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THE INVARIANT OF TURAEV-VIRO FROM GROUPCATEGORYJÉRÔME PETITAbstrat. A Group ategory is a spherial ategory whose simple objetsare invertible. The invariant of Turaev-Viro with this partiular ategory isin fat the invariant of Dijkgraaf-Witten whose the group and the 3-oyle isgiven by the simple objets and the assoiativity onstraint of the ategory.
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2 JÉRÔME PETITIntrodutionIn 1992 M. Wakui [14℄ reformulated the invariant of Dijkgraaf-Witten [3℄ and heproved the topologial invariane in a rigorous way. The invariane is based uponthe triangulation and the Pahner moves. One given a �nite group and a 3-oylethe Dijkgraaf-Witten invariant is de�ned ombinatorially. Moreover in this paperhe built a topologial quantum �eld theory (TQFT) from this invariant. The sameyear V. Turaev and O. Viro [11℄ built an invariant of 3 manifold thanks to 6-j sym-bol to prove the topologial invariane they showed a relative version of a theoremof Alexander [1℄ on equivalene of triangulation. This invariant was reformulatedin a ategorial languages [10℄ and the TQFT was built. In the same spirit of [10℄J.W. Barret and B.W. Westburry [2℄ have built a 3-manifold invariant using spher-ial ategories. In this onstrution the topologial invariane puts bak down thetriangulation and the Pahner moves. Independently I. Gelfand and D. Kazhdan[5℄ have built a 3-manifold using spherial ategories. In fat these onstrutionsare reformulations of the Turaev-Viro invariant. In the rest of the paper we will allsuh kind of invariant the invariant of Turaev-Viro and it will be denoted : TVCwhere C is the ategory used to build the invariant.The main goal of this paper is to give a relation between this two approahes basedon triangulation. That's why we utilize a "speial" spherial ategory. Roughlyspeaking, it is a spherial ategory suh that every simple objet is invertible andhas a dimension equal to one. The dimension is given by the spherial struture.In [9℄, F. Quinn alled this ategory : "Group ategory". In [6℄ invertible objetsare alled simples urrents and the tensor ategory whose every simple objets areinvertible is denoted Pointed ategory. The authors have denoted Piard ategoryof C the full tensor ategory of C whose objets are diret sum of invertible objetsof C. Thus if there is a �nite number of simple objet and if every objet is �nitediret sum of simple objet then a pointed ategory is equal to its Piard ategory.In this paper we will use the terminology of F. Quinn [9℄.Here is an outline of the paper. In Setion 1 we reall the de�nition of the Dijkgraaf-Invariant [14℄. In Setion 2 we give the de�nition and we reall some fats on theGroup ategory. In Setion 3 we give the de�nition of the Turaev-Viro invariantof 3-manifold. In Setion 4, we ompute the Turaev-Viro invariant in the ase ofGroup-ategory with other onditions and we show the main theorem (4.2) . Insetion 5 we give a topologial interpretation of the admissible olorings. In Setion6 we give the onstrution the TQFT whih arises from this invariant. We end thepaper by disussing a few examples.1. The invariant of Dijkgraaf-WittenThroughout this paper k will be a ommutative �eld suh that car(k) = 0 and
k = k.We use the desription of [14℄. Let G be a �nite group, this group will be alwaysa multipliative group. Moreover k is a representation of G with the trivial ation.Then we an de�ne Z3(G, k⋆) the set of 3-oyle of G with oe�ients in k⋆ andwe �x α ∈ Z3(G, k⋆). Let T be a n-simplex with n ≥ 1, a olor of T is the followingdata :(1.1) γ : {oriented edges of T } → G,



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 3whih satis�es the onditions :(i) for any oriented edge e : γ(e) = γ(e)−1, where e is the oriented edge withthe opposite orientation.(ii) For any oriented 2-simplex (012) of T we have :
γ(01)γ(12)γ(20) = 1.We denote Col(T ) the set of all olors of T , if T is a triangulation of a n-manifold

M , with n ≥ 2, we denote Col(M,T ) the set of all olors of M given by T . Whenthere is no ambiguity on the hoie of a triangulation, we denote Col(M) the set ofolors of M. If M is a manifold with boundary : ∂M , then ∂M is endowed with atriangulation whih omes from the triangulation of M . If τ is a olor of ∂M thenthe set of all olors ofM whih extend τ , is denoted Col(M, τ). We give an order tothe set of verties of a triangulation of M , then eah 3-simplex has an orientationgiven by the asending order. Then for γ ∈ Col(M) and for the 3-simplex (0123)we put :
α(∆, γ) = α(γ(01), γ(12), γ(20)),with α ∈ Z3(G, k⋆).Theorem 1.1 (Wakui (92)[14℄). Let G be a �nite group, we �x a 3-oyle α ∈

Z3(G, k⋆). Let M be a ompat oriented triangulated 3-manifold, T is a trian-gulation of M . We denote the number of verties of T by n0 and T 3 the set of3-simplex in T . All the 3-simplex are oriented by a numbering of the verties.Given τ ∈ Col(∂M), we de�ne the Dijkgraaf-Witten invariant by :
ZM (τ) =| G |−n0

∑

γ∈Col(M,τ)

∏

∆∈T 3

α(∆, γ)ǫ∆ ,where
ǫ∆ =

{

1 if∆ and M have the same orientation,
−1 otherwise.Then ZM (τ) does not depend on the hoie of triangulation of M and the hoie oforder of verties in M whenever we �x a triangulation of ∂M and τ .Thanks to the independene of the hoie of numbering, we an onsider a num-bering of the triangulation suh that the 3-simplex have the same orientation ofM .Then the invariant is :

ZM (τ) =| G |−n0

∑

γ∈Col(M,τ)

∏

∆∈T 3

α(∆, γ),where all 3-simplex ∆ have the same orientation of M .Remark 1.2. If we onsider M without boundary, then ZM (∅) is a 3-manifoldinvariant and we denote it : ZM .2. Group ategoryIn this setion, we review some basis fats on Group ategory.



