j = J
2: Wavelet transform ot to obtaina;. andw;. (1 <i < J)
3: Do the following
« calculatez, /»

o \ji =279\p if Ap is known; otherwise\; ,, = max(a; /274, 0)

Solve (1) to obtain the unique feasible solutign
© Wik = Wik 1w, u>t; 1}

Reconstruct; 1 &, by the inverse wavelet transform

4. j=j—1andifj> 0 goto Step3

5. A = max(aq,.,0)
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2,2 is obtained either from a user-specified error rat& from the universal settind,s is the identity function
on S and A is the estimated intensity. Notice that the last step cpoeds to the positivity constraint on the

underlying intensity.

IV. RESULTS

This part is arranged as follows. Secti-A gives the pmerfance evaluation of the statistical decision
procedures employed in CLTB threshold and FAB one. The ingar@ent achieved by using Bi-Haar is discussed in

Section[IV-B. Then a thorough comparison of our approach wérious existing estimators is shown in Section IV-
1

L
C. Finally in Section IV-ID, applicability of our method is plored on astronomical imaging.

A. Sensitivity analysis

Let's assess the statistical power corresponding to the ttwesholding policies CLTB and FAB. We will
show their true detection rate (or true positive rate) in wevelet domain for different signals. To achieve a
fair comparison, we first adopt the “Bursts” intensity [1cf](Fig. ﬂ(a)) whose minimum (maximum) intensity
IS Amin = 0.795 (Anee = 5.3) in our experiment. The background levgk is thus set to),,;,. Notice that
the ground truth of the significant coefficients is knowncsirthey are simply those non-zero coefficients of the
intensity function. During our experiment, we generatéd noisy signals from the intensity and for each signal, we
measured the true detection rate of the two thresholdsfateiift presep-values. The mean rate is thus obtained and
is shown in Fig.[ll(b). The same procedure is applied on andtitensity “Spikes”, containing spikes and smooth
parts [13](cf. Fig.[ll(c)) with the result shown in F. 1(ehig. ﬂ(b)(d) compare also the mean rates given by the
universal thresholds. It is clear that the true detectide given by FAB (universal FAB) significantly exceeds that
of CLTB (universal CLTB). Consequently, FAB (universal FABsults in a more powerful decision than CLTB
(universal CLTB).

B. Haar vs. Bi-Haar transform

Since the data reconstructed by Haar transform tend to heteér¢ase” artifacts, we have proposed to use the
Bi-Haar transform instead of Haar. To justify that Bi-Haaalty improves the reconstruction regularity, we generate
noisy signals from the “Smooth” intensity function [13](6ﬁg.|2(a)) and measure the Normalized Mean Integrated
Square Error (NMISE) per bin from the estimates under thedifferent transforms. NMISE is defined as follows

where\(z) is the ground truth and(z) is the estimated intensity

E [ / (&(x) - )\(x))2//\(:1:) da:] (12)

Unlike the usual adopted criterion of MISE (Mean Integra$epiare Error), NMISE takes the noise variance of the
Poisson process\(z)) into account. This variance stabilization is necessanef@luating inhomogeneous Poisson
process estimation because otherwise, large relativeseéma low intensity region can be totally masked by even

a small relative error in a high intensity zone.
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In using universal FAB threshold, denoising examples withresponding NMISE (measured frohd0 repli-
cations) are shown in Fig[] 2. It is evident, visually and ditatively, that Bi-Haar based denoising outperforms
that of the classical Haar in every intensity level, whicharly confirms the significant regularity improvement by

Bi-Haar. Thus, this transform should be preferred as longresdeals with non piecewise constant intensities.

