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RETURN WORDS IN THE THUE-MORSE AND OTHER SEQUENCES

L’UBOMÍRA BALKOVÁ, EDITA PELANTOVÁ, AND WOLFGANG STEINER

Abstract. We present three simple ideas which enable to determine easily the number of return
words in some infinite words. Using these ideas, we give a new and very short proof of the fact
that each factor of an Arnoux-Rauzy word of order m has exactly m return words. We describe

the structure of return words for the Thue-Morse sequence and focus on infinite words which
are associated to simple Parry numbers.

1. Introduction

Recently, the notion of return words has appeared in various branches of mathematics, for
instance in Symbolic Dynamical Systems and Number Theory. This mathematical tool has been
introduced by Durand [3] in order to obtain a nice characterization of primitive substitutive
sequences. Roughly speaking, for a given factor w of the infinite word u, a return word of w is
a segment between two successive occurrences of the factor w. Using return words, Vuillon [13]
has found a new equivalent definition of Sturmian words. He has shown that an infinite word u
over a biliteral alphabet is Sturmian if and only if any factor of u has exactly two return words.

A generalization of Sturmian words to multiliteral alphabets is provided by Arnoux-Rauzy
words. Justin and Vuillon [8] have proved that each factor of an Arnoux-Rauzy word of order m
has exactly m return words.

Infinite words coding the m-interval exchange constitute different generalizations of Sturmian
words to m-letter alphabets. For m = 3, it is known that every factor of these words has exactly
3 return words (Ferenczi, Holton and Zamboni [5]).

In this paper, we present three very simple ideas which enable to determine easily the number
of return words in some infinite words.

• The first observation is that for the study of return words of an infinite uniformly recurrent
word u, it suffices to limit the considerations to bispecial factors of u.

• We explain the role of factor graphs (also called Rauzy graphs or de Bruijn graphs) for
the determination of the number of return words.

• In case of infinite words which are invariant under a substitution, we will make use of
the relation between return words of a factor w and return words of its image under the
substitution.

Using these ideas, we give a new and very short proof of the number of return words for
Arnoux-Rauzy sequences. We describe the cardinality of the set of return words for the Thue-
Morse sequence. In the main part of this paper, we focus on infinite words uβ which are associated
to simple Parry numbers. The infinite word uβ codes the sequence of gaps between successive β-
integers Zβ , and it is the fixed point of the canonical substitution associated to β (see Section 2
for exact definitions). A simple Parry number is an algebraic integer β > 1 having a finite Rényi
expansion of unity dβ(1) = t1 . . . tm. In this case, the alphabet of the infinite word uβ contains
m letters. In [6], it has been proved that uβ is Arnoux-Rauzy if and only if t1 = · · · = tm−1 and
tm = 1. Consequently, in this case, the number of return words is equal to m for every factor of uβ.
We show that the same statement about return words holds if t1 > max{t2, . . . , tm−1} and tm = 1.
Unlike the case m = 2 (Sturmian words), Arnoux-Rauzy words with m ≥ 3 are not characterized
by the number of return words. In the case tm ≥ 2, we focus on a simple situation where the
coefficients t1, . . . , tm−1 are either all the same or mutually different. Under these conditions, we
show that for each factor of uβ the number of return words is either m or m + 1 and both values
occur.
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2. Preliminaries

2.1. Basic definitions. An alphabet A is a finite set of symbols called letters. A (possibly empty)
concatenation of letters is a word. The set A∗ of all finite words provided with the operation of
concatenation is a free monoid. The length of a word w is denoted by |w|. A finite word w is
called a factor (subword) of the (finite or right infinite) word u if there exist a finite word v and
a word v′ such that u = vwv′. The language L(u) is the set of all factors of the word u, and let
Ln(u) be the set of all factors of u of length n. The word w is a prefix of u if v is the empty
word. Analogously, w is a suffix of u if v′ is the empty word. A concatenation of k letters a will
be denoted by ak, a concatenation of infinitely many letters a by aω.