4 JÉRÔME PETIT2.1. De�nition. Let C be a monoidal ategory, by a salar objet [13℄ of C we shallmean an objet of C suh that : End(X) = k. If C is abelian and k is algebraiallylosed then an objet is salar i� it is an simple objet. We denote the set ofisomorphism lasses of salar objets of C by ΛC.De�nition 2.1. A �nitely semisimple monoidal ategory is a monoidal ategory
(C,⊗, I, a, l, r) suh that :(a) C is an abelian k-ategory and ⊗ is a bifuntor k-linear,(b) every objet of C is a �nite diret sum of salar objets of C,() ♯ΛC <∞ and I is a salar objet,(d) C is sovereign1If C is a �nitely semisimple monoidal ategory, then every objet X of C admitsa right duality : (X,X∨, eX , hX) and a left duality : (X∨, X, ǫX , ηX), we an takethe same objet beause C is sovereign. By de�nition of duality :

eX : X ⊗X∨ → I

ǫX : X∨ ⊗X → I

ηX : I → X ⊗X∨

hX : I → X∨ ⊗X.and we have the following equalities :
(eX ⊗ idX)(idX ⊗ hX) = idX

(idX ⊗ ǫX)(ηX ⊗ idX) = idX

(idX∨ ⊗ eX)(hX ⊗ idX∨) = idX∨

(ǫX ⊗ idX∨)(idX∨ ⊗ ηX) = idX∨ .The left quantum trae of an endomorphism f ∈ EndC(X) is de�ned by :
trl(f) = eX(f ⊗ idX∨)ηX ,the right quantum trae of an endomorphism f ∈ EndC(X) is de�ned by :
trr(f) = ǫX(idX∨ ⊗ f)hX .for any endomorphisms f, g in C we have :
trl(f ⊗ g) = trl(f)trl(g),

trr(f ⊗ g) = trr(f)trr(g),

trr(f) = trl(f
∨),the multipliation is given by the multipliation of k = End(I).De�nition 2.2. A spherial ategory is a �nitely semisimple monoidal ategorysuh that, for all endomorphism f in C we have : trl(f) = trr(f).1

C admits a right and a left duality whih are isomorphi as monoidal funtor.



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 5In a spherial ategory we denote the left trae by tr and so we have tr = trl = trr.The quantum dimension of an objet X in a spherial ategory C is de�ned by :
dim(X) = tr(idX),so we have dim(X) = dim(X∨).De�nition 2.3.(i) An objet X of a monoidal ategory C is alled invertible i� there exists anobjet Y suh that X ⊗ Y ∼= I, where I is the tensor unit of C.(ii) A monoidal ategory is alled pointed i� every salar objet is invertible.(iii) The Group ategory Pi(C) of the monoidal ategory C is the full monoidalsubategory of C whose objets are diret sums of invertible objets of C.(iv) A Group ategory is a pointed spherial ategory.(v) A θ-ategory is a braided, pointed �nitely semisimple monoidal ategory.2.1.1. Example of Group ategory. G is a �nite group, we denote k[G] the ategorywhose objets are G-graded �nite dimensional k-vetor spaes2 and whose mor-phisms are k-linear morphism that preserves the grading. If V and W are objetsof k[G] the monoidal struture of k[G] is given by :

(V ⊗W )g =
∑

h, k

hk = g

Vh ⊗Wk.the assoiativity is the identity and the isomorphism lasses of salar objets are inbijetion with G : g ↔ δg where δg is de�ned in the following way :
(δg)h =

{

k if g = h,

0 otherwise.and every salar objet is invertible, thus k[G] is a Group ategory. k[G] is a
θ-ategory i� G is an abelian group.2.2. Some results on Group ategory. Whenever C is a Group ategory, itfollows from the de�nition of a Group ategory and the quantum dimension thatfor all X ∈ ΛC : dim(X)2 = 1. The Grothendiek ring of C is isomorphi to thegroup algebra of the �nite group ΛC, it is denoted K0(C) ∼= Z[ΛC ].Proposition 2.4. If C is a Group ategory then :(i) all invertible objets are in ΛC,(ii) (ΛC ,⊗, I) is a �nite group.Proof (i) : If X is invertible in C then there exists an objet Y in C suh that :
X ⊗ Y ∼= I, thus we have :

∑

Z∈ΛC

µZ(X)Z ⊗ Y = I,where µZ(X) = dimk(HomC(X,Z)) and so we have :
∑

Z′,Z∈ΛC

µZ(X)µZ′(Z ⊗ Y )Z ′ = I,2we an de�ne a similar ategory, using G-graded free A-modules, with A a ommutative ring



6 JÉRÔME PETITsine I is a salar objet
∑

Z∈ΛC

µZ(X)µZ′(Z ⊗ Y ) =

{

1 if Z ′ = I,

0 otherwise.Moreover HomC(X,Y ) is �nite for all objets in C and so µZ(X) ∈ N →֒ k, thusthere is only one Z0 ∈ ΛC suh that µZ0(X) 6= 0 and moreover µZ0(X) = 1 so
X = Z0 ∈ ΛC . We an notie that if Y is the inverse of X then X ⊗ Y ∼= I and so
Y ∼= X∨. �Proof (ii) : If X is salar then by de�nition of a Group ategory X is invert-ible and so there is Y an objet of C suh that X ⊗ Y ∼= I we have seen that
Y = X∨ ∈ ΛC. In a �nitely salar monoidal ategory we have : X∨ ⊗X = I ⊕ Zwhere Z is an objet of C, thus we have :

X∨ ∼= X∨ ⊗ I

∼= X∨ ⊗ (X ⊗X∨)

∼= (X∨ ⊗X) ⊗X∨

∼= X∨ ⊕ Z ⊗X∨If X is salar then X∨ is salar thus Z ⊗X∨ = 0 and X∨ 6= 0. So it follows that
Z = 0 and X∨ ⊗X ∼= I, then X∨ is the left and right inverse of X . If X and Yare salar objets then X ⊗ Y is an objet of C and :

