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Abstract

In this paper, we study the synthesis of Gegenbauer processes using the wavelet
packets transform. In order to simulate a 1-factor Gegenbauer process, we introduce
an original algorithm, inspired by the one proposed by Coifman and Wickerhauser
[1], to adaptively search for the best-ortho-basis in the wavelet packet library where
the covariance matrix of the transformed process is nearly diagonal. Our method
clearly outperforms the one recently proposed by [2], is very fast, does not depend
on the wavelet choice, and is not very sensitive to the length of the time series.
From these first results we propose an algorithm to build bases to simulate k-factor
Gegenbauer processes. Given its practical simplicity, we feel the general practitioner
will be attracted to our simulator. Finally we evaluate the approximation due to the
fact that we consider the wavelet packet coefficients as uncorrelated. An empirical
study is carried out which supports our results.
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1 Introduction

The simulation of long memory processes is an issue of a paramount impor-
tance in many statistical problems. In the time domain, there exist different
methods devoted to this task (see [3] for a non exhaustive review of them).
Alternative efficient approaches, which operate in the frequency domain, were
also proposed (see [4,5,3]). More recently, owing to their scale-invariance prop-
erty, wavelets have since been widely adopted as a natural tool for analyzing
and synthesizing 1/f long-memory processes. They were demonstrated to pro-
vide almost Karhunen-Loève expansion of such processes [6].

The simulation of fractional differenced Gaussian noise (fdGn) using discrete
wavelet transform (DWT) has been studied by [7]. This kind of process is
characterized by an unbounded power spectral density (PSD) at zero. The
proposed method relies on the fact that the DWT approximately decorre-
lates long memory processes (see e.g. [8,9,6,10,11]). The orthonormal wavelet
decomposition ”only” ensures approximate decorrelation. The quality of this
approximation has been widely assessed in [12,13,14,9,6,10,15] for a variety of
1/f long memory processes.

The DWT is only adapted to processes whose PSD is unbounded at the origin.
Gegenbauer processes (sometimes also called seasonal persistent processes) are
also long memory processes and are characterized by an unbounded PSD. The
main difference with the fdGn processes is that the singularities of the PSD
of the Gegenbauer processes can be located at one or many frequencies in the
Nyquist domain, not necessarily at the origin. Therefore, a natural tool to an-
alyze such processes appears to be the wavelet packet transform (WPT), which
is a generalization of the wavelet transform. The wavelets packets adaptively
divide the frequency axis into separate dyadic intervals of various sizes. They
segment unconditionally, the frequency axis and are uniformly translated in
time. Moreover, a discrete time series of size N is decomposed into more than
2N/2 wavelet packet (WP) bases. Among these bases, one is a very good can-
didate to whiten the series and hence almost diagonalizes the covariance of
the seasonal process.

Recently, Mallat, Zhang and Papanicolaou [16], and, following their work,
Donoho, Mallat and von Sachs [17], studied the idea of estimating the covari-
ance of locally stationary processes by approximating the covariance of the
process by a covariance which is almost diagonal in a specially constructed
basis (cosine packets for their locally stationary processes) using an adap-
tation of Coifman-Wickerhauser (CW) best ortho-basis algorithm. To some
extent (given that we are interested in synthesis and they were in estimation
issues), our work here can be seen as the spectral dual of theirs, since we are
interested in studying the covariance of seasonal processes in the WP domain.
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To the best of our knowledge, the simulation of the Gegenbauer process using
the Discrete WPT (DWPT) has been first studied in [2]. The DWPT creates a
redundant collection of wavelet coefficients at each level of the transform orga-
nized in a binary tree structure, equipped with a natural inheritance property.
Different methods exist to determine the best candidate orthonormal basis.
The author in [2] used a method which depends on both the location of the
singularity and the wavelet used in the DWPT. To simulate realizations of
a Gegenbauer process, once the basis is found, it then remains to apply the
(inverse) DWPT using the same approximation as in [7].

This basis search method consists first in considering the square gain function
of the wavelet filter associated with each WP coefficient that is sufficiently
small at the Gegenbauer frequency. Then a pruning of this family is done to
obtain the ortho-basis. The main advantage of this method is its simplicity.
However several points are still questionable and must be clarified. First the
notion ”sufficiently small” implies the introduction of a threshold which seems
to depend both on the wavelet used and the length of the simulated series.
No indication is given how to choose this threshold which remains awkward
to control. Furthermore, it is not clear why the basis should depend on the
wavelet. Lastly, this method inherently leads to an over-partitioning of the
spectra which depends on the wavelet and the threshold considered (see e.g.
Fig.2 and Fig.4 in [2]). Indeed, as the Gegenbauer process we consider here
is stationary, it is known that the Karhunen-Loève basis is the Fourier ba-
sis. While over-partitioning, the approach of [2] inherently tries to approach
the Fourier basis (more precisely it tends to select most of the atoms from the
Shannon wavelet packets at the deepest level). Then, this makes wavelet pack-
ets machinery only of limited interest here. Furthermore, many important sta-
tistical tasks involving Gegenbauer processes would seriously suffer from such
an over-partitioning, e.g. maximum likelihood estimation, resampling-based
inference, to cite only a few examples.

To alleviate these intricacies, our belief is that it should more beneficial to
build, for each Gegenbauer process, an unique valid (almost whitening) ba-
sis for all wavelets with a reduced number of packets. This basis should only
depend on the Gegenbauer frequencies, but not on the long memory param-
eters nor on the wavelet used. The rationale behind these claims can be sup-
ported by different arguments. Indeed, wavelets are now widespread as almost-
diagonalizing expansion for 1/f processes, no matter what the long memory
parameter and the wavelet are. Although, the latter parameters clearly in-
fluence the quality of the decorrelation as was widely proven [6]. Our goal is
then to mimic this behavior by extending and generalizing the aforementioned
properties to Gegenbauer processes within the WP framework, with the desir-
able properties that (i) our basis tends to the dyadic wavelet basis (the 1-band
WP) when the singularity frequency tends to 0, and (ii) the provided basis
should have a limited number of packets. To get a gist of the latter property,
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we can say that we are seeking a basis (and the corresponding tree) which
attains the minimal diagonalization error penalized by the complexity of the
tree in terms of the number of packets (i.e. number of leaves of the tree) in-
volved in the dyadic partition of the spectral axis provided by the selected WP
basis. See [17, Sec. 13] and [18] for a more detailed discussion of complexity
penalized estimation and its relation to best-ortho-basis.

In this paper, we propose an alternative efficient way to determine the appro-
priate basis for the simulation of 1-factor Gegenbauer process, that we extend
to the simulation of k-factor Gegenbauer process. To find this basis, We pro-
pose an algorithm which is an adaptation of the best-basis search algorithm of
[1]. The main property of this algorithm is that it provides us with a (unique)
basis that only depends on the location of the Gegenbauer frequency, unlike
the construction method of [2] which provides bases depending both on the
location of the singularity and the wavelet. To point out the role played by
the wavelet used, we will study the decorrelation properties of the WP coeffi-
cients of a Gegenbauer process when it is expressed in this basis. In particular,
the influence of the wavelet regularity, the long memory parameter and the
location of the singularity on the decorrelation decay speed will be established.

The organization of this paper is as follows. After some preliminaries and nota-
tions related to the WPT theory (Section 2.1) and to the Gegenbauer process
(Section 2.2) are introduced, we will define the best-basis search algorithm
and the cost function we propose (Sections 3.1-3.2). Theoretical support to
this cost function is also supplied. We then develop an algorithm to build an
appropriate basis to simulate 1-factor Gegenbauer process (Section 3.3). This
method will then be extended to k-factor processes (Section 3.4). Theoretical
evaluation of the approximation quality due to the fact that we consider the
WP coefficient as uncorrelated is studied in Section 4. A simulation study is
finally conducted to illustrate and discuss our results (Section 5).

2 Preliminaries

2.1 The wavelet packet transform

Wavelet packets were introduced by Coifman, Meyer and Wickerhauser [19], by
generalizing the link between multi-resolution approximations and wavelets.
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Let the sequence of functions defined recursively as follows:

ψ2p
j+1(t) =

∞
∑

n=−∞

h(n)ψp
j (t− 2jn) (1)

ψ2p+1
j+1 (t) =

∞
∑

n=−∞

g(n)ψp
j (t− 2jn) (2)

for j ∈ N and p = 0, . . . , 2j − 1, where h and g are the conjugate pair of
quadrature mirror filters (QMF). At the first scale, the functions ψ0 and ψ1

can be respectively identified with the father and the mother wavelets φ and
ψ1 with the classical properties (among others):

∫

φ(t) = 1,
∫

ψ(t) = 0 (3)

The collection of translated, dilated and normalized functions ψp,n
j

def
= 2−j/2ψp(2

−jt−
n) makes up what we call the (multi-scale) wavelet packets associated to the
QMFs h and g. j ∈ N is the scale index, p = 0, . . . , 2j − 1 can be identified
with a frequency index and k is the position index. It has been proved (see
e.g. [20]) that if {ψp,n

j }n∈Z is an orthonormal basis of a space Vj, then the

family {ψ2p,n
j+1 , ψ

2p+1,n
j+1 }n∈Z is also an orthonormal basis of Vj.