Let w be a factor of an infinite word u and let a, b ∈ A. If wa is a factor of u, then we call
a a right extension of w. Analogously, if bw is a factor of u, we call b a left extension of w. We
will denote by Rext(w) the set of all right extensions of w and by deg+(w) the number of right
extensions of w. Analogously, the set of left extensions of w will be denoted by Lext(w) and its
cardinality by deg−(w). A factor w is right special if deg+(w) > 1, left special if deg−(w) > 1 and
bispecial if w is right special and left special.

Let w be a factor of an infinite word u = u0u1 . . . (with uj ∈ A), |w| = ℓ. An integer j is an
occurrence of w in u if ujuj+1 . . . uj+ℓ−1 = w. Let j, k, j < k, be successive occurrences of w.
Then ujuj+1 . . . uk−1 is a return word of w. The set of all return words of w is denoted by M(w),
i.e.,

M(w) = {ujuj+1 . . . uk−1 | j, k being successive occurrences of w}.

An infinite word u is uniformly recurrent if, for any n ∈ N, there exists an R(n) ∈ N such that
any factor of u of length R(n) contains all factors of length n. It is not difficult to see that the set
of return words of w is finite for any factor w if u is a uniformly recurrent word.

The variability of local configurations in u is expressed by the factor complexity function (or
simply complexity) Cu : N → N, Cu(n) := #Ln(u). It is apparent that the complexity difference
can be calculated by

∆Cu(n) := Cu(n + 1) − Cu(n) =
∑

w∈Ln(u)

(deg−(w) − 1) =
∑

w∈Ln(u)

(deg+(w) − 1),

where it is sufficient to sum over left special and right special words respectively. It is well known
that a word u is aperiodic if and only if Cu(n) ≥ n + 1 for all n ∈ N. Infinite aperiodic words
with the minimal complexity Cu(n) = n + 1 for all n ∈ N are called Sturmian words. These words
have been studied extensively, and several equivalent definitions of Sturmian words can be found
in Berstel [2].

A mapping ϕ on the free monoid A∗ is called a morphism if ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈
A∗. Obviously, for defining the morphism, it suffices to give ϕ(a) for all a ∈ A. The action of
a morphism can be naturally extended on right-sided infinite words by

ϕ(u0u1u2 · · · ) := ϕ(u0)ϕ(u1)ϕ(u2) · · ·

A non-erasing morphism ϕ, for which there exists a letter a ∈ A such that ϕ(a) = aw for some
non-empty word w ∈ A∗, is called a substitution. An infinite word u such that ϕ(u) = u is called
a fixed point of the substitution ϕ. Obviously, every substitution has at least one fixed point,
namely limn→∞ ϕn(a).

2.2. Infinite words associated with β-integers. Let β > 1 be a real number. Then every
positive real number x can be represented as

x =

k
∑

j=−∞

xjβ
j = xk . . . x1x0•x−1x−2 . . . with xj ∈ N.

If moreover x−
∑k

j=ℓ xjβ
j < βℓ for all ℓ ≤ k, then the expression xk . . . x1x0•x−1x−2 . . . is called

(greedy) β-expansion of x, which we denote by 〈x〉β . For x ∈ [0, 1), this expansion can be

found using the transformation Tβ(x) := {βx}, where {.} denotes the fractional part. Then

〈x〉β = •x1x2x3 . . . with xj = ⌊βT j−1
β (x)⌋, where ⌊.⌋ denotes the (lower) integer part.
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For x = 1, this algorithm does not provide the β-expansion of x (which is 1•00 . . .), but we
obtain an important sequence, the Rényi expansion of 1 in base β, which is thus defined as

dβ(1) = t1t2t3 . . . , where tj := ⌊βT j−1
β (1)⌋.

If tj = 0 for all j > m and tm 6= 0, we write dβ(1) = t1 . . . tm. Such β is called a simple Parry
number. From now on, let us limit our considerations to this case. A sequence t1 . . . tm is a Rényi
expansion of 1 for some β > 1 if and only if the sequence satisfies

tj . . . tm <lex t1 . . . tm for all j ∈ {2, . . . , m}

where v <lex w means that v is lexicographically less than w (Parry [9]).
In this article, we study infinite words associated with non-negative β-integers Z

+
β , which are

the numbers with vanishing β-fractional part, formally

Z
+
β := {x ≥ 0 | 〈x〉β = xkxk+1 · · ·x0•00 . . . for some k ≥ 0}.