EndC(X ⊗ Y ) ∼= HomC(X,X ⊗ Y ⊗ Y ∨) ∼= EndC(X) ∼= k,then X ⊗ Y is a salar objet thus (ΛC ,⊗, I) is a �nite group. �Theorem 2.5 ([4℄, setion 7.5). Suppose G is a �nite group, then : Group ate-gories with underlying group G orrespond to H3(G, k⋆).In fat H3(G, k⋆) lassi�es all the assoiativity onstraint(up to monoidal equiv-alenes). The group G gives the set of isomorphi lasses of salar objets and anelement α ∈ H3(G, k⋆) gives the assoiativity onstraint of the Group ategory. Ifwe take α, α′ ∈ Z3(G, k⋆) suh that [α] = [α′] ∈ H3(G, k⋆) then we obtain twoGroup ategories denoted by C(G,α) and C(G,α′) suh that : C(G,α) ∼=⊗ C(G,α′)(monoidal equivalene).2.3. 6j-symbol. We �x D a �nitely monoidal ategory then for all objet X in
D we have : X = X1 ⊕ ...⊕Xn with Xi ∈ ΛD then for all 1 ≥ j ≥ n there aremorphisms ij ∈ HomD(Xj , X) and pj ∈ HomD(X,Xj) suh that pjij = idXj

and
∑

j ijpj = idX .Lemma 2.6. We �x a, b, c, d, e, f ∈ ΛD then the following appliation
Ψ : Hom(a, e⊗ d) ⊗k Hom(e, b⊗ c→ Hom(a, (b⊗ c) ⊗ d)

v ⊗ w 7→ (w ⊗ idd)vindues an isomorphism between HomD(a, (b⊗ c) ⊗ d) and
⊕

e∈ΛHomD(a, e⊗ d) ⊗k HomD(e, b⊗ c). In the same vein we have :
HomD(a, b⊗ (c⊗ d)) ∼=

⊕

f∈ΛHomD(a, b⊗ f) ⊗k HomD(f, c⊗ d)



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 7Proof : By de�nition of D we have : b⊗ c = ⊕e∈λD
µe(b⊗ c)e with

µe(b ⊗ c) = dimk(Hom(e, b⊗ c)). Then for all f ∈ HomD(a, (b⊗ c) ⊗ d) we have :
f = idb⊗c ⊗ iddf

=
∑

e∈Λ

(iepe ⊗ idd)f

=
∑

e∈Λ

(ie ⊗ idd)(pe ⊗ idd)f,and so Ψ is surjetive. Moreover the vetor spaes are �nite dimensional and theyhave the same dimension thus we get the isomorphism. The seond isomorphism isobtained in the same way. �

a, the assoiativity onstraint of D, indues a natural isomorphism :
(X ⊗ Y ) ⊗ Z ∼= X ⊗ (Y ⊗ Z), for all X,Y, Z ∈ ob(D). Then we have the followingommutative square :
⊕

e∈ΛHomD(a, e⊗ d) ⊗k HomD(e, b⊗ c) //

∼=

��

⊕

f∈ΛHomD(a, b⊗ f) ⊗k HomD(f, c⊗ d)

∼=

��
HomD(a, (b⊗ c) ⊗ d) ∼=

// HomD(a, b⊗ (c⊗ d))the previous ommutative square indues two linear appliations :
{

a b c

d e f

} : HomD(a, e⊗ d) ⊗k HomD(e, b⊗ c) → HomD(a, b⊗ f) ⊗k HomD(f, c⊗ d)

{

a b c

d e f

}

inv

: HomD(a, b⊗ f) ⊗k HomD(f, c⊗ d) → HomD(a, e⊗ d) ⊗k HomD(e, b⊗ c),these are the 6j-symbol of D.We de�ne a bilinear form in the following way : for all objets X,Y ,
ωX,Y : HomD(X,Y ) ⊗HomD(Y,X) → k

f ⊗ g 7→ trg(fg).By de�nition D doesn't admit negligible morphism so ω_,_ is a non-degeneratebilinear form and it de�nes an adjoint of {

a b c

d e f

}, for all (a, b, c, de, f) ∈ ΛD,this adjoint is denoted by :
λ(a, b, c, d, e, f) ∈ (HomD(e⊗d, a)⊗HomD(b⊗c, e)⊗HomD(a, b⊗f)⊗HomD(f, c⊗d))⋆.2.4. 6j-symbol from Group ategory. If C is a Group ategory then for all X,Ysalar objets X ⊗ Y is a salar objet. Thus if X,Y, Z are salar objets then :(2.1) Hom(Z,X ⊗ Y ) ∼=

{

k , if X ⊗ Y ∼= Z

0 , otherwiseIn the ase of Group ategory the isomorphisms (lemma 2.6) beome :Lemma 2.7. For all salar objets (a, b, c, d, e, f) we have :
HomC(a, e⊗ d) ⊗k HomC(e, b⊗ c) ∼= HomC(a, (b ⊗ c) ⊗ d)(2.2)
HomC(a, b⊗ f) ⊗k HomC(f, c⊗ d) ∼= HomC(a, b⊗ (c⊗ d))(2.3)



8 JÉRÔME PETIT(i) {

a b c

d e f

}

6= 0 i� e ∼= b⊗ c, a ∼= (b⊗ c) ⊗ d and f ∼= c⊗ d(ii) {

a b c

d e f

}

inv

6= 0 i� e ∼= b⊗ c, a ∼= b⊗ (c⊗ d) and f ∼= c⊗ dProof : The assertions (i), (ii) and the isomorphisms (2.2), (2.3) ome from(2.1). �Thus in the ase of the Group ategory the 6j-symbol {

a b c

d e f

} onlydepends on b, c, d. For all salar objets b, c, d we put α(b, c, d) =

{

a b c

d e f

}.We an de�ne α in ΛC. ΛC is a group and for g ∈ ΛC we denote Xg a representationof this isomorphism lass, and so for all g, h ∈ ΛC we have : Xg ⊗Xh
∼= Xgh. By(2.1) we know that HomC(Xgh, Xg ⊗Xh) is a one dimensional vetor spae. Forall g, h ∈ ΛC we put φ(g, h) a basis of HomC(Xgh, Xg ⊗Xh).We put g, h, k ∈ ΛC and we denote Xg, Xh, Xk their representations. By onstru-tion α(Xg, Xh, Xk) is an isomorphism of one dimensional vetor spaes thus in thebasis φ we have :(2.4) α(Xg, Xh, Xk)(φ(gh, k) ⊗ φ(g, h)) = α(g, h, k)(φ(g, hk) ⊗ φ(h, k)),with α : ΛC × ΛC × ΛC → k⋆. With the same notations the ommutative squarewhih de�nes α indues the following equality :