The recursive splitting of vector spaces is represented in a binary tree. To each
node (j, p), with j ∈ N and p = 0, . . . , 2j − 1, we associate a space V

p
j with

the orthonormal basis {ψp
j (t− 2jn)}n∈Z. As the splitting relations creates two

orthogonal basis, it is obvious that V
p
j = V

2p
j+1 ⊕V

2p+1
j+1 .

The WP representation is overcomplete. That is, there are many subsets of
wavelet packets which constitute orthonormal bases for the original space V0

(typically more than 22J−1
for a binary tree of depth J). While they form a

large library, these bases can be easily organized in a binary tree and efficiently
searched for extreme points of certain cost functions, see [1] for details. Such
a search algorithm and associated cost function are at the heart of this paper.

In the following we call the collection B = {ψp,n
j }(j,p)∈T ,n∈Z the basis of L2(R),

and the tree T for which the collection of nodes (j, p) are the leaves, the
associated tree.

Given a basis B and its associated tree T it is possible to decompose any
function x of L2(R) in B. At each node (j, p) ∈ T , the WP coefficients W p

j (n)
of x in the subspace V

p
j at position n are given by the inner product:

W p
j (n) =

∫

ψp
j (t− 2jn)x(t)dt. (4)

For a discrete signal of N equally-spaced samples, the DWPT is calculated
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using a fast filter bank algorithm that requires O(N logN) operations. The
interested reader may refer to the books of Mallat [21] and Wickerhauser [20]
for more details about the DWPT.

2.2 Gegenbauer process

The k-factor Gegenbauer process is a 1/f -type process introduced in [22,23].
The PSD f of a such process (Xt)t is given by for all |λ| ≤ 1/2

f(λ) =
σ2

ε

2π

k
∏

i=1

(

4 (cos 2πλ− cos 2πνi)
2
)−di

(5)

where k is a finite integer and 0 < di < 1/2 if 0 < |νi| < 1/2 and 0 < di < 1/4
if |νi| = 0 for i = 1, . . . , k. The parameter di and νi are respectively called the
memory parameter and the Gegenbauer frequency. The k-factor Gegenbauer
process is a generalization of the fractionally differenced Gaussian white noise
process (see [24] and [25]) in the sense that the PSD is unbounded at k different
frequencies not necessary located in 0.

The Gegenbauer process (Xt)t is related to a white noise process (εt)t with
mean 0 and variance σ2

ε through the relationship:

k
∏

i=1

(I − 2νiB +B2)diXt = εt, (6)

where BXt = Xt−1 and ηi = cos 2πνi.
The main characteristic of the Gegenbauer processes in the time domain is the
slow decay of autocovariance function. In the case of a 1-factor Gegenbauer
process, Gray et al. [22] and then Chung [26] proved the asymptotic behavior
of the autocovariance function:

ρ(h) ∼ h2d−1 cos(2πνh) as h→ ∞. (7)

The next section is devoted to the construction of the best basis diagonalizing
the covariance of a N -sample realization of a Gegenbauer process with the
convention N = 2J .

3 Simulation of Gegenbauer processes

This section is composed of two parts. The first one is devoted to the simu-
lation procedure in the general case: no assumption is made concerning the
basis, except that we have an appropriate basis. The second part concerns the
construction of this appropriate basis.
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3.1 Simulation procedure

Here we present the procedure to simulate a Gegenbauer process. Assume
we would like to simulate a k-factor Gegenbauer process, (Xt)t, with PSD f
as defined in (5), with Gegenbauer frequencies (λ1, . . . , λk) and long memory
parameters (d1, . . . , dk). The length of the realization will be N = 2J .

We define the band-pass variance β2
j,p in the frequency interval Ip

j = [ p
2j+1 ,

p+1
2j+1 ]

by:

β2
j,p = 2

∫
p+1

2j+1

p

2j+1

f(λ)dλ (8)

As in [7] and [2], we assume that the PSD in each frequency interval Ip
j , for

which the couple (j, p) is a leaf of the tree T associated to the basis B, is
constant and equal to σ2

j,p. Then, the band-pass variance is (approximately)
equal to:

β2
j,p = 2

∫
p+1

2j+1

p

2j+1

σ2
j,pdλ = 2−jσ2

j,p (9)

Thus the variance of each WP coefficient is given by V[W p
j (n)] = σ2

j,p = 2jβ2
j,p,

V is the variance operator. To simulateN observations of a Gegenbauer process
(Xt)t=1,...,N with PSD f , we use the following procedure:

1: Given an appropriate basis B and its associated tree T , calculate the
band-pass variances β2

j,p, (j, p) ∈ T as in (8);
2: For each (j, p) ∈ T , generate 2J−j realizations of W p

j (n), an independent
Gaussian random variable with zero mean and variance equal to σ2

j,p;
3: Organize the WP coefficients W p

j (n), for (j, p) ∈ T and n = 1, . . . , 2J−j, in
a vector WB, and apply the the inverse DWPT to obtain the observation
vector X = (X1, . . . , XN)T .

In the following subsection, we examine the construction of what we term an
appropriate basis B.

3.2 Best-basis construction algorithm

3.2.1 Approximate Diagonalization in a Best-Ortho-basis

Let (Xt)t be a stationary Gegenbauer process and Γ its covariance matrix. Let
γi,j [B] the entries of Γ [B]; the covariance matrix of the coordinates WB of
(Xt)t in the ortho-basis B. One can define diagonalization as an optimization
of the functional [17]:

max
B

E(B) = max
B

∑

i

e(γii[B]) (10)

7



where e is taken as a strictly convex cost function. In practice, the optimiza-
tion formulation of diagonalization is not widely used, presumably because it
generally does not help in computing diagonalizations. Optimization of an ar-
bitrary objective E over finite libraries of orthogonal bases - the cosine packets
library and the wavelet packets library - is not a problem with good algorith-
mic solutions. Wickerhauser [27] suggested applying these libraries in problems
related to covariance estimation. He proposed the notion of selecting a ”best
basis” for representing a covariance by optimization of the ”entropy func-
tional” eH(γ) = − log γ over all bases in a restricted library. Authors in [16],
developed a proposal which uses the specific choice e2(γ) = γ2.

In the Wickerhauser formulation, one is optimizing over a finite library and
there will not generally be a basis in this library which exactly diagonalizes
Γ. Then different strictly convex functions e(γ) may end up picking different
bases. For example, the quadratic cost function e2 has a special interpretation
in this context as it leads to a basis which best diagonalizes Γ in a least-
squares sense [17], and is closely related to the Hilbert-Schmidt (HS) norm of
the diagonalization error. Similarly, the -log ”entropy functional” is connected
to the Kullback-Leibler divergence [17]. Even if the approach developed in
[16,17] was specialized to the case of e2, it is not really tied to the specific
entropy measure; other additive convex measures can be accommodated such
as the lα norm α > 2 or the neg-entropy, and the CW proposal makes equally
sense. This was the starting point of our work.

3.2.2 Proposed Algorithm

The optimization problem of E over bases can be re-expressed as an opti-
mization over trees, as follows. Set EV[W p

j ] =
∑

nj
e
(

V

[

W p
j (nj)

])

. Then as
∑

µ∈B =
∑

(j,p)∈T

∑

nj
, one is actually trying to optimize:

∑

(j,p)∈T

EV[W p
j ] (11)

over all recursive dyadic partitions of the spectral axis. The best basis B is
then the one that maximizes some measure of the wavelet packets variances,
among all the bases that can be constructed from the tree-structured library.
The construction of the best basis can be accomplished efficiently using the
recursive bottom-up CW algorithm defined by [1]:

Bp
j =







B2p
j+1 ∪ B2p+1

j+1 if EV[W 2p
j+1] + EV[W 2p+1

j+1 ] > EV[W p
j ],

Bp
j if EV[W 2p

j+1] + EV[W 2p+1
j+1 ] ≤ EV[W p

j ].
(12)

The chosen criterion lies on the comparison between some measure of WP
coefficients variances at the children nodes and their parents. Beside the fact
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that these variances, and then the basis, will depend on the long-memory pa-
rameter (or even the wavelet), there is another even more important reason
that prevents from a crude use of such a search algorithm with the cost func-
tions that we defined above (such as e2). Indeed, the band-pass variance of
any node is equal to the sum of those of its children. Hence, it is not a difficult
matter to check that any strictly convex cost functional such as those speci-
fied above, e.g. e2 or eH , will systematically provide the basis corresponding
to the finest partition of the spectral axis, which is clearly the worst in terms
of complexity (i.e. number of wavelet packets). Again, this makes the wavelet
packets machinery only of limited interest.

Therefore, motivated by the above discussion, we were led to define, for the
wavelet packets W 2p

j+1 and W 2p+1
j+1 , a new type of WP variance cost measure as

follows:

EV[W 2p
j+1] =







0 if V[W 2p
j+1] ≤ A0V[W 2p+1

j+1 ]

V[W 2p
j+1] otherwise.

(13)

EV[W 2p+1
j+1 ] =







0 if V[W 2p+1
j+1 ] ≤ A0V[W 2p

j+1]

V[W 2p+1
j+1 ] otherwise.