If β is an integer, then clearly Z
+
β = N and the distance between neighboring elements of Zβ

for a fixed β is always 1. The situation changes if β 6∈ N. In this case, the number of different
distances between neighboring elements of Zβ is at least 2. Thurston [12] showed that for a simple
Parry number β with dβ(1) = t1 . . . tm, distances occurring between neighbors of Zβ form the set
{∆k | 0 ≤ k < m}, where ∆k := •tk+1 . . . tm.

If we assign the letter k to the gap ∆k for all k ∈ {0, . . . , m− 1} and if we write down the order
of distances in Z

+
β on the real line, we naturally obtain an infinite word uβ . It can be shown that

the word uβ is the unique fixed point of the canonical substitution ϕ (see e.g. [4]),

ϕ : 0 7→ 0t11
1 7→ 0t22

...
m − 2 7→ 0tm−1(m − 1)
m − 1 7→ 0tm .

Obviously, this substitution is primitive, i.e., there exists an integer exponent k such that for each
pair of letters a, b ∈ A, the letter a appears in the word ϕk(b). Queffélec [11] showed that a fixed
point of a primitive substitution is a uniformly recurrent infinite word. This implies that the
infinite word uβ associated to a simple Parry number β is uniformly recurrent and, therefore, the
set of return words M(w) of any factor w of uβ is finite.

3. Factor graphs and return words

In order to study return words M(w) of factors w of an infinite word u, it is possible to limit
our considerations to bispecial factors. Namely, if a factor w is not right special, i.e., if it has
a unique right extension a ∈ A, then the sets of occurrences of w and wa coincide, and

M(w) = M(wa).

If a factor w has a unique left extension b ∈ A, then j ≥ 1 is an occurrence of w in the infinite
word u if and only if j − 1 is an occurrence of bw. This statement does not hold for j = 0.
Nevertheless, if u is a uniformly recurrent infinite word, then the set M(w) of return words of w
stays the same no matter whether we include the return word corresponding to the prefix w of u
or not. Consequently, we have

M(bw) = bM(w)b−1 = {bvb−1 | v ∈ M(w)},

where bvb−1 means that the word v is prolonged to the left by the letter b and it is shortened from
the right by erasing the letter b (which is always the suffix of v for v ∈ M(w)).

For an aperiodic uniformly recurrent infinite word u, each factor w can be extended to the left
and to the right to a bispecial factor. To describe the cardinality of M(w), it suffices therefore to
consider bispecial factors w.

Return words and the role of special factors can be well visualized by means of the factor
graphs (or de Bruijn graphs or Rauzy graphs). The factor graph Γn is an oriented graph with set
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of vertices Ln(u) and set of edges Ln+1(u). An edge w0w1 . . . wn ∈ Ln+1(u) goes from the vertex
w0 . . . wn−1 to the vertex w1 . . . wn. The factor w = w0 . . . wn−1 is left special if and only if at
least two edges ends in the vertex w and w is right special if and only if at least two edges begins
in w. Each return word of a factor w of the length n is visualized as an oriented walk in Γn, which
begins and ends in the vertex w, and such that the vertex w is not entered in the course of this
walk.

Proposition 3.1. Let u be a recurrent word and m ∈ N. Suppose that for every n ∈ N at least
one of the following conditions is satisfied:

• There is a unique left special factor w ∈ Ln(u), and deg−(w) = m.
• There is a unique right special factor w ∈ Ln(u), and deg+(w) = m.

Then every factor has exactly m return words.