α(g, h, k)(idXg
⊗ φ(h, k))φ(g, hk) = a(Xg, Xh, Xh)(φ(g, h) ⊗ idXk

)(φ(gh, k)).Thus α determine the following isomorphism :
HomC(Xghk, (Xg ⊗Xh) ⊗Xk) ∼= HomC(Xghk, Xg ⊗ (Xh ⊗Xk))

v 7→ a(Xg, Xh, Xh)v,

a is the assoiativity onstraint of C, thus a satis�es the Malane's pentagon : with
Xg, Xh, Xk, Xl salar objets

((Xg ⊗Xh) ⊗Xi) ⊗Xj

(Xg ⊗ (Xh ⊗Xi)) ⊗Xj

Xg ⊗ ((Xh ⊗Xi) ⊗Xj)

(Xg ⊗Xh) ⊗ (Xi ⊗Xj) Xg ⊗ (Xh ⊗ (Xi ⊗Xj))

a(g,h,i)⊗id

<<yyyyyyyyyyyyyy

a(g,hi,j)

""EE
EE

EE
EE

EE
EE

EE

id⊗a(h,i,j)

��

a(gh,i,j)

��

a(g,h,ij)
//If we apply the last equality in the basis φ we have :

α(g, h, kl)α(gh, k, l) = α(h, k, l)α(g, hk, l)α(g, h, k).Proposition 2.8. If C is a Group ategory then the 6j-symbol is determined by a3-oyle on Z3(ΛC , k
⋆) and a basis of Hom(Xgh, Xg ⊗Xh).The relation of a with the identity onstraint (r, l) indues that :

l(h)α(g, 1, h) = r(g), for all g, h ∈ ΛC thus r(g) = α(g, 1, 1) and (g) = α(1, 1, h)−1.



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 9We an hange α suh that α is normalized3 without hanged the ohomologouslass of α. In term of basis φ, it is a hange of basis.3. The invariant of Turaev-ViroWe adopt the approah of [5℄ rather then [11℄, but we use a spherial ategory.Beause if we onsider a sovereign ategory there is a problem in the onstrution.The problem ours at the level of independene of the numbering of the 3-simplex.Let T be a n-simplex with n ≥ 1, then a Turaev-Viro olor of T (Turaev-Viro pointof view) is the following data : γ : {oriented edges of T } → ΛC whih satis�es theonditions :(i) for any oriented edge e : γ(e) = γ(e)∨, where e is the oriented edge withthe opposite orientation.The set of all Turaev-Viro olor of T is denoted ColTV (T ). let T be a n-simplexand we �x a numbering of the verties of F , every faes of T has an orientationgiven by the asending order : (012). For every faes (012) we de�ne the followingvetor spae : VC((012), γ) = HomC(I, γ(01) ⊗ γ(12)⊗ γ(20)).Lemma 3.1.
VC((012), γ) ∼= VC((201), γ) ∼= VC((120), γ)(3.1)
VC((012), γ) ∼= VC((021), γ)⋆(3.2)Proof (3.1) : It omes from the sovereign struture of C.For all X,Y, Z ∈ ob(C) we have :

HomC(I,X ⊗ Y ⊗ Z) ↔ HomC(I, Y ⊗ Z ⊗X)

f 7→ (ǫX ⊗ idY ⊗Z⊗X)(idX∨ ⊗ f ⊗ idX)(hx) �Proof (3.2) : It omes from the fat that the ategory C doesn't admit negligiblemorphism and so the following bilinear form is non-degenerate :
contr : VC((012), γ)⊗ VC((021), γ) → k

f ⊗ g 7→ f∨g = tr(f∨g) = tr(g∨f) �Thus the vetor spae VC((012), γ) is independent of the starting point and if wehange the orientation of the 2-simplex we obtain the dual vetor spae. Moreoverthis dual vetor spae an be obtain by a hange of olor in fat :
VC((012), γ) ∼= VC((021), γ)⋆ ∼= VC((021), γ′),with γ′(02) = γ(01), γ′(21) = γ(12), γ′(10) = γ(20). Let T be the triangulation ofa ompat oriented surfae Σ and T 2 the set of 2-simplex of T , then we de�ne

VC(Σ, T ) =
⊕

γ∈Col(T )

⊗

f∈T 2

VC(f, γ),and this spae is independent of the hoie of a numbering of T .Let ∆ be a 3-simplex, a numbering of the verties of ∆ gives an orientation of ∆,with this orientation ∆ is denoted (0123). We take γ ∈ Col(∆) and we put :
VC((132), γ) ⊗ VC((023), γ)⊗ VC((031), γ)⊗ VC((012), γ)

L((0123),γ)
−→ k(3.3)

v0 ⊗ v1 ⊗ v2 ⊗ v3 7→ dim(γ(13))−1λ(γ(03), γ(01), γ(12), γ(23), γ(02), γ(13)).3r=l=1



10 JÉRÔME PETITThis appliation de�nes, with duality given by ω, an element
L̃((0123), γ) ∈ VC((132), γ)⋆ ⊗ VC((023), γ)⋆ ⊗ VC((031), γ)⋆ ⊗ VC((012), γ)⋆. If T isa triangulation of M , whih is an oriented and losed 3-manifold, then we denote
T 3 the set of oriented 3-simplex of T and we de�ne the following element :

⊗

σ∈T 3

L̃(σ, γ).But M is a losed 3-manifold so every 2-simplex is a fae of exatly two 3-simplexwith opposite orientation. The 3-simplex are oriented suh that their orientationsorrespond to the orientation ofM . We denote f the ommon fae of σ1 and σ2, sothe elements an be written in the following way : L̃(σ1, γ) ∈W ⊗ VC(f, γ), where
W is the tensor produt of the three other faes and L̃(σ2, γ) ∈W ′ ⊗VC(f, γ) with
W ′ the tensor produt of the three other faes. The sovereign struture of C de�nesa bilinear non-degenerate form on this two vetor spaes :

contr : VC((012), γ) ⊗ VC((021), γ) → k

f ⊗ g 7→ tr(f∨g) = tr(g∨f),the equality omes from the fat that I = I∨ and the semi-simpliity of C impliesthe non degeneray of contr. Sine the 3-manifold is losed we an ontrat every2-simplex and then
Z(M,γ) = contr(⊗σ∈T 3 L̃(σ, γ)) ∈ k.We �x as in 1, n0 the number of verties of a given triangulation (we don't all it

n0(T ) for two reasons, the �rst is historial [11℄, [10℄, [14℄, [5℄, [2℄ and the seondreason omes from the fat that we use n0 to desribe an objet whih doesn'tdepend on the triangulation). To is the triangulation with the orientation given bythe numberings of the verties suh that the orientaton is the orientation of themanifold M . The invariant of Turaev-Viro is :
TV (M) = (