C. Comparison with other estimators

In Tab.|I|, we list the methods to compare, which cover mostkiof existing estimators. The first three, i.e.
CLTB, FAB and FAB-BH, are hypothesis testing methods; ANEZand CVS-GCV are based on VST, and the
last one BCVS is a Bayesian approach. We do not include théadetf direct wavelet filtering [7][8] since it
performs poorly in general and are surpassed by most abtneadsrs. We adopt the same six types of intensity
as those used in [13], i.e. “Angles”, “Bumps”, “Bursts”, ‘i@bed Blocks”, “Smooth” and “Spikes”. A background
is added on each one and then, the intensities are multipli¢tle scaling factors = 0.1, 1, 10 and100 to create
different intensity levels. Maximum and minimum intensitglues before being scaled are shown in 'Il]ab. I. The
intensities scaled by = 100 with examples of generated noise are shown in Eig. 3. Dutiegeixperiments, the
coarsest scale is set tb= 5. Fig. B shows the NMISE calculated froh00 replications at each intensity level.

Let's summarize our conclusions in the following take-awagssages.

1) For all the intensity levels, FAB-BH offers one of the bestformance in all the intensity types except for
“Clipped Blocks”. It is clear that the performance gain byngsFAB-BH instead of CLTB is significant. The
same conclusion can be drawn from the comparison of tramstatvariant (Tl) denoising (not shown here).
We refer the reader to Sectigij V for more detailed discussio| estimation.

2) The fair performance of FAB-BH on “Clipped Blocks” is due the conflict between its higher regularity
reconstruction property and the piecewise constancy @attithis intensity. As a result, good performance
is expected for Haar-based estimators in this case. We dabénat FAB gives the best performance in most
intensity levels. Although Fisz transform is also based @amtwavelet, it merely gives average results in
our experiments. This is likely due to the “internal” derinigswavelet Daubechies-4, which is less adapted
to this piecewise constant case.

3) At the very low intensity level, all the methods are congide except for CVS-GCV, which generates
systematically large errors. The BCVS gives the seconderiMISE, which is due to the bias of the
poorly fitted prior as we have discussed in Sectﬂon | for Bayesapproaches. BCVS performs well on
smooth intensities, but is eclipsed by others for less smeiginals such as “Bumps”, “Clipped Blocks” and

“Spikes”.
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TABLE |

INTENSITIES
Angles | Bumps | Bursts| Clipped Blocks| Smooth| Spikes
Amin | 0.882 | 0.877 | 0.795 0.918 0.706 | 0.882
Amaz | 5.882 | 5.850 | 5.299 6.118 4.706 | 5.882
TABLE Il
ESTIMATORS

Name Brief Description Wavelet Threshold ‘ References

CLTB Kolaczyk's method X5 known) Haar Universal Hard [17][18][20]

FAB Our method (estimated background) Haar Universal Hard Section '
FAB-BH Our method (estimated background) Bi-Haar Universal Hard section[1I-A.2,[111-4

ANS VST : Anscombe transform Daubechies-# Universal Hard [5][3]

FISZ VST : Fisz transform Daubechies-4 Universal Hard [4]
CVS-GCV Conditional variance stabilization Daubechies-4| General Cross Validation Soff [14][33]

BCVS Bayesian conditional variance stabilizatign Daubechies-4 Bayesian Shrinkade [14]

a Daubechies wavelet of vanishing moments
b To be more precise, Bayesian posterior median shrinkage

D. Application to astronomical imaging

In this experiment, we have simulated an image with ciride-K-ray sources (cf. Figﬂ 5(a)) for XMM-Newton
telescope, which is currently the most powerful X-ray dagelEach source along any radial branch has the same
flux and has a more and more extended support as we go fartimertiie center. The flux reduces as the branches
turn in the clockwise direction. In effect, this image candsen as a model for celestial objects of different sizes
and of different flux. The observed image of counts is showRim B(b). Fig.[b(c) and (d) present respectively
the estimated intensity by CLTB and by FAB-BH, while the reswof Tl estimations (cf. SectioElV) are shown in
Fig. [B(c)(d).