Proof. As we have explained at the beginning of the section, it is enough to prove that every
bispecial factor w has exactly m return words. Let n be the length of w. Suppose first that w is
the unique right special factor in Ln(u). Hence w has outdegree m in Γn and all other vertices
have outdegree 1. Therefore the choice of the edge starting the walk at w determines the walk
uniquely. Consequently, there are exactly m ways to come back to w, i.e., w has exactly m return
words. If w is the unique left special factor in Ln(u), similar arguments can be used. �

Let us remind that Arnoux-Rauzy words of order m are defined as infinite words which have
for every n ∈ N exactly one right special factor w of length n with deg+(w) = m and exactly one
left special factor w of length n with deg−(w) = m. Therefore we obtain the following corollary.

Corollary 3.2. Any factor of an Arnoux-Rauzy word of order m has exactly m return words. In
particular, any factor of a Sturmian word has exactly two return words.

Let us apply this observation to words uβ.

Proposition 3.3. Let dβ(1) = t1 . . . tm be a Rényi expansion of unity. If

• tm = 1 and
• t1 = t2 = · · · = tm−1 or t1 > max{t2, . . . , tm−1},

then each factor w ∈ L(uβ) has exactly m return words.

Proof. In [6], it has been proved that each prefix of uβ is a left special factor with exactly m left
extensions and that uβ does not have any other left special factors. This proves the statement. �

Remark. If dβ(1) satisfies t1 = t2 = · · · = tm−1, then, for every n ∈ N, there exists moreover
exactly one right special factor of length n. Thus, uβ is Arnoux-Rauzy. Otherwise, we have some
n ∈ N such that there exists more than one right special factor of length n.

4. Return words in the Thue-Morse sequence

The Thue-Morse sequence is a very well known, intensively studied binary sequence (see e.g.
Allouche and Shallit [1]), which is a fixed point of the substitution

0 7→ ϕ(0) = 01 and 1 7→ ϕ(1) = 10 .

This substitution has two fixed points. Since the substitution is primitive, both its fixed points
have the same language and are uniformly recurrent. We will denote by uTM one of the fixed
points.

Observation 4.1. The form of the substitution implies some simple facts about the language of
uTM .

(1) 000, 111 /∈ L(uTM ) ,
(2) 01010, 10101 /∈ L(uTM ) ,
(3) a1 . . . an ∈ L(uTM ) =⇒ (1 − a1) . . . (1 − an) ∈ L(uTM ) .

We have chosen the Thue-Morse sequence for studying return words, since it is easy to describe
the bispecial factors of uTM . Clearly, 0, 01 and 010 and their complements 1, 10 and 101 are
bispecial factors. The structure of longer bispecial factors is also simple.
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Proposition 4.2. Let w be a bispecial factor of uTM with length |w| ≥ 4. Then there exists a
bispecial factor v such that ϕ(v) = w.

Proof. According to Claim 1 in Observation 4.1, any bispecial factor with at least 2 letters starts
with 01 or 10 and ends with 01 or 10. According to Claim 2, the bispecial factors of length 4 are
1001 = ϕ(10) or 0110 = ϕ(01). The preimage of w with |w| ≥ 5 is uniquely determined since any
factor of length at least 5 contains two consecutive 0’s or 1’s (Claim 2 in the same observation),
and 0w, 1w as well as w0 and w1 belong to the language. Clearly, the preimage is bispecial as
well. �

Now we show that for a broad class of substitutions there exists a straightforward relation
between return words of a factor w and its image ϕ(w).

Definition 4.3. Let w be a factor of a fixed point u of a substitution ϕ. We say that a word
v0v1 . . . vn−1vn ∈ Ln+1(u) is a minimal preimage of w if

• w is a factor of ϕ(v0v1 . . . vn−1vn),
• w is neither a factor of ϕ(v1 . . . vn−1vn) nor of ϕ(v0v1 . . . vn−1).

Clearly, any factor ϕ(w) has at least one minimal preimage, namely the factor w. In the
Thue-Morse sequence, the factor ϕ(0) = 01 has two minimal preimages, namely 0 and 11.

Lemma 4.4. Let an infinite word u be a fixed point of a substitution ϕ and w be a factor of u. If
the only minimal preimage of ϕ(w) is the factor w, then

M(ϕ(w)) = ϕ(M(w)) .