(14)

where A0 is a fixed positive constant (its value will depend for instance on the
singularity frequency and will be given in the proof of Proposition 1).

In the following, when we write (with a slight abuse of notation) that EV[W 2p
j+1] =

0 or EV[W 2p+1
j+1 ] = 0, it will mean respectively that there exists a constant

A0 < 1 such that V[W 2p
j+1] ≤ A0V[W 2p+1

j+1 ] or V[W 2p+1
j+1 ] ≤ A0V[W 2p

j+1]. In these
cases we will also use respectively the notations,

V[W 2p
j+1] ≪ V[W 2p+1

j+1 ] and V[W 2p+1
j+1 ] ≪ V[W 2p

j+1]

Using the criterion defined above, algorithm (12) becomes 2 :

Bp
j =







B2p
j+1 ∪ B2p+1

j+1 , if EV[W 2p
j+1] = 0 or EV[W 2p+1

j+1 ] = 0,

Bp
j , otherwise.

(15)

In the following, we use this algorithm to build the best-ortho-basis for a
Gegenbauer process.

3.3 The 1-factor case

It is natural to build the best basis according to the shape of the PSD of our
process. More precisely, the basis is a function of the location of the singu-

2 Strictly speaking, this is no longer a CW algorithm.
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larities. It means that in the case of 1-factor Gegenbauer process, the basis
depends directly on the value of the Gegenbauer frequency. Using the nota-
tions defined in the previous section, the recursive construction is summarized
in the following proposition.

Proposition 1 If (Xt)t is a stationary 1-factor Gegenbauer process, with pa-
rameters (d, ν, σ) then, at node (j, p), if the frequency ν is in the interval
Ip
j = [ p

2j ,
p+1
2j [, then:

EV[W 2p
j+1] = 0 or EV[W 2p+1

j+1 ] = 0,

and consequently for algorithm (15):

Bp
j = B2p

j+1 ∪ B2p+1
j+1 .

Furthermore, if the frequency ν is in the closure of the intervals I2p
j+1 and I2p+1

j+1 ,
then:

EV[W 4p+1
j+2 ] = 0 and EV[W 4p+2

j+2 ] = 0,

and consequently for algorithm (15):

Bp
j = B4p

j+2 ∪ B4p+1
j+2 ∪ B4p+2

j+2 ∪ B4p+3
j+2 .

Proof: See Appendix A.

To construct the best-ortho-basis of a 1-factor Gegenbauer process, we propose
Algorithm 1 which proceeds according to Proposition 1 and the aggregation
relation defined in (15). This algorithm is decomposed into two mains loops.
The first one builds a family where the best-ortho-basis is included. The second
loop is a pruning of the family to obtain the best-ortho-basis. This second loop
corresponds to the second part of Proposition 1.

The algorithm we propose is very fast involving only simple comparisons, and
it does not require the calculation of variances of WP coefficients. To illustrate
the computational speed of our algorithm we provide in Fig.1 some computa-
tion times to build bases using our method and the method of [2] 3 . In this
example, we are only interested in the time needed to build the basis. These
bases are built to simulate Gegenbauer process with a singularity located at
1/12 and length equal to 2J , with J = 6, . . . , 13. The solid line corresponds
to the computation time of the algorithm we propose. The symbols ′+′, ′×′

and ′.′ correspond to the computation time using the method of [2] in the case
of respectively ′db10′ (Daubechies wavelet with q = 10 vanishing moments),
′sym10′ (Symmlet q = 10) and ′coif5′ (Coiflet q = 10). In every case the

3 The experiments were run under the R environment on a 2.4GHz PC with 512MB
RAM
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Algorithm 1. 1-factor Best-Basis Search Algorithm

Require: A Gegenbauer frequency ν and sample size N = 2J ,

Initialization

1: for j = 0, . . . , J and p = 0, . . . , 2j − 1 do

2: Tree(j, p) = 0.
3: end for

Main Loop

4: for j = 1, . . . , J do

5: for p = 0, 2, . . . , 2j − 2 do

6: if ν ∈ [p/2j+1, (p+ 1)/2j+1] then

7: Tree(j, p+ 1) = 1
8: end if

9: if ν ∈ [(p+ 1)/2j+1, (p+ 2)/2j+1] then

10: Tree(j, p) = 1
11: end if

12: end for

13: end for

Pruning

14: for j = 1, . . . , J do

15: for p = 0, 2, . . . , 2j − 2 do

16: if ν ∈ [p/2j+1, (p + 1)/2j+1] and maxr=1,...,J−j−1;s=0,...,2r−1 Tree(j +
r, 2rp+ s) > 0 then

17: Tree(j, p) = 0
18: end if

19: end for

20: end for

computation time increases with the length of the process. However this time
increases always much faster for [2] than for the current method (the ratio
of computation times is 10 to 300 times larger for the competitor method for
series of length 64 to 8192). Typically, for a 8192-sample series, it takes 100
ms to our algorithm to find the best basis while [2] algorithm requires 30 s.

Examples

We give two examples of construction of bases. Fig.2.(a) depicts the basis built
using the first part of Algorithm 1, to simulate a stationary Gegenbauer pro-
cess with frequency ν = 1/12. Fig.2.(b) shows the basis constructed in the case
of a stationary Gegenbauer process with ν = 0.375. The last case corresponds
to the second situation of Proposition 1. One may remark that unlike the first
case where the tree has at least one leaf at each scale, in this second case,
because of the particular value of the Gegenbauer frequency, there exists scale
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for which the tree has no leaf (see scale j = 2). For comparative purposes,
observe that the basis provided by the approach of [2] (with a threshold 0.01)
is highly dependent of the wavelet choice. For example in Fig.2.(c) (′db3′),
one cannot have an idea of the singularity location. In Fig.2.(d) (′coif5′), two
singularties are apparent while only one is relevant. In both last cases, the
basis is clearly over-partitioned.

3.4 The k-factor case

In this section we are interested in the general case: the construction of the
appropriate basis to simulate a k-factor Gegenbauer process. To achieve this
goal, let us consider (X1

t )t and (X2
t )t as respectively a (k − 1)-factor and a

1-factor Gegenbauer processes. We denote (d1, ν1, . . . , dk−1, νk−1) and (dk, νk)
the parameters of (X1

t )t and (X2
t )t. Let B1 and B2 the best-ortho-bases of

(X1
t )t and (X2

t )t. We denote respectively T1 and T2 the trees associated with
the bases B1 and B2.

Let (Xt)t be a k-factor Gegenbauer process with parameters (d1, ν1, . . . , dk, νk).
We denote B the appropriate basis and T the associated tree. Let B′ be the
family equal to the union of the bases B1 and B2 and let T ′ be the associated
tree. We are now ready to state the following,

Proposition 2 Under the previous assumptions:

(1) B ⊂ B′

(2) Let (j, p) be node in the tree T ′ such that there exists r∗ = 1, . . . , J − j
and s∗ = 0, . . . , 2r∗ − 1 such that (j + r∗, 2r∗p+ s) is also in the tree T ′.
Then:

(j, p) 6∈ T and (j + r∗, 2r∗p+ s) ∈ T

Proof: See Appendix A.

According to this last proposition, the best-ortho-basis of a k-factor Gegen-
bauer process may be built using k well chosen best-ortho-bases of 1-factor
Gegenbauer processes. The steps outlined in Algorithm 2 allow to build the
appropriate basis to simulate a k-factor Gegenbauer process. This procedure
lies on Algorithm 1 and results given in Proposition 2.

Example

Here, we give an example of construction of the best-ortho-basis for a 2-
factor Gegenbauer process (Xt)t with Gegenbauer frequencies 1/12 and 1/24.
Fig.3.(a) and 3.(b) show the best-ortho-bases B1 and B2 of the processes (X1

t )t
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Algorithm 2. k-factor Best-Basis Search Algorithm

Require: Gegenbauer frequencies νi and sample size N = 2J ,

Initialization

1: for Each Gegenbauer frequency νi, i = 1, . . . , k do

2: Construct the best-ortho-basis Bi and associated tree Treei using Algo-
rithm 1.

3: end for

4: Tree = ∪k
i=1Treei (implemented using e.g. the logical OR operator under

R or Matlab).

Pruning

5: for j = 1, . . . , J do

6: for p = 0, 2, . . . , 2j − 2 do

7: if Tree(j, p) = 1 and maxr=1,...,J−j−1;s=0,...,2r−1 Tree(j+r, 2
rp+s) > 0

then

8: Tree(j, p) = 0
9: end if

10: end for

11: end for

and (X2
t )t (see the previous section for construction of these bases). The fam-

ily B∗ equal to B1 ∪ B2 is given in Fig.3.(c). This family is not a basis, the
intersections between its elements are not always empty, e.g. at depth j = 3,
the elements at p = 0 and p = 1 should not be considered as elements of
the best-ortho-basis and must be pruned away. This is accomplished using the
methodology developed above, and an appropriate basis for the process (Xt)t

is obtained as represented in Fig.3.(d).