The local zooms of the estimates presented in Eig. 5(e) gnebfffirm that the reconstruction of FAB-BH has
less “staircase” artifacts. When Tl denoising is appli¢d teconstructions are almost artifact-free (Fﬂg. 6(k)(f)
Fig. ﬁ(g)(h) and Fig[|6(g)(h) show that for those low-flux sms (i.e. those located in the upper-right part of
Fig. E(a)), more significant responses are given by FAB-BHFAB-BH) than by CLTB (TI CLTB) thanks to the
higher sensibility of FAB.

V. DISCUSSION AND CONCLUSION

We have presented a Poisson intensity estimation methodidimensional data based on hypothesis testing in
the wavelet domain. A more sensitive thresholding estimaalizing the hypothesis testing, i.e. FAB threshold, has

been derived. In particular, the universal threshold exéstd serves as a default value. The IHT controls the error
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rate in a coefficient-by-coefficient manner and there is nwemtion for multiple comparison. To control a global
statistical error rate, we could resort to multiple hypstedesting (MHT). For example, the Bonferroni correction
controls the probability of erroneously rejecting even arfighe true null hypothesis, i.e. FWER. Alternatively,
one can use the Benjamini and Hochberg [22][23] procedureotdrol the FDR. The control of FDR has many
advantages over the control of FWER. For example, usualhag a greater detection power and it can handle
correlated data easily [23]. It has also been demonstratedel Gaussian case (or the Poisson case with a high
intensity), that the FDR estimator achieves asymptoticirméxity, when the total number of tests tends to infinity
and that the controlled FDR tends to zero. We refer the relmdf2][23][34][35] for more details.

To achieve a higher reconstruction regularity, we have @sed to use the biorthogonal Haar transform instead
of the Haar transform, after proving the approximation gy of the biorthogonal coefficients to those of Haar.
Our experiments suggest that the FAB universal threshattbamed with undecimated biorthogonal Haar transform
gives one of the best denoising result among existing ettimdor a wide range of intensity types.

Amelioration of a wavelet denoiser can be gained by usingdrigforms. In our case, Tl denoising helps further
eliminate the “staircase” artifacts in the reconstructiérpossible way to achieve Tl denoising is by employing the
cycle-spinning procedure [36]. However our method allommn@re straightforward and computationally efficient
way by using the undecimated wavelet transform (UWT). Inipdrtant to notice that in our case, cycle-spinning
and UWT are not strictly equivalent and offer slightly diéat results. This is due to our special way of multiscale
background estimation at the current scale, which depemdiseodenoising results in all the coarser scales. Another
observation is that the UWT does not change the statemerihexbr‘émﬂl. From some experiments that we carried
out (not shown here), Bi-Haar estimation can even chall¢ingieof Tl Haar. Indeed, unlike the orthogonal Haar case
whose performance can be considerably enhanced by usinbl tersion of the transform, translation invariance
is less beneficial to the case of Bi-Haar.

One further improvement of this algorithm may be gained byngigterative restoration. In the case of Gaussian
denoising, several authors have proposed regularizestiitemethods with constraints in multiscale transfornus. F
instance, a total variation (TV) constraint has been raspy introduced in wavelet denoising [37], in wavelet
packet denoising [38] and in curvelet denoising [39]. Ak constraint in the wavelet domain is proposed by
Starck [40], which has the advantage of free from the craaifestaircase-like structures during the TV minimization
in the above approaches.

It is also possible to attain additional reconstruction iayement by applying different reconstruction filters in
the undecimated transform. Since a redundant transfomwsalactually an infinite number of inverse operator, we
can construct data-adapted reconstruction filter to aehéemore regular reconstruction [41].

However, in the Poisson denoising case, we have not obtaoddr outspoken results worth being reported
here, either from iterative scheme of [40] or from redesignihe Haar reconstruction filters (we trié-Spline
as reconstruction scaling function [41]).

One aspect of our future research is to seek for iterativersels and alternative reconstruction filters adapted to

Poisson case. We are also currently investigating the Ipiigsbf extending this methodology to the deconvolution

DRAFT



13

of Poisson noise contaminated data.

APPENDIX |

PROOF OFTHEOREMI]

The final proof is based on the cumulant-generating fundf@@F).