Proof. Let v be a return word of ϕ(w), i.e., vϕ(w) is a factor of u = ϕ(u), ϕ(w) occurs in vϕ(w)
exactly two times and ϕ(w) is a prefix of vϕ(w). Since w is the only minimal preimage of ϕ(w),
v = ϕ(v′) for some factor v′ and the factor w occurs in v′w twice. Therefore v′ is a return word
of w. �

Theorem 4.5. Every factor of the Thue-Morse sequence has either 3 or 4 return words.

Proof. For the description of the cardinality of M(w), it is sufficient to consider bispecial factors w.
Any bispecial factor w of uTM with length at least 4 is of the form w = ϕ(v) and contains either
00 or 11. Therefore the bispecial factor ϕ(v) has the unique minimal preimage v. To prove the
theorem, we have, according to Lemma 4.4, to determine the cardinality of the set of return
words for bispecial factors shorter than 4, i.e., for the factors 0, 01 and 010 (the return words for
complement of w are complements of return words of w). Since

M(0) = {0, 01, 011},

M(01) = {01, 010, 011, 0110},

M(010) = {010, 0100110, 01011010, 010110011},

the theorem is proved. �

5. Return words and β-integers

As we know from Section 3, the return words of all factors of a uniformly recurrent word can be
obtained from the return words of the bispecial factors. Hence, let us focus on bispecial factors.

5.1. Bispecial factors of uβ. In order to describe bispecial factors of uβ , where β is a simple
Parry number, we will make use of the description of some special types of factors of uβ from [6].

Definition 5.1. Let ιk := min{i ≥ 1 | tk−i 6= 0} for k ∈ {2, . . . , m}. (ιk < k since t1 ≥ 1.)

Lemma 5.2. [6, Lemma 4.5] All factors of uβ of the form a0rb, where a, b are non-zero letters
and r ∈ N, are the following ones:

ιk0tkk for k = 2, . . . , m − 1,

k0t11 for k = 1, . . . , m − 1,

ιm0t1+tm1.
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Corollary 5.3. 0r is a bispecial factor if and only if r < t1 + tm.

• If r ≤ t1, then Rext(0r) = {0, 1} ∪ {k | 2 ≤ k < m, r ≤ tk}.
• If t1 < r < t1 + tm, then Rext(0r) = {0, 1}.

Lemma 5.4. If v is a bispecial factor which contains a non-zero letter, then there exists a unique
bispecial factor w and a unique s ∈ {t1, . . . , tm−1} such that v = ϕ(w)0s.

Proof. Let v′ be such that v = v′0s and v′ ends with a non-zero letter. From Lemma 5.2, it is
clear that s ∈ {t1, . . . , tm−1} and v′ has the prefix 0t11. Thus, v is either of the form

• v = 0t110s = ϕ(0)0s or
• v = 0t11v′′0s.

In the latter case, there exists w ∈ L(uβ) such that ϕ(w) = 0t11v′′, and w is obviously bispecial. �

Observation 5.5. If (m − 1)a ∈ L(uβ) for a letter a, then a = 0.

Proof. This follows from Lemma 5.2 since t1 ≥ 1 and ιk < k for every k. �

Lemma 5.6. If w is a bispecial factor, then there exists s ∈ {t1, . . . , tm−1} such that ϕ(w)0s is
bispecial. Moreover, if deg+(w) = 2, then this s is unique and deg+(ϕ(w)0s) = 2.

Proof. If w is bispecial, then it has at least two different right extensions, say a < b, and:

• If b < m− 1, then ϕ(w)0ta+1 (a + 1) and ϕ(w)0tb+1(b + 1) are factors of uβ . Hence ϕ(w)0s

with s = min{ta+1, tb+1} is bispecial.
• If b = m − 1, then Observation 5.5 implies that ϕ(w(m − 1)0) = ϕ(w)0tm0t11 ∈ L(uβ),

and ϕ(w)0ta+1 is bispecial since 0, a + 1 ∈ Rext(ϕ(w)0ta+1 ).

If the bispecial factor w has only two right extensions, then this choice of s is clearly unique. �

The two next corollaries are direct consequences of Lemma 5.6 and its proof.