3.5 Back to the original CW algorithm

Our aim here is to shed light on our best-basis search algorithm by relating it to
the original CW one. More precisely, we shall give an additive cost functional,
which can be used within the CW algorithm, that is closely linked to our
proposal in (15). Basically, the aggregation relation (15) can be thought of as
a rule which at each level, enforces dyadic splitting of an interval Ip

j if (and
only if) the WP variance inside that interval is above a threshold, and the node
corresponding to this interval is marked as a branch (non-terminal). Otherwise
the interval is kept intact (marked as a leaf) and the children nodes in the
tree are pruned away. Doing so, this procedure implicitly tries to track the
packets that contain the singularities of the process. Hence, motivated by these
observations, an additive variance cost functional satisfying this aggregation

13



rule can be defined as:

EV[W p
j ] = β2

j,p1 (β2
j,p ≥ δ

)

(16)

where β2
j,p is the band-pass variance as before and δ is a strictly positive thresh-

old. The original recursive (bottom-up) CW could then be used to minimize
such a cost functional (termed as ”Number above a threshold” functional in
Wickerhauser book [20]). Unfortunately, the threshold remains an important
issue to fix, and depends jointly on the singularity frequencies, the long mem-
ory parameter, the WP level and even its location. It is therefore awkward
to choose and control in general. To circumvent such a difficulty, a condi-
tion involving the singularity frequencies can substitute for the thresholding
condition in (16), that is:

EV[W p
j ] = β2

j,p1 (∃ l = 1, . . . , k | νl ∈ Ip
j

)

(17)

From the above arguments, it turns out that minimizing the latter cost (with
the CW algorithm) will provide us with the same basis as Algorithm 2. The
main difference is that from a numerical standpoint, our construction algo-
rithm is much faster and stable since there is no need to compute explicitly
the band-pass variances, which avoids possible numerical integration problems
(because of the PSD singularities).

4 Analysis of decorrelation properties

One of the approximations adopted to simulate the Gegenbauer processes us-
ing the DWPT is that the coefficients inside each packet of the basis are
uncorrelated. Strictly speaking, this is not true, although the expected range
of correlation is rather weak as evidently shown by the numerical experiments
in Fig.4, in contrast to the long-range dependence of the process in the orig-
inal domain. This section provides a theoretical result that establishes the
asymptotic behavior of the covariance between WP coefficients for a 1-factor
Gegenbauer process.

Theorem 1 If ψ has q ≥ 1 vanishing moments with support [(N1 − N2 +
1)/2, (N2 − N1 + 1)/2] and X(t) is a stationary 1-factor Gegenbauer process
with Gegenbauer frequency ν. Then the wavelet packet coefficients covariance
Cov(W p1

j1 (k1),W
p2
j2 (k2)) decays as:

• O
(

|2j1k1 − 2j2k2|
2d−1−Rp1−Rp2

)

, if p1 6= 0 and p2 6= 0,

• O
(

|2j1k1 − 2j2k2|
2d−1−Rmax(p1,p2)

)

, if p1 = 0 or p2 = 0,

• O
(

|2j1k1 − 2j2k2|
2d−1

)

, if p1 = p2 = 0,

14



for all, j1, j2, k1 and k2 such that |2j1k1 − 2j2k2| > (N∗ + 1)(2j1 + 2j2), with
N∗ = max(N1, N2), and Rp = q

∑j−1
k=0 p

k for p 6= 0, and p = (pj−1pj−2 . . . p1p0)2

is the binary representation of p. In the last case, we note that j1 = j2 = j.

Proof: See Appendix B.

This proposition generalizes the results given by [10] and [15] for the case of
the FARIMA process. It makes an interesting statement about the order of
correlation between well separated WP coefficients, by establishing that the
covariance between W p1

j1 (k1) and W p2
j2 (k2) decays exponentially over time and

scale space. More precisely, the decay speed for p1 6= 0 or p2 6= 0, depends on
the regularity of the wavelet used, on the memory parameter of the process,
and indirectly on the location of singularity through the frequency indices p1

and p2. However, keeping the same notations as in Proposition 1, the larger
q, the wider the wavelet support and the fewer are the number of wavelet
packet coefficients that satisfy the support condition |2j1k1 − 2j2k2| > (N∗ +
1)(2j1 + 2j2). Thus, by choosing a wavelet with a large q, the rate of decay
of autocovariance function increases, but over a subset of WP coefficients.
One must then avoid inferring a stronger statement. Nonetheless, the effective
support of a wavelet is smaller than the provided bound (see Lemma 2), and
we expect a rapid decay in the WP coefficient’s covariance for translations
and dilations satisfying |2j1k1 − 2j2k2| > (N∗ + 1)(2j1 + 2j2). The following
simulation study confirms these remarks.

5 Simulation results and discussion

5.1 Exact correlation of DWPT transformed series

Suppose we take X as our input stationary Gegenbauer process vector, whose
covariance matrix is Γ. If B is the best-ortho-basis provided by our algorithm,
it follows that the covariance matrix of the transformed series in the WP
domain is:

Γ [B] = WT
B ΓWB (18)

where WB is the DWPT transform matrix operating on a vector X, whose
columns are the basis elements of B. This equation gives the (exact) covariance
structure for a given choice of wavelet (type, number of vanishing moments)
and treatment of boundaries (e.g. periodic) since both are in WB.

Fig.4.(a) depicts the original correlation matrix Ω (resulting from Γ) for a
Gegenbauer process vector (N = 64) with parameters d = 0.4 and ν = 1/12.
In Fig.4.(b)-(e) are shown the exact correlation matrices resulting from (18),
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using respectively the Daubechies (q = 10), Symmlet (q = 10), Coiflet (q = 10)
and Battle-Lemarié wavelets (q = 6). There is essentially no correlation within
the packets that are far from the singularities. The most prominent correlation
occurs within the packets close to the singularity. This effect is mainly caused
by the support condition stated in Theorem 1 since packets near the singularity
are those with smallest length. There is also some correlation between wavelet
packets. A significant part of the correlation between two different packets
seems to be concentrated along the boundaries between contiguous WP. The
latter effect is a consequence of periodic boundary conditions. For example, the
periodic boundary effect is higher for the Battle-Lemarié spline wavelet, whose
support is 59 (compare to the series length of 64). But except boundary effects,
this wavelet has a smallest between and intra-packet correlation particularly
inside WP close to the singularity. This can be interpreted as a result of a
sharper band-pass localization of the Battle-Lemarié filters, while the other
wavelets have side lobes that yield more energy leaks between bands.

To gain insight into these approximate diagonalizing capabilities of the DWPT,
we conduct a larger scale experiment where four Gegenbauer processes with
different frequencies and long memory parameters (d, ν) are studied: three 1-
factor with (0.4, 1/12), (0.2, 1/12), (0.3, 0.016) and one 2-factor with (0.3, 1/40)−
(0.3, 1/5). Again the influence of the wavelet on the correlation matrix result-
ing from (18) is assessed. For comparative purposes, our bases are systemati-
cally compared to those of [2] for each process (and wavelet as the best-basis
of [2] depends also on the wavelet filter). We also need to consider a crite-
rion to measure the quality of non-correlation. We here propose the Hilbert-
Schmidt norm of the diagonalization error, which measures the sum of squares
of the off-diagonal elements of the covariance matrix in the best-ortho-basis.
As explained above, the method of [2] tends to over-partition the spectral axis
yielding to too many packets. Hence, to penalize such configurations and make
the comparison fair, we propose the following penalized criterion [17,18]:

S(B) = ‖Ω [B] − Ω0‖
2
HS + λ# (B) (19)

where Ω [B] is the correlation matrix resulting from (18) and Ω0 is the cor-
relation matrix of a white noise, i.e. the identity matrix and λ is a weight
parameter balancing between the diagonalization error and the complexity of
the tree associated to B as measured by #(B), the number of WP (leaves of
the tree) in the basis. The value of the weight λ is determined by considering
two extreme cases. On the one hand, in the Shannon basis, we can assume that
the decorrelation of the covariance matrix of the Gegenbauer process is perfect
but the tree associated to this basis has too many leaves and the penalty term
is the highest; thus S(BS) = 2Jλ. On the other hand, if one considers the
basis B0 composed with only one leaf (i.e. the root packet W 0

0 ), there isn’t any
decorrelation of the covariance matrix. That is S(B0) = ‖Ω − Ω0‖

2
HS, with Ω

the correlation matrix of the Gegenbauer process whose variance-covariance
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matrix is Γ. Equating the scores of these two extreme cases yields the following
weight:

λ =
‖Ω − Ω0‖

2
HS

2J − 1
.

Table.1 summarizes the scores S obtained for each process as a function of
the wavelet filter properties (type and number of vanishing moments). We
here assumed time series of length N = 256. For details about the calculation
of the exact autocovariance function of Gegenbauer processes and hence its
associated covariance matrix, see [28,29,30]. These tables show that:

• The basis provided by our algorithm is systematically better than the one
given by [2], whatever the wavelet and process. Over-partitioning is clearly
responsible for the bad performance of the approach in [2]. Meanwhile, the
diagonalization error part (not shown here but will be in the next section)
remains comparable for both bases. This means that our basis, with a re-
duced number of packets, does not sacrify the diagonalization quality and
yields a diagonalization error comparable to what would be obtained by
over-partitioning. It is also worth pointing out that the approach of [2] fails
in providing a basis for spline wavelets, and thus cannot be used in this
case. The reason is that their best basis search algorithm strongly relies on
a threshold on the wavelet packet filter gain, whose choice remains ad hoc.