A. Cumulant-Generating Function

Let’s first recall the CGF of a real random variabte

Definition 1: (CGF) Let ¢(t) be the characteristic function oK. The CGF of (the distribution of)X is
P(t) :=Ing(t) (t € R).

Definition 2: (Cumulants) Let ) be the CGF ofX, and let's assume that can be developed into a Maclaurin

series

Y(t) = Z“p(i;#

p>1
The coefficienk, is then called the-th cumulant ofX.

Proposition 2: Let(X,),>1 be a sequence of random variables. Assumingand «,, as respectively the
characteristic function and the CGF df,,. Assume furthermore that theth cumulants ofX,, is «,, ,. Let X, be
a random variable with the characteristic functign, the CGF), and thep-th cumulants . If £, , — Ko as
n — oo and if the convergence is uniform with respeciptachen X, KA Xo.

Proof: Since

"/’n(t) = Z ’imp(i;#

p>1

Yo(t) = Z ’iom%

p>1

we have
It”

o (13)

[9n(t) = o8] < D |knp — Kol

p>1

As kK, — Kop (n — 00) and the convegence is uniform pnwe have whem is sufficient large

Vp, |knp— kKopl <€ = (IE) < e(elt‘ -1

Hence, the sequenag, converges pointwisely tg),. By the continuity of the functiorr — e®, we have thatp,,
converges pointwisely t@dy. Notice thatpy is always continuous at the origin, so we can apply Lévyéotiem [42]
to conclude thatX,, L Xo. O
The following proposition shows the cumulants of the outplua linear filter.
Proposition 3: Suppose that we have a sequence of indepemaletom variables(X,,),>1. Let's denote

the p-th cumulant ofX, as Iiip and the impulse response of a filteras (hy)rcz. Assume that for each
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> okez 1575 pl1hi]? is uniformly bounded with respect o If (Y;)icz is the output of the filteh by usingX, as
input, i.e.Y; = >, ., hip Xi &, then

_ X p
= E ”vz‘—k,phk

keZ

is the p-th cumulant ofY;.

Proof: By the definition of the CGF ot;, we have
by, (t) = mE(Ieze™ M Xir)
From the dominated convergence and the independendg, pfve have

Yy, (t) = lim InTT_ < pnB(et P Ximk)

(m.n)—(00,00)

= hm Z vx, , (hit)

7m<k<n

= lim Z an kphp

(mn)=(00,00) _ < p1

= lim Z (i) Z Ki k php (14)

(msn)—(00,00) £= p! e

Since) ;s |nfik7p||hk|1’ is uniformly bounded with respect tp, the dominated convergence can be applied to
(4) and results in

b)) = 3 <Z” k,ﬁ”) i?p

p>1 \k€Z

Immediately we identify that

_ X P
= E ’%‘—k,phk

keEZ
We are at the point to prove Theordfn 1 and we first consider onertsional data.

B. Proof for1D case

Let's consider a sequence afD Poisson independent random variable§,):<,<n, Where N = 27. The

approximation coefficient4{) of the Haar transform at the scale< j < J is in the form of
A=2"9Y

whereY is the sum of27 independent Poisson random variables((§f,)1<,<x~). The wavelet or detail coefficient
(W) is in the form of
W =27%9(Z, — Z)

where Z; and Z, are independent Poisson random variable and each is the @1 b independent Poisson

random variables (0fX,,)1<n<n)-
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Now for biorthogonal case, the approximation coefficiens liae same form as that of Haar. But its detail
coefficient {13) is
i 1
Wy =2"9(Zy — Z2 + g(Z3 — Z4))

where Z; and Z, are respectively the sum @ ~! independent Poisson random variables ((&f,)1<,<x~), and
Z3 and Z, are respectively the sum @f independent Poisson random variables ((&f,)1<.<~). Moreover,Z;,
Zs, Z3 and Z, are mutually independent.
By Proposition[B, we can write theth cumulant ofiV, i.e. /-@ZV”
/-@ZVI’ = 27¢PJ (/{51 + (—1)”/{52 + 8_p(n§3 + (—1)”/{5“))
= HZV 4+ 27ePigTP (/-@53 + (—1)”/@54)

Therefore we have,

K/va _,igV| — 2—cp.78—p|,$§3 + (_1)p’$§4|

IN

27CPIgTPY maX(lif3 , /-@54)

IN

27PISTP . 292\ 4

93(1—cp)—3p+1 M

Il
.

where A4, 1S the maximum intensity ofX,,)i<,<n. We can see that — 0 exponentially wherp increases.