Corollary 5.7. Let w be a bispecial factor satisfying that both ϕ(w)0p and ϕ(w)0q are bispecial
factors of uβ for some p 6= q, then deg+(w) ≥ 3.

Corollary 5.8. Let w be a bispecial factor which contains a non-zero letter, and let a 6= b be
non-zero letters satisfying a, b ∈ Rext(w). Then ta = tb.

5.2. Return words of uβ. Once, bispecial factors of uβ described, we can investigate their return
words. Lemmas 5.4 and 5.6 show that occurrences of w in uβ can be described by means of their
“preimages” or “images” and this fact is useful for description of their return words.

Proposition 5.9. Let w be a bispecial factor of uβ such that there exists a unique s ∈ {t1, . . . , tm−1}
with the property that ϕ(w)0s is a bispecial factor of uβ. Then

M(ϕ(w)0s) = ϕ(M(w)).

Proof. It is an obvious consequence of the form of the substitution that if the letter m − 1 is not
a suffix of w, then w is the only minimal preimage of ϕ(w). According to the Observation 5.5,
no bispecial factor ends with m − 1. Therefore Lemma 4.4 implies M(ϕ(w)) = ϕ(M(w)). Let us
remind that if a factor v is not right special, then M(v) = M(va), where a is the unique right
extension of v. According to our assumption for k < s, the factor ϕ(w)0k is not right special and
ϕ(w)0k+1 is its unique right extension. Hence we may apply the previous rule s times to obtain
the statement. �

The next lemma will turn out to be useful for determining return words of prefixes of 0ω.

Lemma 5.10. Let dβ(1) = t1 . . . tm, where at most one coefficient is 0. Let j ∈ {0, . . . , m − 1}
and w be a return word of j. Then we have either

• wj = jϕj(0) or
• wj = jϕj(k0) for some k ≥ 1 with tk 6= 0 or
• wj = jϕj(1k0) for some k ≥ 1 with tk = 0.
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Proof. For j = 0, we have to look for factors of the form 0v0, where v does not contain 0. By
Lemma 5.2, the only factors of this form are 00, 0k0 (for tk 6= 0) and 01k0 (for tk = 0), as ιk = 1
by the assumption that at most one tk is 0. Therefore, the statement is true for j = 0 and we can
proceed by induction on j. For a return word w of j+1, it follows from the form of the substitution
that w(j +1) = (j +1)ϕ(w′j), and jw′ is a return of word of j. The induction assumption implies
that w(j + 1) = (j + 1)ϕ(w′j) = (j + 1)ϕj+1(x0) with x being the empty word, x = k and x = 1k
respectively. �

The cardinality of the set of return words of a factor of the infinite word uβ is described partially
by Proposition 3.3 in case tm = 1. The two next theorems deal also with the case tm ≥ 2.

Theorem 5.11. Let uβ be the infinite word associated with the (confluent) simple Parry number
β satisfying dβ(1) = t1 . . . tm−1tm = t . . . t tm.

• If tm = 1, then every factor w ∈ L(uβ) has exactly m return words.
• If tm ≥ 2, then every factor w ∈ L(uβ) has either m or m + 1 return words (and both

values occur).

Proof. The condition t1 = · · · = tm−1 = t and Lemma 5.6 imply that for each bispecial factor w
there exists a unique s such that ϕ(w)0s is a bispecial factor (s = t). Using Proposition 5.9, we
have #M(ϕ(w)0s) = #M(w). Lemma 5.4 states that to determine the cardinality of the set of all
return words, it suffices to study the cardinality of the set M(0r), where 0r is a bispecial factor of
uβ, i.e., 1 ≤ r < t + tm by Corollary 5.3. In the next considerations, we use mainly Lemma 5.2.
For 1 ≤ r ≤ t, the block 0r is followed either by

• 0, then the return word of 0r is 0, or by
• k0t with k ∈ {1, 2, . . . , m − 1}, hence we obtain the return word 0rk.

Consequently, one gets

M(0r) = {0, 0r1, 0r2, . . . , 0r(m − 1)} and #M(0r) = m.