∑

X∈ΛC

dim(X)2)−n0

∑

γ∈ColTV (T )

∏

e∈T 1
o

dim(γ(e))Z(M,γ),(3.4)in the rest of the paper ∑

X∈ΛC
dim(X)2 will be denoted by dim(C).4. The equalityThe invariant (3.4), we make a sum over the Turaev-Viro oloring of T and weompute L(∆, γ) for eah Turaev-Viro olor γ and eah 3-simplex ∆. The linear

L(∆, γ) is omputed over vetor spaes whih are : V (f, γ) for eah fae f of the3-simplex ∆. But in a monoidal semisimple ategory we have the following resultfor all salar objets a, b, c of C :
HomC(I, a⊗ b⊗ c)

{

≇ 0 , a∨ →֒ b⊗ c
∼= 0 , otherwiseIf C is Group ategory then we have the following relation :

HomC(I, a⊗ b⊗ c)

{

∼= k , a∨ ∼= b⊗ c
∼= 0 , otherwiseDe�nition 4.1. Let C a Group ategory an T an n-simplex with n ≥ 1. Anadmissible olouring of T is the set of appliation γ from oriented edges of T to ΛCwhih satisfy :



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 11(i) γ(e) = γ(e)∨, where e is the edge e with the opposite orientation(ii) for any oriented 2-simplex of T we have :
γ(01) ⊗ γ(12)⊗ γ(20) ∼= IIf C is a Group ategory, then an admissible oloring is nothing else than a olorin a sense of Wakui (1.1). That's why we denote it Col(T ). If γ ∈ ColTV and

γ 6∈ Col(T ), there is at least one oriented fae (012) in T suh that : γ(01)γ(12) 6=
γ(02). It result that : V (012, γ) = 0. In a losed manifold every fae is in theboundary of exatly two 3-simplex with opposite orientation. the value of L(_, γ)on these 3-simplex is equal to 0. Thus in the sum 3 we have Z(T, γ) = 0 for every
γ 6∈ Col(T ). That's why an onsider the sum 3 only on the admissible oloring (oroloring in Wakui sense).Theorem 4.2. Let C a Group ategory suh that for all X ∈ ΛC we have :
dim(X) = 1.If G is the underlying group of C and if α ∈ Z3(G, k⋆) is the assoiativity onstraintof C then for all losed and oriented 3-manifold M :

DWG,α(M) = TVC(M).Proof : C is Group ategory The ondition dim(X) = 1, for all X ∈ ΛC implies: dim(C) = ♯ΛC and so :
TVC(M) = (♯ΛC)−n0

∑

γ∈ColTV (T )

Z(T, γ),it remains to ompute Z(T, γ) for an admissible oloring.Lemma 4.3. If C is a Group ategory suh that for all X ∈ ΛC dim(X) = 1 then :
Z(T, γ) =

∏

(0123)∈T 3

α(γ(01), γ(12), γ(23)),with T a triangulation of a losed and oriented 3-manifold and γ an admissibleoloring of T .Proof : If T is a triangulation of a losed and oriented 3-manifold and γ is aoloring of T then :
Z(T, γ) = contr(⊗(0123)∈T 3 L̃((0123), γ) ∈ k.Moreover if dim(X) = 1 for all X ∈ ΛC , by de�nition of L (3.3) we have

L((0123), γ) = λ(γ(03), γ(01), γ(12), γ(23), γ(13), γ(02)). C is a Group ategorythen V ((012), γ) ∼= Hom(γ(02), γ(01)⊗ γ(12)) ∼= k. We �x Φ(γ(01), γ(12)) a basisof this vetor spae. If we onsider (021), the same fae with the opposite orien-tation, then we have, thanks to the ontration : V ((012), γ)⋆ ∼= V ((021), γ) andso we an take the dual basis, it indues a basis Φ′(γ(02), γ(21)) of HomC(γ(02)⊗
γ(21), γ(01)) ∼= V (021, γ)

{

a b c

d e f

}

(Φ(b ⊗ c, d) ⊗ Φ(b, c)) = α(b, c, d)Φ(b, c⊗ d) ⊗ Φ(c, d),



12 JÉRÔME PETITand the duality given by the non-degenerate bilinear form ω gives a basis ofHom(e⊗
d, a) whih is the dual of Hom(a, e⊗ d) :

ω : Hom(e⊗ d, a) ⊗Hom(a, e⊗ d) → k

f ⊗ Φ(e, d) 7→ tr(fΦ(e, d))and so Φ′(e, d) = Φ(e, d)−1. Thus we have :
L̃((0123), γ) = λ̃(γ(03), γ(01), γ(12), γ(23), γ(13), γ(02))

= α(γ(01), γ(12), γ(23))Φ(γ(01)⊗ γ(12), γ(23))−1 ⊗ Φ(γ(01), γ(12))−1

⊗ Φ(γ(01), γ(12)⊗ γ(23)) ⊗ Φ(γ(12), γ(23))[5℄ asserts that L(0123, γ) doesn't depend on the hoie of the numbering whihpreserve the orientation of (0123) 4 so we an hoose any numbering (0123) whihpreserve the orientation of the 3-simplex. The ontration on V ((012), γ) indues aontration onHom(γ(01)⊗γ(12), γ(02)) given by the isomorphism : V ((012), γ) ∼=
Hom(γ(01)⊗ γ(12), γ(02)) :

contr : Hom(γ(01) ⊗ γ(12), γ(02))⊗Hom(γ(02), γ(01)⊗ γ(12)) → k

f ⊗ g 7→ tr(fg)If we onsider two 3-simplexes (0123) and (0214) with the same orientation, theyhave a ommon fae. We hange the numbering of (0214) without hanging theorientation : (4012) (the yle (042) has an even signature).
L̃((0123), γ) = λ̃(γ(03), γ(01), γ(12), γ(23), γ(13), γ(02))