• For a given process, the criterion S decreases as the number of vanishing
moments increases. This is in a very good agreement with our expectations
as stated in Theorem 1.

• From our experiments, we have also noticed that as the number of vanishing
moments increases, the best basis provided by [2] tends towards the basis
we propose.

• For all processes, and among all tested wavelets, the Battle-Lemarié spline
wavelet appears to provide the best score. This confirms our previous ob-
servations. Nonetheless, the observed differences between wavelets become
less salient at high number of vanishing moments.

5.2 Simulation of Gegenbauer processes

This section is devoted to the illustration of some simulation examples of
Gegenbauer processes. The same Gegenbauer processes as in the previous
section are considered. For each process, wavelet type and number of vanishing
moments, M = 500 time series of length N = 256 were generated according
to Section 3.1, using our basis and that provided by [2] method. For each
simulated series, an unbiased estimate of the autocovariance function for the
first N/2 lags was calculated. An average of the autocovariance function (over
the M estimates) was then obtained and the associated correlation matrix
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Ω̄ was constructed. Finally, the HS norm of deviation between the true and
averaged sample correlation matrices was computed:

B(B) = ‖Ω − Ω̄‖2
HS

As previously, a penalized version of B(B) by the complexity of the tree as-
sociated to B, as in (19) was also calculated (denoted Bpen)

4 . In order to
determine which part of the score Bpen is the largest contributor to the per-
formance, and in order to not favour our best basis construction algorithm,
both B and Bpen are displayed. The score B of the Hosking method [4], which
is an exact simulation scheme, is also reported. The results are summarized
in Table.2.

As revealed by these tables, the deviation error part B is comparable between
the two best basis construction methods, but the penalized version differs
significantly. This is caused by a fairly large difference in the ”size” of the
basis. Again, this backs up the statement that the method of [2] over-partitions
the spectrum, and also agrees with the fact that in terms of performance
our method generates as reasonable Gegenbauer processes as [2] with less
number of packets. This also clearly provides a numerical support to our claim
that good quality DWPT-based best-basis search, and then simulation, of
Gegenbauer processes can be achieved without necessarily depending on the
wavelet choice, just as it has been extensively done for 1/f processes using
the DWT. But, one has to keep in mind that the quality of the reconstructed
covariance structure (by assuming almost decorrelation of WP coefficients
in the best-ortho-basis), compared to the true covariance of a Gegenbauer
process will still depend on the wavelet. From this point of view (decorrelation
performance), the numerical results observed for simulated data essentially
confirm those reported in the previous subsection.

Both the score B and its penalized version exhibit a decreasing tendency
with increasing number of vanishing moments. This numerical evidence is a
confirmation of the previous subsection findings and support our claims in
Theorem 1. The Battle-Lemarié spline wavelet seems to perform the best (in
terms of both B and Bpen), followed closely by the symmlets. The difference
in performance between all wavelet types vanishes as q increases.

4 Note that for our best-basis algorithm, and for a given process, the scores Bpen is
simply B plus a constant for all wavelets, as the penalty part in Bpen only depends
on the singularity frequencies.
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6 Conclusion

In this paper, we provided a new method to build approximate diagonal-
izing bases for k-factor Gegenbauer processes. Exploiting the intuitive fact
that a wavelet packet library contains the basis where a Gegenbauer pro-
cess could be (almost) whitened, our best-ortho-basis search algorithm was
formulated in the case of 1-factor process and the fast search algorithm of
Coifman-Wickerhauser was adapted to find this best basis. Using this frame-
work, our methodology was posed in a well principled way and the uniqueness
of the basis was guaranteed. Furthermore, unlike the approach [2], it is very
fast (see simulations), does not depend on the wavelet choice, and is not very
sensitive to the length of the time series. As the method construction of the
best basis for simulation of a k-factor Gegenbauer process relies on the 1-factor
construction method, the same conclusions hold.

Then, we studied the error of diagonalization in the best-ortho-basis. Towards
this goal, we established the decay speed of the correlation between two WP
coefficients. These results generalize the work of [10] and [15] provided in the
case of FARIMA processes. The numerical evidence shown by our experimental
study confirmed these theoretical findings. It has also shown that the algorithm
introduced in the paper is appealing in that it provides good quality simulated
Gegenbauer processes with computational simplicity and reduced complexity
bases independently of the wavelet, which is a clear improvement over the
existing method in [2]. Owing to these appealing theoretical and empirical
properties, and given its practical simplicity, we feel the general practitioner
will be attracted to our simulator.

This new method of simulating Gegenbauer processes gives a new perspective
for analyzing processes whose PSD singularities occur at any frequency in
the Nyquist interval. In such a task, one could have the basis by knowing the
process parameters (ν in particular). Thus, our method has a direct application
for bootstrap-based inference in the presence of Gegenbauer noise.

A remaining important open problem is how we could extend this work if the
question of interest becomes that of estimating the parameters of a k-factor
Gegenbauer given one or more sample paths of this process. This estimation
problem can be accomplished in a maximum likelihood framework once the
diagonalizing basis is found. In this case, the best-ortho-basis cannot be found
by a naive straightforward application of Algorithm 2. Nevertheless, we have
some promising directions that are now under investigation. Establishing the
asymptotic behavior of such estimators also remains an open problem. One
could also refine the estimation process by handling the residual correlation
structure of the WP coefficients via explicit modeling by a low-order autore-
gressive process as recently suggested in [31] for 1/f fractionally-differenced
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processes. Additional research is still required and our current work is focusing
on these directions.

Appendix A

Proof Proposition 1:

• Let’s consider the node (j, p). We compute the variance of the WP coefficients
at its two children: (j + 1, 2p) and (j + 1, 2p + 1). Without loss of generality, we
assume that the frequency ν is in the interval I2p

j+1 = [ 2p
2j+1 ,

2p+1
2j+1 [. Then a good

approximation of the variance of the WP coefficient is given by the integral over
the interval I2p

j+1 of the PSD. On this interval, a very good approximation to the

PSD of the process f(λ) = σ2

2π |2(cos 2πλ − cos 2πν)|−2d is given by C0|λ − ν|−2d

with C0 a positive constant.

Two different cases are then distinguished with associated values of A0:

∗ Case ν ≤ 4p+1
2j+2 :

V[W 2p
j+1] =C0

∫ ν

2p

2j+1

|ν − λ|−2ddλ+ C0

∫
2p+1

2j+1

ν
|λ− ν|−2ddλ

=
C0

1 − 2d





(

ν −
2p

2j+1

)

(

(

ν −
2p

2j+1

)2
)−d

+

(

2p+ 1

2j+1
− ν

)

(

(

2p + 1

2j+1
− ν

)2
)−d





=
C0

1 − 2d
u1−2d

(

1 −

(

1 −
1

2j+1u

)1−2d
)

, where u =
2p + 1

2j+1
− ν

≥
C0

2j+1
u−2d

(

1 +
2d

2j+1u

)

≥
C0

2j+1
u−2d

(

1 +
2d

2j+1 1
2j+1

)

=
C0

2j+1

(

2p+ 1

2j+1
− ν

)−2d

(1 + 2d)

where the last inequality is a consequence of the fact that u ≤ 2−(j+1) in this
case.

To compute the variance of W 2p+1
j+1 we denote λ∗ the location of the maxima

of the PSD f over the interval I2p+1
j+1 . As f is a non-increasing function over

[2p+1
2j , 2p+2

2j+1 ], it follows that this variance is bounded by a rectangle area (to a
good approximation in this case):

V[W 2p+1
j+1 ]≤

σ2

2π2j+1
|2(cos 2πλ∗ − cos 2πν)|−2d.
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Using the same approximation of the PSD as previously, we obtain:

V[W 2p+1
j+1 ] ≤

C0

2j+1

(

2p + 1

2j+1
− ν

)−2d

.

Thus

V[W 2p+1
j+1 ] ≤

1

1 + 2d
V[W 2p

j+1] = A0V[W 2p
j+1], 0 < A0 < 1

Therefore, in this case we can write that V[W 2p+1
j+1 ] ≪ V[W 2p

j+1], and following the

criterion defined in section 3.1 we have EV[W 2p+1
j+1 ] = 0. Consequently, at the node

(j, p), the algorithm (15) gives us:

Bp
j = B2p

j+1 ∪ B2p+1
j+1 . (20)

∗ Case ν ≥ 4p+1
2j+2 : Using the same steps as in the first case, we prove that:

V[W 2p
j+1] =

C0

1 − 2d

(

2p+ 1

2j+1
− ν

)1−2d


1 −

(

1 −
1

2j+1(2p+1
2j+1 − ν)

)1−2d


 .(21)

When 2p+1
2j+1 ∼ ν, the rectangle approximation is no longer valid. But a good

approximation of the PSD in the interval [2p+1
2j+1 ,

2p+2
2j+1 ] can be C0|λ−ν|, where the

constant C0 is the same as previously. Then, after some manipulations:

V[W 2p+1
j+1 ] =

C0

1 − 2d

(

2p+ 1

2j+1
− ν

)1−2d






1 +



1 −
1

2j+1
(

2p+1
2j+1 − ν

)





1−2d





.(22)

As by assumption 2p+1
2j+1 ∼ ν, we have that 0 < 2p+1

2j+1 − ν < 1
2j+2 and then,



1 −
1

2j+1
(

2p+1
2j+1 − ν

)





1−2d

< 0.