For t < r < t + tm (this case appears only for tm ≥ 2), the block 0r is followed either by

• 0, then the return word of 0r is 0, or by
• 1, then 0r1 is suffix of 0tm+t1 = ϕ((m − 1)0). If we denote the return word of 0r by w,

then, obviously, w is followed by the very next occurrence of 0tm+t1. Thus, the factor
0tm+t−rw0tm can be written as ϕ((m − 1)v(m − 1)), where v does not contain m − 1.
Therefore (m−1)v is a return word of m−1, and by Lemma 5.10, either v(m−1) = ϕm−1(0)
or v(m − 1) = ϕm−1(k0) for some k ≥ 1.

Consequently, we have

M(0r) = {0, 0r−tϕm(0)0−tm} ∪ {0r−tϕm(k0)0−tm | 1 ≤ k < m}

and #M(0r) = m + 1. �

Theorem 5.12. Let uβ be the infinite word associated with the simple Parry number β satisfying
dβ(1) = t1 . . . tm−1tm such that ti 6= tj for all i, j, 1 ≤ i < j < m.

• If tm = 1, then every factor w ∈ L(uβ) has exactly m return words.
• If tm ≥ 2, then every factor w ∈ L(uβ) has either m or m + 1 return words (and both

values occur).

Proof. By Lemma 5.4, every bispecial factor is either of the form 0r or ϕ(w)0s. If s is unique, then
the problem is reduced to the determination of return words of w, by Proposition 5.9. Suppose
that there exist p > q such that ϕ(w)0p and ϕ(w)0q are bispecial. Then w has at least two non-zero
right extensions, by Corollary 5.7. Thus, by Corollary 5.8 and the assumption of the theorem,
w does not contain a non-zero letter. Consequently, it suffices to describe the number of return
words for bispecial factors of the form 0r, 1 ≤ r < t1 + tm, and for ϕ(0r)0s. In the latter case,
it suffices to consider r < t1, since 0r, t1 ≤ r < t1 + tm, has just the right extensions 0, 1 and,
according to Lemma 5.6, there exists a unique s such that ϕ(0r)0s is bispecial.
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Return words of 0r, 1 ≤ r < t1 + tm.

If 1 ≤ r ≤ t1, then 0r+1 ∈ L(uβ), thus 0 ∈ M(0r). As an obvious consequence of the form of
substitution, it follows that k0r, k ≥ 1, is always and solely suffix of ϕk(0)0r. Since r ≤ t1, the
factor ϕk(0) contains 0r for each k ≥ 1. Therefore, there is exactly one return word of 0r ending
by k for every k ≥ 1.

If t1 < r < t1 + tm, then it suffices again to apply Lemma 5.10 and an analogous method as in
the second part of the proof of Theorem 5.11, and one obtains

M(0r) ={0} ∪ {0r−t1ϕm(0)0−tm} ∪ {0r−t1ϕm(k0)0−tm | 1 ≤ k < m, tk 6= 0}

∪ {0r−t1ϕm
(

1k0
)

0−tm | 1 ≤ k < m, tk = 0}.

Consequently, #M(0r) = m for 1 ≤ r ≤ t1 and #M(0r) = m + 1 for t1 < r < t1 + tm.

Return words of ϕ(0r)0s, 1 ≤ r < t1, s ∈ {t1, . . . , tm−1}.

We show that, for every letter k, there exists exactly one return word ending with k and thus
#M(ϕ(0r)0s) = m. Let us distinguish two cases:

• For k ≥ 1, it is an immediate consequence of the form of the substitution that each factor
of uβ having suffix kϕ(0r)0s has as well the factor ϕk(0)ϕ(0r)0s as suffix. Moreover, the
factor ϕk(0)ϕ(0r)0s has ϕ(0r)0s as prefix. The only return word ending with k is therefore
the shortest suffix v of ϕk(0) such that vϕ(0r)0s has ϕ(0r)0s as prefix.

• For k = 0, the factor 0ϕ(0r)0s has the suffix ϕm(0)ϕ(0r)0s. The only return word ending
with 0 is therefore the shortest suffix of ϕm(0) starting with ϕ(0r)0s.

�
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