= α(γ(01), γ(12), γ(23))Φ(γ(01)⊗ γ(12), γ(23))−1 ⊗ Φ(γ(01), γ(12))−1

⊗ Φ(γ(01), γ(12)⊗ γ(23)) ⊗ Φ(γ(12), γ(23))

L̃((4012), γ) = λ̃(γ(42), γ(40), γ(01), γ(12), γ(02), γ(41))

= α(γ(40), γ(01), γ(12))Φ(γ(40)⊗ γ(01), γ(12))−1 ⊗ Φ(γ(40), γ(01))−1

⊗ Φ(γ(40), γ(01)⊗ γ(12)) ⊗ Φ(γ(01), γ(12))

contr(Φ(γ(01), γ(12))−1 ⊗ Φ(γ(01), γ(12)) = dim(γ(01)⊗ γ(12)) = 1

Z(T, γ) =
∏

(0123)∈T 3 α(γ(01), γ(12), γ(23)). �5. Topologial interpretation of admissible oloringIn this setion, we will give a topologial interpretation of the admissible oloringof a triangulation.5.1. The fundamental groupoïd of T . Let T be a n-simplex, we denote Π1(T )the following ategory :
Ob(Π1(T )) = T 0Arrows of Π1(T ) are the oriented edges of T and the 0-simplex modulothe relation of 2-simplex, that is if (012) is an oriented 2-simplex then
(01).(12) = (02).4In [5℄ the authors asserts this result for a sovereign ategory, but there is a problem with thisondition. If we use spherial ategory the result is true.



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 13The omposition is given by the onatenation of the edge, and the inverse of anedge is the same edge with the opposite orientation. The identity is given by the
0-simplex himself. We an de�ne the pointed fundamental groupoïd Π1(T, x) inthe same way. There is only one objet whih is x and the set of arrows are loopsin x and a loop is a onatenation of edges.Remark 5.1. If T is the triangulation of a onneted manifold M , then there isan equivalene of ategory between Π1(T ) and the pointed ategory Π1(T, x) where
x is 0-simplex of T . Moreover the set of arrows of Π1(T, x) is Π1(M,x).If G is a group then the groupoïd obtained thanks to G will be denoted G.If C is a Group ategory we an de�ne the following appliation :

Ψ : Col(T ) → Fun(Π1(T ),ΛC)

γ 7→ Fγ ,the funtor Fγ is de�ned in the following way : for all x ∈ T 0 we have Fγ(x) = ⋆,whih is the objet of G. And Fγ(01) = γ(01). γ respets the 2-simplex ondition,thus Fγ is well de�ned.Lemma 5.2. Ψ is bijetive.Proof : If Fγ = Fθ then for all oriented edges e we have : γ(e) = θ(e) and so
γ = θ.If F ∈ Fun(Π1(T ),ΛC) then for all oriented edge e we have F (e) ∈ ΛC and F (e) =
F (e)∨. Thus we an de�ne a oloring of T : γ(e) = F (e). We have to hek the 2-simplex ondition. If (012) is a 2-simplex then : F ((02)) = F ((01).(12)) = F ((01)) ⊗ F ((12)),thus γ ∈ Col(T ) and Ψ(γ) = Fγ and for objet Fγ = F and for all arrow e :
Fγ(e) = γ(e) = F (e) thus Ψ is bijetive. �5.2. The gauge ation. We note ΛT 0

C the set of appliation from the 0-simplex of
T to ΛC . We an de�ne an ation of ΛT 0

C on Col(T ) in the following way :
ΛT 0

C × Col(T ) → Col(T )

(δ, γ) 7→ γδ,suh that for all oriented edge (01) : γδ(01) = δ(0) ⊗ γ(01) ⊗ δ(1)∨. By a straight-forward omputation we show that it is an ation.We de�ne the following equivalene relation on Col(T ) :
(γ ∼ γ′) ⇔ (∃δ ∈ ΛT 0

C suh that γδ = γ′),we an onstrut the following appliation :
Θ : Col(T )

∼
→

Fun(Π1(T ),ΛC)

iso
(5.1)

[γ] 7→ [ψ(γ)](5.2)



14 JÉRÔME PETITThis appliation is well de�ned beause if γ′ = γδ then : β(x) = δ(x)∨ : Fγ(x) → Fγ′(x)is an in isomorphism in the groupoïd ΛC . For all oriented edge (01) we have :
β(1)Fγ(01) = γ(01) ⊗ δ(1)∨

= δ(0)∨ ⊗ δ(0) ⊗ γ(01) ⊗ δ(1)∨

= δ(0)∨γδ(01)

= Fγδ (01)β(0).Thus β is a natural isomorphism between Fγ and Fγδ .Proposition 5.3. Θ is a bijetion.Proof : Ψ is surjetive thus it follows that Θ is surjetive.Let γ and γ′ two admissible olorings of T , if Θ(γ) = Θ(γ′) then there is a naturalisomorphism between Fγ and Fγ′ . We note β this isomorphism, for all 0-simplex xwe have : β(x) ∈ ΛC and β(x) : Fγ(x) ∼= Fγ′(x). So β ∈ ΛT 0

C and for all orientededges (xy) we have the following ommutative square :
Fγ(x)

γ(xy) //

β(x)

��

Fγ(y)

β(y)

��
Fγ′(x)

γ′(xy)

// Fγ′(y)thus γ′β = γ. �6. Constrution of TQFT6.1. Triangulate TQFT. We reall some de�nitions on TQFT and some resultsof [8℄. We denote Cob the ategory of 1+2 obordism : Ob(Cob) is the set oforiented and losed surfae, the morphism of Cob are the lass of oriented ompat3-manifold, i.e : the lasses of di�eomorphisms preserving the boundary. Thedisjoint union and ∅ give a strit monoidal struture to Cob.De�nition 6.1. A is a ommutative ring with unit, a TQFT is a monoidal and
A-linear funtor from Cob to A-mod.In [8℄, there is a way of obtaining a TQFT from a funtor whih is not monoidal.De�nition 6.2. Let C a monoidal ategory, a monoidal, non unitary funtor F isthe data
(F,Φ2,Φ0) : C → D. (F,Φ2,Φ0) verify all the axioms of a monoidal funtor ex-peted the following : there is at least one X ∈ Ob(C) suh that : F (idX) 6= idF (X)Proposition 6.3 ([8℄). Let (F,Φ2,Φ0) : C → D a monoidal non unitary funtor,with D a monoidal, A-linear and abelian ategory, then there is a monoidal funtor
F̃ : C → D suh as : for all X ∈ Ob(C) F̃ (X) is an sub objet of F (X).6.2. Constrution of Turaev-Viro. We reall the onstrution of Turaev-Viro[11℄ and we apply the result of [8℄.First stepFor every objet (Σ, T ) we assign �nite vetor spae :