Finally, combining equations (21) and (22), we obtain V[W 2p+1
j+1 ] ∼ A1V[W 2p

j+1],
where:

A1 =

1 +

(

1 − 1

2j+1
(

2p+1

2j+1 −ν
)

)1−2d

1 −

(

1 − 1

2j+1
(

2p+1

2j+1 −ν
)

)1−2d
< 1. (23)

In this case we can write that V[W 2p+1
j+1 ] ≪ V[W 2p

j+1], and using the criterion de-

fined in section 3.1 we obtain EV[W 2p+1
j+1 ] = 0. Finally, at the node (j, p), algorithm

(15) gives us:

Bp
j = B2p

j+1 ∪ B2p+1
j+1 . (24)
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• In the case where the frequency ν is in the closure of the intervals I2p
j+1 and I2p+1

j+1 ,

we have no relationship as EV[W 2p
j+1] = 0 or EV[W 2p+1

j+1 ] = 0, and one could not
conclude. However, fortunately, at the depth j + 2, we still have:

EV[W 4p+1
j+2 ] = 0 and EV[W 4p+2

j+2 ] = 0.

Then we easily obtain that for algorithm (15):

Bp
j = B4p

j+2 ∪ B4p+1
j+2 ∪ B4p+2

j+2 ∪ B4p+3
j+2 .

Proof Proposition 2:

(1) Let (j, p) be a node. We assume that this node is not in the tree T ′. It means
that this node is not in the tree T1 neither in T2 and in terms of threshold, we
have

EV[W 2p
j+1(1)] = 0 or EV[W 2p+1

j+1 (1)] = 0 and EV[W 2p
j+1(2)] = 0 or EV[W 2p+1

j+1 (2)] = 0.

As the tree T2 is associated to the best-ortho-basis of a 1-factor Gegenbauer
process, the fact that the node (j, p) is node in the tree T2 means that the
frequency νk is not in the interval Ip

j = [ p
2j ,

p+1
2j ]. Then in this interval, the

function |2(cos 2πλ − cos 2πνk)|
−2dk is bounded and has a maximum at fre-

quency λ∗ ∈ Ip
j . Then,

V[W 2p
j+1]≤

σ2

2π
|2(cos 2πλ∗ − cos 2πνk)|

−2dk

∫
2p+1

2j+1

2p

2j+1

k−1
∏

i=1

|2(cos 2πλ− cos 2πνi)|
−2didλ

=
σ2

2π
|2(cos 2πλ∗ − cos 2πνk)|

−2dk V[W 2p
j+1(1)]. (25)

and, using the same argument,

V[W 2p+1
j+1 ] ≤

σ2

2π
|2(cos 2πλ∗ − cos 2πνk)|

−2dk V[W 2p+1
j+1 (1)].

Finally, as EV[W 2p
j+1(1)] = 0 or EV[W 2p+1

j+1 (1)] = 0, we have V[W 2p
j+1] ≫ V[W 2p+1

j+1 ]

or V[W 2p
j+1] ≫ V[W 2rp+1

j+1 ], which means,

EV[W 2p
j+1] = 0 or EV[W 2p+1

j+1 ] = 0.

Then, Bp
j = B2p

j+1 ∪ B2p+1
j+1 and so the node (j, p) is not in the tree T . Finally,

B ⊂ B′.

(2) Here (j, p) and (j+r∗, 2r∗p+s∗) (for s∗ = 0, . . . , 2r∗ −1) are in the tree T ′. We
denote r the minimum value of r∗ for which there exists a s (s = 0, . . . , 2r − 1)
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such that the node (j + r, 2rp+ s) is in the tree T ′.
Then the fact that the nodes (j, p) and (j+r, 2rp+s) are in the tree T ′ means
that (j, p) is in T1 or in T2 and (j+r, 2rp+s) is in T2 or in T1 (it is important to
remark that both (j, p) and (j + r, 2rp+ s) cannot be in T1 or in T2). Without
loss of generality, we assume that (j, p) is in T2 and (j+ r, 2∗p+ s) is in T1. All
the calculations made in the following remain valid if we consider that (j, p)
is in T1 and (j + r, 2rp+ s) is in T2. To simplify the notations, we assume also
that there exists a s which is even.
We denote W p

j (1) and W p
j (2), for j = 0, . . . , J and p = 0, 2j − 1, the wavelet

packet coefficients of respectively the processes (X1
t )t and (X2

t )t. From these
sub-processes, we have that for the algorithm CW,

• for the tree T1:

B
2r−1p+ s

2
j+r−1 (1) = B2rp+s

j+r (1) ∪ B2rp+s+1
j+r (1)

because EV[W 2rp+s
j+r (1)] = 0 or EV[W 2rp+s+1

j+r (1)] = 0,
• for the tree T2:

Bp
j (2) = Bp

j (2)

because EV[W 2p
j+1(2)] = V[W 2p

j+1(2)] and EV[W 2p+1
j+1 (2)] = V[W 2p+1

j+1 (2)],

We consider the intervals I2rp+s
j+r = [2

rp+s
2j+r ,

2rp+s+1
2j+r ] and I2rp+s+1

j+r = [2
rp+s+1
2j+r , 2rp+s+2

2j+r ].
As the node (j, p) is in the tree T2, and as T2 the tree of a basis, the frequency
νk is not in the interval I2rp+s

j+r ∪ I2rp+s+1
j+r .

We denote λ∗ the location of the maximum of |2(cos 2πλ − cos 2πνk)|
−2dk in

the interval I
2r−1p+s/2
j+r−1 (Note that the maximum is bounded). From (25), we

have:

V[W 2rp+s
j+r ]≤

σ2|2(cos 2πλ∗ − cos 2πνk)|
−2dk

2π
V[W 2rp+s

j+r (1)],

V[W 2rp+s+1
j+r ]≤

σ2|2(cos 2πλ∗ − cos 2πνk)|−2dk

2π
V[W 2rp+s+1

j+r (1)].

Then, as EV[W 2rp+s
j+r (1)] = 0 or EV[W 2rp+s+1

j+r (1)] = 0, we have V[W 2rp+s
j+r ] ≫

V[W 2rp+s+1
j+r ] or V[W 2rp+s

j+r ] ≫ V[W 2rp+s+1
j+r ], which means,

EV[W 2rp+s
j+r ] = 0 or EV[W 2rp+s+1

j+r ] = 0.

Then, because of the particular choice of r,

Bp
j =

2r−1
⋃

i=0

B2rp+i
j+r .

Finally, the node (j, p) is not in the tree T .
However, the fact that the node (j + r, 2rp+ s) is in the tree T1 means that,

EV[W 2r+1p+2s
j+r+1 (1)] = W 2r+1p+2s

j+r+1 (1) and EV[W 2r+1p+2s+1
j+r+1 (1)] = W 2r+1p+2s+1

j+r+1 (1).
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As the frequency νk is not in the interval I2rp+s
j+r , we obtain easily that

EV[W 2r+1p+2s
j+r+1 ] = W 2r+1p+2s

j+r+1 and EV[W 2r+1p+2s+1
j+r+1 ] = W 2r+1p+2s+1

j+r+1 .

Finally, the node (j+ r, 2rp+ s) is in the tree T . Using the argument, we show
that the node (j + r∗, 2r∗p+ s∗) is in the tree T .

Appendix B

To prove Theorem 1, the following preliminary lemmas are needed.

Lemma 1 Let ψ be a wavelet with q vanishing moments, and the associated high-
pass QMF filters h and g. Then, for all j and p = 0, . . . , 2j − 1, the moments of the
WP function ψj

p are such that:

Mj,p(r) =

∫

R

trψp
j (t)dt = δ(r)δ(p), for 0 ≤ r < Rp

where R0 = 1 and Rp = q
∑j−1

k=0 pk for p 6= 0, and p = (pj−1pj−2 . . . p1p0)2 is the
binary representation of p.

Proof Lemma 1: Note that for p = 1 (wavelet basis), our result specializes to the
traditional relation Mj,1(r) = 0 for 0 ≤ r < q. The lemma can be proved either by
induction in the original domain, or using explicit proof in the Fourier domain. We
shall proceed according to the latter. By iterating the actions of the QMF filters h or
g, from the root of the binary tree, to extract the appropriate range of frequencies,
one can write that:

ψ̂p
j (ω) =

[

j−1
∏

k=0

Fpj−k−1
(2kω)

]

φ̂(ω) (26)

where the sequence of filters Fpk
is chosen according to p = 2j−1pj−1 + 2j−2pj−2 +

. . .+ 2p1 + p0:

Fpk
=

{

ĥ if pk = 0

ĝ if pk = 1
(27)

and φ̂(0) 6= 0.