The greatest error is reached wher= 1. Notice that if we wamn;f"b — Iigv for any p, ¢ must be greater than
one. In this case, the approximation error decreases erfialy as the scale, i.¢gj, increases. Now Propositic[h 2
can be applied here. Notice that the uniform convergence weispect to is verified. Immediately we conclude
that for 1D data, where > 1, the wavelet coefficients of non-normalized biorthogonahHtransform converge in

distribution towards those of non-normalized Haar tramsfo

C. Proof fordD case

Now let's look at the multi-dimensional case. We begin witte 2D case. We have &D Poisson signal
(Xm.n)i<m.n<n WhereN = 27, Clearly, we can only consider the approximation on detagfficients, since
the approximation coefficients of the two wavelet transfara identical. Let's denote theth cumulant of the
Haar coefficient of the bantyg, gh and gg respectively ag:”’“, x5 andx$“. Those of biorthogonal coefficient
will be denoted respectively as’“*, xG*» and x5 . Similar calculation as that in theD case shows the
following results. At thej-th scale,

for the bandhyg,

ﬁfcb _ /{ZI?G| < 22J(1—0P)—3;D+1/\mam
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for the bandgh,

KGHb

p - K§H| < 22j(176p)73p+1/\mam

and for the bandg,
|K/§Gb _ ”§G| < 22j(176p)*3p+2(1 + 87P) Amaz

If we repeat the same reasoning as that inlthecase, we will again find that when> 1, the wavelet coefficients
of non-normalized biorthogonal Haar transform convergelistribution towards those of non-normalized Haar
transform. It is clear that the above calculation and reimgpoan be extended td-dimensional 4 > 2) case

without difficulty, and the conclusion is the same. O

APPENDIXII

PROOF OFPROPOSITION[]
A. Proof of Fact[]L
After an algebraic rearrangement 6f(m; ) = z,,» and with the factz,,, > 0, it is found out that feasible

solutions necessarily satisfy

2mj_,k(2mj_,k + /\j,k)
Mk + Ajk

The above inequality combined withf — 1 > 0, m;;, > 0 and\;» > 0 shows Facf]1. O

B. Proof of Propositior{]1

First let's denote the right hand side (11) @sWhenm,; ;, = 3, we have

Aj Aj
G(mjk) = \/zi/z + Wik(zi/z +1) - \/2mjj - (225 + 1) < 22

Second, we can verify tha¥ is a strictly increasing function under the conditi (1ice G'(m; k) > 0, and

clearly G(m; ) — oo asmj, — oc.
Obviously, the above results guarantee immediately thetenée and uniqueness of the feasible solution of the

equationG/(m; ) = z,/2. This solution is contained in the solutions $7](20). O
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Fig. 5. XMM image denoising (shown with logarithmic intety$i Image size= 512x512. J = 7. (a) intensity imag&X,,in, = 0.05, Apmas =
200.05); (b) Poisson noisy image; (c) intensity estimated by CLTBeré\ 5 = A\,in; (d) intensity estimated by FAB-BH; (e)(g) local zoom
of (cY (A\(h) local 7zoom of (d)
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Fig. 6. XMM image Tl denoising (shown with logarithmic intty). Image size= 512 x 512. J = 7. (a) intensity image(Anin =
0.05, Amaz = 200.05); (b) Poisson noisy image; (c) intensity estimated by CLTB @fhere A\ = A\in; (d) intensity estimated by FAB-BH
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