V (Σ, T ) =
⊕

c∈Col(T )

⊗

f∈T 2

V (f, γ) = k[Col(T )],



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 15it is the vetor spae spanned by the admissible oloration of T .For every 3-manifoldM whose boundary is (−Σ, T )
∐

(Σ′, T ′) and for every admis-sible oloring ,' of T and T ′ : TVM (c, c′) ∈ k. Thus we an de�ne :
V (M) : V (Σ, T ) → V (Σ′, T ′)(6.1)

c 7→
∑

c′∈Col(T ′)

TVM (c, c′)c′By onstrution :
V (M)V (N)(c) =

∑

c1,c2

TVN (c, c1)TVM (c1, c2)c2

= (♯ΛC)n0(∂N+)
∑

c2

TVM◦N (c, c2)c2

= (♯ΛC)n0(∂N+)V (M ◦N)(c).(6.2)There are at least three ways of erasing the anomaly. Here are the normaliza-tion, with M a 3-manifold whose the boundary is ∂M = M−

∐

M+ and c ∈
Col(M−), c′ ∈ Col(M+) .

TVi(M)(c, c′) = Λ
−n0(M−)
C TV (M)(c, c′)(6.3)

TVo(M)(c, c′) = Λ
−n0(M+)
C TV (M)(c, c′)(6.4)

TVm(M)(c, c′) = Λ
−n0(M−)−n0(M+)

2

C TV (M)(c, c′)(6.5)Lemma 6.4.(i) TVi, TVo and TVm are invariants of 3-manifold with boundary.(ii) TVi,TVo and TVm de�ne the same monoidal non unitary funtor (up tomonoidal equivalene).Proof (i) : The theorem of Pahner de�ne invariant of 3-manifold whose theboundary is �x, thus the triangulation of the boundary remains unhanged. That'swhy we obtain an invariant of 3 -manifold with boundary.Proof (ii) : Let Vi (resp. Vo, Vm) the non unitary funtor de�nes from theinvariant TVi (resp. TVo, TVm). The natural transformation :
β : Vo(Σ, T ) = k[Col(T )] → Vi(Σ, T ) = k[Col(T )]

c 7→ (♯ΛC)n0((Σ,T ))cis an isomorphism. It remains to show that β is monoidal. Sine Vo and Vi arestrit we the following square :
Vo((Σ, T ) ⊗ (Σ′, T ′))

=

��

β((Σ,T )⊗(Σ′,T ′)) // Vi((Σ, T ) ⊗ (Σ′, T ′))

=

��
Vo(Σ1, T1) ⊗ Vo(Σ

′
1, T

′
1)

β(Σ,T )⊗β(Σ′,T ′) // Vi(Σ, T ) ⊗ Vi(Σ
′, T ′)



16 JÉRÔME PETITand for all c ∈ Col(T
∐

T ′) = Col(T ) ⊗ Col(T ′),
β((Σ, T ) ⊗ (Σ′, T ′))(c) = (♯ΛC)n0((Σ,T )

∐

(Σ′,T ′))c

= (♯ΛC)n0((Σ,T ))+n0((Σ′,T ′))c

= (♯ΛC)n0((Σ,T ))+n0((Σ′,T ′))c1 ⊗ c2,with c = c1 ⊗ c2. And for c ∈ Col(T ), c′ ∈ Col(T ′), we have :
β((Σ, T )) ⊗ β((Σ′, T ′))(c ⊗ c′) = (♯ΛC)n0((Σ,T ))(♯ΛC)n0((Σ′,T ′))c⊗ c′.Thus the square ommutes.We prove in the way the monoidal isomorphism between Vo and Vm, the isomor-phism is given by :

κ((Σ, T )) : V (Σ, T ) → V (Σ, T )

c 7→ (♯ΛC)−
n0(Σ,T )

2 c

�In [14℄ and [10℄, the authors used TVm, here we will TVi beause inthis ase we don't have to ompute the square of Dim(C). We replae TV by TViin the de�nition of (6.1), and we still denote it by V .Proposition 6.5 ([10℄, [14℄). V is a monoidal non unitary funtor from Cobtri tothe ategory of �nite dimensional vetor spaes.We �x V (Σ×I, T ) the linear appliation given by the identity on (Σ, T ) in Cobtri.[14℄ and [10℄, or in a general framework [8℄, the TQFT is the following funtor :
VCob→ k − vect

Σ 7→ V(Σ) = im(V (Σ × I, T ))

M ∈ Hom(Σ,Σ′) 7→ V(M) = V (M)|im(V (Σ×I,T ))The funtor is well de�ned beause for all triangulations T and T ′ of Σ we have :
im(V (Σ × I, T )) ∼= im(V (Σ × I, T ′)). The isomorphism is given by Σ × I with Tthe triangulation of Σ × {0} and T ′ the triangulation Σ × {1}.7. Examples7.1. α = 1. If α = 1 then C is a strit Group ategory and C is equivalent to k[G].Thanks to the gauge ation (5.2) and the isomorphism (5.1), we have for all losed,oriented and onneted 3-manifold M :

TVk[G](M) = #G−n0#Col(T ) = #
Col(T )

∼
= #

Fun(Π1(T, x),ΛC)

iso
,the groupoïd has only one objet and so a funtor is only de�ned by the appliationsfrom the Π1(M,x) to ΛC and an isomorphism between two funtors implies thatthe appliations are onjugate. So we have :

TVk[G](M) = #
Hom(Π1(M),ΛC)

conj
.