For compactly supported wavelets with q vanishing moments, the associated high-
pass filters ĝ has q − 1 zeros at ω = 0:

ĝ(ω) =
(

1 − e−iω
)q
P
(

eiω
)

(28)

where P (.) is a trigonometric polynomial bounded around ω = 0. The number
of vanishing moments of ψp

j (t) is equivalently given by the number of vanishing

derivatives of ψ̂p
j (ω) at ω = 0, that is:

Mj,p(r) =

[(

1

i
∂ω

)r

ψ̂p
j (ω)

]

ω=0

for r = 0, . . . , Rp − 1 (29)
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• If p = 0, ψ̂p
j (ω) is just the product of low-pass filters, and ψ0

j (t) = φj(t) the scaling

function at depth j. Then, Mj,0(r) = φ̂j(0), which is non-zero with R0 = 1. If
additional constraints are imposed on the wavelet choice (e.g. Coiflets), Mj,0(r)
might be zero for 1 ≤ r < q.

• If p 6= 0, from (26) we can write:

ψ̂p
j (ω) =

∏

k|pj−k−1=1

(

1 − e−i2kω
)q
Q(ω) (30)

where Q(.) is again bounded around ω = 0. The number of vanishing moments is
then given by the number of zeros at ω = 0 which is Rp = q

∑

k pk. The lemma
follows.

Lemma 2 If the QMF h has a support in [N1, N2], then the support of the WP
function ψp

j (t) at each node (j, p) in the WP binary tree is always included in
[

−2j (N∗ + 1) , 2j (N∗ + 1)
]

, with N∗ = max (|N1|, |N2|).

Proof Lemma 2: This is proved by induction. We also use the fact that ψ0 will
be supported in the interval [N1, N2] and ψ1 in

[

N1−N2+1
2 , N2−N1+1

2

]

(see e.g. Mallat
(1998)[21], Proposition 7.2).

Lemma 3 Let I be a collection of disjoint dyadic intervals Ij
p whose union is the

positive half line, and B = {ψp
j (t − 2jk) : 0 ≤ k < 2J−j, Ip

j ∈ I} is the associated
orthonormal basis. Let h and g the QMFs as defined in (28). The vanishing mo-
ments Mp1,p2

j1,j2
(m) of the inter-correlation function Λp1,p2

j1,j2
(h) of ψp1

j1
(t) and ψp2

j2
(t) ∈ B

satisfy:

1) p1 6= 0 and p2 6= 0: Mp1,p2

j1,j2
(m) = 0 for 0 ≤ m < Rp1 +Rp2,

2) p1 6= 0 or p2 6= 0: Mp1,p2
j1,j2

(m) = 0 for 0 ≤ m < Rmax(p1,p2),

3) p1 = p2 = 0: Mp1,p2
j1,j2

(m) = 0 for 1 ≤ m < 2q.

Furthermore, the support of Λp1,p2

j1,j2
(h) is included in

[

− (N∗ + 1)
(

2j1 + 2j2
)

, (N∗ + 1)
(

2j1 + 2j2
)]

.

Proof Lemma 3: By definition of the inter-correlation function, we have:

Λp1,p2

j1,j2
(h) =

∫

ψp1

j1
(t)ψp2

j2
(t− h)dt (31)

As these WP functions belong to the orthonormal basis B, then at integer lags
Λp1,p2

j1,j2
(n) = δ (j1 − j2) δ (p1 − p2) δ (n).

As far as the support is concerned, it is not a difficult matter to see, using Lemma
2, that Λp1,p2

j1,j2
(h) is supported in

[

− (N∗ + 1)
(

2j1 + 2j2
)

, (N∗ + 1)
(

2j1 + 2j2
)]

.

Let’s now turn to the moments of Λp1,p2
j1,j2

(h).
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(1) p1 6= 0 and p2 6= 0:
In this case, we know that ψp1

j1
and ψp2

j2
have respectively Rp1 and Rp2 vanishing

moments as defined in Lemma 1. Then, Λp1,p2
j1,j2

(h) will have Rp1 +Rp2 vanishing
moments since,

∫

hmΛp1,p2

j1,j2
(h)dh = −

∫ ∫

(v − u)mψp1

j1
(v)ψp2

j2
(u)dudv

= −

m
∑

n=0

(−1)n

(

m

n

)∫

vm−nψp1
j1

(v)dv

∫

unψp2
j2

(u)du = 0,

(32)

for 0 ≤ m < Rp1 +Rp2. Here, we used uniform convergence and continuity to
invert the order of summation and integration. Note that the Fubini theorem
allows us to invert the order of integrals.

(2) p1 6= 0 or p2 6= 0: Without loss of generality, assume that p1 6= 0 and p2 = 0.
The same reasoning as above can be adopted to conclude that for 0 ≤ m < Rp1:

∫

hmΛp1,0
j1,j2

(h)dh = −

m
∑

n=0

(−1)n
(

m

n

)
∫

vm−nψp1

j1
(v)dv

∫

unφj2(u)du = 0.

(33)

(3) p1 = p2 = 0:
In an orthonormal basis of wavelet packets, this situation is not possible unless
j1 = j2 = j. Thus,

∫

hmΛ0,0
j,j (h)dh = 2−j

∫ ∫

hmφ
(

2−jt
)

φ
(

2−j (t− h)
)

dtdh

= 2j(m+1)

∫ ∫

umφ(v)φ(v − u)dudv = 0, (34)

for 1 ≤ m < 2q, where the latter result is proved in [32].

Proof Theorem 1: Here we are interested in the covariance between the WP
coefficients W p1

j1
(k1) and W p2

j2
(k2). We have:

Cov
[

W p1

j1
(k1),W

p2

j2
(k2)

]

=

∫ ∫

E[X(t)X(s)]ψp1

j1
(t− 2j1k1)ψ

p2

j2
(s− 2j2k2)dtds

=

∫ ∫

cos (ν(t− s)) |t− s|2d−1ψp1

j1
(t− 2j1k1)ψ

p2

j2
(s− 2j2k2)dtds(35)

After three changes of variables, u = t − 2j1k1 and v = s − 2j2k2, then u = t′ and
v = t′ − h and finally α = 2j1(k1 − 2j2−j1k2), we obtain:

Cov
[

W p1
j1

(k1),W
p2
j2

(k2)
]

=

∫

cos(ν(h+ α))|h + α|2d−1Λp1,p2
j1,j2

(h)dh. (36)
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From Lemma 2 we know that that the support of Λp1,p2
j1,j2

(h) is included in [−(2j1 +

2j2)(N∗ +1), (2j1 +2j2)(N∗ +1)]. As h is in the support of Λp1p2
j1j2

and by assumption

α > (N∗+1)(2j1 +2j2), we have h/α < 1. Hence, using the binomial series expansion

of
∣

∣1 + h
α

∣

∣

2d−1
and the fact that cos(ν(α+h)) ∼ cos(να) for large α, it follows that:

Cov
[

W p1
j1

(k1),W
p2
j2

(k2)
]

∼ |α|2d−1 cos(να)

{

∫

Λp1,p2
j1,j2

(h)dh +

∞
∑

i=1

(

2d− 1

i

)∫ (

h

α

)i

Λp1,p2
j1,j2

(h)dh

}

.

(37)
We must then provide an upper bound on the integrals inside the braces. In the
following we distinguish three different cases depending on the number of vanishing
moments of Λp1,p2

j1,j2
according to Lemma 3, that is:

(1) If p1 6= 0 and p2 6= 0, then Mj1,j2
p1,p2(m) = 0, for 0 ≤ m < Rp1 +Rp2. We denote

q∗ = Rp1 + Rp2. Then, using the fact that the q∗ first moments of Λp1,p2

j1,j2
are

null,

Cov
[

W p1
j1

(k1),W
p2
j2

(k2)
]

∼ C1|α|
2d−1−q∗ +Rq∗+1, (38)

with C1 a bounded constant, and:

|Rq∗+1|= |cos(να)| |α|2d−1

∣

∣

∣

∣

∣

∣

∞
∑

i=q∗+1

(

2d− 1

i

)∫ (

h

α

)i

Λp1,p2
j1,j2

(h)dh

∣

∣

∣

∣

∣

∣

≤ |α|2d−1

(

2d− 1

q∗

)

∣

∣

∣

∣

∣

∣

∞
∑

i=q∗+1

∫ ∫
(

t− h

α

)i

ψp1

j1
(t)ψp2

j2
(h)dtdh

∣

∣

∣

∣

∣

∣

= |α|2d−1

(

2d− 1

q∗

)∫ ∫

∣

∣

∣
ψp1

j1
(t)ψp2

j2
(h)
∣

∣

∣
dtdh

∞
∑

i=q∗+1

βi

=C2|α|
2d−1

∞
∑

i=1

βq∗+i ≤ C3|α|
2d−1−q∗−1 (39)

where β = supt,h

∣

∣

t−h
α

∣

∣, C2 and C3 are finite constants. Finally,

Cov
[

W p1

j1
(k1),W

p2

j2
(k2)

]

= O
(

|2j1k1 − 2j2k2|
2d−1−q∗

)

, (40)

for |2j1k1 − 2j2k2| > (N∗ + 1)(2j1 + 2j2) and q∗ = Rp1 +Rp2.

(2) If p1 6= 0 or p2 6= 0 then Mj1,j2
p1,p2(m) = 0, for 0 ≤ m < Rmax(p1,p2). Following

the same steps as above, we prove the second statement of Theorem 1 with
q∗ = Rmax(p1,p2).

(3) p1 = p2 = 0: Mj1,j2
p1,p2(m) = 0 for 1 ≤ m < 2q. In this particular case, we have

necessarily j1 = j2 = j. We must then upper-bound the covariance. From (37),
we have:

Cov
[

W 0
j (k1),W

0
j (k2)

]

∼ C0|α|
2d−1 + C1|α|

2d−1−2q +R2q+1, (41)
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where

C0 =

∫

cos(ν(h+α))Λ0,0
j,j (h)dh, C1 = cos(να)

(2d− 1)!

(2q)!(2d − 1 − 2q)!

∫

h2qΛ0,0
j,j (h)dh,

and

|R2q+1| ≤ | cos(να)||α|2d−1|

∞
∑

i=2q+1

(

2d− 1

i

)∫ (

h

α

)i

Λ0,0
j,j (h)dh| = O

(

|α|2d−1−2q−1
)

.(42)

As previously, when α is large:

C0 ∼ cos(να)

∫ ∫

φj(t)φj(t− h)dtdh = 2j cos(να) |Φ(0)|2 = 2j cos(να).(43)

Finally, using a similar argument as in the previous cases, we find that for
|k1 − k2| > 2(N∗ + 1):

Cov
[

W 0
j (k1),W

0
j (k2)

]

=O(|2j(k1 − k2)|
2d−1). (44)
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Fig. 1. Computation time (in seconds) to build the best-ortho-basis. Solid line (our
approach). The symbols ′+′, ′×′ and ′.′ correspond to the computation time using
the method of [2] in the case of respectively ′db10′ (Daubechies wavelet q = 10),
′sym10′ (Symmlet q = 10) and ′coif5′ (Coiflet q = 10).
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Fig. 2. Best-orthos-basis for a Gegenbauer process, with ν = 1/12 (first column)
and ν = 0.375 (second column). (a) Our basis ν = 1/12, (b) our basis ν = 1/5.
Basis of [2] for ν = 1/12 with (c) ′db3′ and (e) ′coif5′ wavelets, and similarly for
ν = 0.375 (d)-(f). Black rectangles correspond to the leaves of the binary tree, and
then to the partition of the spectral axis.

d = 0.4, ν = 1/12, λ = 20.7084 d = 0.2, ν = 1/12, λ = 0.7428 d = 0.3, ν = 0.016, λ =
10.0526

d1 = d2 = 0.3, ν1 = 1/40, ν2 =
1/5, λ = 6.0472

q Whitcher
basis

Our basis

Daubechies

2 2728.6 1494.5

4 1116.7 686.2

6 750.4 441.8

8 632.7 352.4

10 421.7 308.2

Symmlet

4 2211.0 677.0

6 1371.0 444.7

8 980.4 341.7

10 693.1 297.3

Coiflet

2 2697.3 1081.1

4 1449.4 638.4

6 841.1 412.7

8 703.2 327.8

10 581.2 287.7

Battle-Lemarié

2 - 657.3

4 - 267.5

6 - 247.8

Whitcher
basis

Our basis

Daubechies

105.1 52.3

47.3 31.1

31.9 23.3

28.9 20.2

21.9 18.4

Symmlet

86.4 30.8

54.2 23.4

39.1 20.1

28.2 18.2

Coiflet

106.0 42.3

58.9 29.6

35.0 22.4

29.0 19.5

26.6 17.6

Battle-Lemarié

- 29.4

- 16.1

- 14.4

Whitcher
basis

Our basis

Daubechies

230.6 141.4

188.0 124.7

141.8 116.7

144.0 118.8

140.3 115.0

Symmlet

214.4 120.9

210.4 116.2

178.6 114.7

138.8 113.5

Coiflet

224.8 132.7

215.2 121.0

141.2 116.1

140.1 114.9

138.6 113.2

Battle-Lemarié

- 121.3

- 111.8

- 110.7

Whitcher
basis

Our basis

Daubechies

958.5 639.1

511.4 515.7

444.1 422.5

408.0 361.9

400.5 315.3

Symmlet

505.3 513.8

445.0 423.5

409.0 359.7

401.2 313.7

Coiflet

713.5 589.5

467.1 500.7

416.1 406.2

363.3 342.7

349.9 297.8

Battle-Lemarié

- 374.6

- 238.1

- 191.1

Table 1
S score as a function of the number of vanishing moments for each wavelet family.
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Fig. 3. (a) Best-ortho-basis B1. (b) Best-ortho-basis B2. (c) Union of bases B1 and
B2. (d) Best-ortho-basis for the two factor Gegenbauer process (Xt)t.

Fig. 4. (a) Correlation matrix Ω of a Gegenbauer process with parameters d = 0.4
and ν = 1/12. Correlation matrix Ω [B] of the WP coefficients in our best-ortho-basis
for ′db10′ filter (b), ′sym10′ filter (c), ′coif5′ filter (d), and ′bat6′ filter (e).
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d = 0.4, ν = 1/12, λ = 20.7084 d = 0.2, ν = 1/12, λ = 0.7428

BHosk = 277.6

q BW BW
pen BCF BCF

pen

Daubechies

2 2753.3 6977.8 2785.0 2992.1

4 1517.6 3629.8 1578.2 1785.2

6 1410.6 2777.4 1177.6 1384.7

8 929.7 1840.8 996.4 1203.5

10 1052.9 1694.9 784.6 991.6

Symmlet

4 1700.4 3812.6 1590.9 1797.9

6 1035.6 2402.4 1225.3 1432.4

8 1180.8 2091.9 1079.6 1286.7

10 718.9 1360.9 797.4 1004.5

Coiflet

2 2194.3 5238.4 2336.7 2543.8

4 1751.5 3118.3 1696.7 1903.8

6 1213.8 1855.8 1154.0 1361.1

8 1138.9 1656.7 1038.4 1245.5

10 995.2 1409.3 986.3 1193.4

Battle-Lemarié

2 - - 1588.8 1795.9

4 - - 995.4 1202.4

6 - - 867.0 1074.0

BHosk = 1.72

BW BW
pen BCF BCF

pen

Daubechies

41.4 192.9 36.6 44.0

15.6 91.3 13.0 20.4

14.3 63.3 10.8 18.2

10.9 43.5 6.9 14.3

12.6 35.6 4.7 12.2

Symmlet

25.5 101.3 16.2 23.7

10.0 59.1 11.6 19.0

8.8 41.5 11.6 19.0

8.7 31.7 12.6 20.0

Coiflet

27.8 137.0 34.8 42.2

18.3 67.3 18.9 26.3

10.2 33.2 10.8 18.3

5.1 23.7 9.2 16.6

11.8 26.7 6.4 13.8

Battle-Lemarié

- - 18.0 25.4

- - 9.0 16.4

- - 5.6 13.0

d = 0.3, ν = 0.016, λ = 10.0526 d1 = d2 = 0.3, ν1 = 1/40, ν2 = 1/5, λ = 6.0472

BHosk = 34.7

BW BW
pen BCF BCF

pen

Daubechies

499.6 751.0 280.0 380.6

258.9 490.1 231.7 332.3

299.5 440.3 246.9 347.5

243.9 384.7 185.4 285.9

310.6 451.3 345.3 445.8

Symmlet

287.1 518.3 284.0 384.5

232.6 373.3 312.2 412.7

362.3 503.0 159.6 260.2

218.4 359.2 225.2 325.7

Coiflet

280.4 511.7 293.6 394.1

208.0 348.7 166.0 266.5

377.5 518.3 268.5 369.0

273.5 414.2 198.6 299.1

257.5 398.3 292.8 393.4

Battle-Lemarié

- - 308.7 409.2

- - 321.5 422.0

- - 324.4 424.9

BHosk = 44.3

BW BW
pen BCF BCF

pen

Daubechies

382.1 1639.9 386.3 489.1

301.9 906.6 291.7 394.5

199.6 707.6 161.1 263.9

157.1 628.7 217.2 320.0

205.4 677.1 215.5 318.3

Symmlet

274.9 879.6 282.7 385.5

247.1 755.0 264.7 367.5

202.5 674.2 174.7 277.5

172.1 643.7 155.5 258.3

Coiflet

381.7 1288.8 382.0 484.8

284.8 792.7 305.7 408.5

225.9 697.5 217.8 320.6

127.6 526.7 218.6 321.4

121.5 514.6 207.6 310.4

Battle-Lemarié

- - 316.6 419.4

- - 175.8 278.6

- - 142.0 244.8

Table 2
Squared difference (B) and its penalized version (Bpen) for our basis (superscript
CF) and Whitcher basis [2] (superscript W) as a function of the number of vanishing
moments for each wavelet family.
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