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 177.2. G = Zn. If G is the yli group of order n then we have : H3(G, k⋆) = Zn,and α given by (A.2) is a 3-oyle.A triangulation of S1 × S1 × S1 is given in [3℄ :
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There are six 3-simplex. And so the invariant is the following :
TVZn,α(S1 × S1 × S1) =

1

n

∑

g,h,k∈Zn,

[g,h]=[g,k]=[h,k]=1

α(g, h, k)α(h, k, g)α(k, g, h)

α(g, k, h)α(h, g, k)α(k, h, g)

=
1

n

∑

g,h,k∈Zn

α(g, h, k)α(h, k, g)α(k, g, h)

α(g, k, h)α(h, g, k)α(k, h, g)For every �nite group G and for every 3-oyle α ∈ Z3(G, k⋆), we an de�ne :
β(g, h, k) =

α(g, h, k)α(h, k, g)α(k, g, h)

α(g, k, h)α(h, g, k)α(k, h, g)
,it veri�es some properties :Lemma 7.1.(i) For every �nite group G and for every g, h, k ∈ G, there is an ation of S3over β by permutating the terms and if σ ∈ S3 : σ.β(g, h, k) = β(g, h, k)ǫ(σ),

ǫ is the signature.(ii) if G is abelian and α is A.1 then for all g, h, k ∈ G : β(g, h, k) = 1,Proof (i) : It is straightforward from the de�nition of β, we give only thealulation for the permutation (12) and for the yle (123) :
β(h, g, k) =

α(h, g, k)α(g, k, h)α(k, h, g)

α(h, k, g)α(g, h, k)α(k, g, h)

=
1

α(g,h,k)α(h,k,g)α(k,g,h)
α(h,g,k)α(g,k,h)α(k,h,g)

= β(g, h, k)−1

β(h, k, g) =
α(h, k, g)α(k, g, h)α(g, h, k)

α(h, g, k)α(k, h, g)α(g, k, h)

= β(g, h, k) �Proof (ii) : �Thus for G = Zn and for α de�ned by (A.2), we have :
TVZn,α(S1 × S1 × S1) =

1

n

∑

g,h,k∈Zn

1 = n2.



18 JÉRÔME PETITIn the same way, we an ompute TVZn,α(Σg × S1), where Σg is the losed surfaeof genus g, using the following triangulation of Σg :
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The edges with the same labels are identi�ed, we have 1 on the edges inside thepolygon by ommutativity of the group Zn and the ondition (ii) of the admissibleoloration. We denote Tg the previous triangulation of Σg : Col(Tg) = k[Z2g
n ].Thus c = (a1, b1, ..., ag, bg) ∈ Zn × ... × Zn is a oloring of Tg We an de�ne atriangulation of Σg × S1 :
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To avoid problems of reading this triangulation, some edges are not oloring. Wean reover the orresponding oloring thanks to the ondition (ii) of oloring.So by de�nition of the invariant : TVZn,α = 1
n

∑

γ∈Col(T ′
g)

∏

∆∈T 3
g
α(∆, γ). Theprevious triangulation an be divided into prisms :
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THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 19Then we have to deompose this prism into 3-simplex. Below we give suh adeomposition :
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If we assigns a oloring γ to this prism we an ompute the term α(∆, γ) of theprism and by onstrution we will have the invariant TV (Σg × I).
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(a, b, c) is a oloring of the prism, the salar assigns to the prism is then : α(a,b,c)α(c,a,b)
α(a,c,b) .In the triangulation of Σg × S1 for a given oloring, we have prism suh that theoloring is : (a, a−1, c), where a, c ∈ Zn and so there are at least two edges whosethe assoiated oloring is equal to I. The value of the salar assoiated to the prismequip with a oloration (a, a−1, c) is given by the following lemma :Lemma 7.2. If G is a �nite group and γ is a oloring of a 3-simplex (oriented)∆suh that the oloring of one edge (at least) is 1 then for every normalized 3-oylein the group ohomology H3(G, k⋆), α(∆, γ) = 1Proof : If we �x γ and ∆ we have the following �gure :

0 2

1

3

1 //____

a ''OOOO

a−1

??

c

??���������

c

OOKK����������The numbering of the verties gives an orientation of ∆, for an orientation givenby the numbering 0 < 1 < 2 < 3 ∆ will be noted : (0123). In this ase wehave : α(a, a−1, c) = 1. It follows the de�nition of H3(G, k⋆) whih isomorphito : H3(BG, k⋆). If we hange the orientation (presevering or not) we will have :
α(a, a−1, c) (preserving the orientation) or α(a, a−1, c)−1 [14℄. �Thus theinvariant is equal to :

TVZn,α(Σg × S1) =
1

n

∑

(a1,b1,...,ag,bg,e)∈Zn

β(a1, b1, e) × ....× β(ag , bg, e)

=
1

n

∑

(a1,b1,...,ag,bg,e)∈Zn

1

= n2g(7.1)



20 JÉRÔME PETIT7.3. G = S3. In the Annex B, we give a way of building 3-oyle, and this on-strution leads to the 3-oyle given in [14℄ and [7℄ for Zn. And for S3 we have
α(x, y, z) = exp(2iπ

4 tr(s(x))(tr(s(y)s(z)s(yz)−1))). We denote Z(x) = {g ∈ S3 |
gxg−1 = x} the enter of x we have :
TVS3,α(S1 × S1 × S1) =

1

6

∑

g,h,k∈S3,[g,h]=[g,k]=[h,k]=1

α(g, h, k)α(h, k, g)α(k, g, h)

α(g, k, h)α(h, g, k)α(k, h, g)

=
1

6
(
∑

h∈S3

♯Z(h) +
∑

h 6=1

(♯Z(h))2)

=
1

♯S3

∑

g,h,k∈S3,[g,h]=[g,k]=[h,k]=1

1

=
♯Col(T0)

♯S3

= ♯
Hom(Π1(S

1 × S1 × S1), S3)

conjIn fat, for every 3-oyle α ∈ Z3(S3, k
⋆) and thanks to (7.1) :

β(g, g, k) =
α(g, g, k)α(g, k, g)α(k, g, g)

α(g, k, g)α(g, g, k)α(k, g, g)

= 1

β(g, h, h) =
α(g, h, h)α(h, h, g)α(h, g, h)

α(g, h, h)α(h, g, h)α(h, h, g)

= 1

β(g, h, g) =
α(g, h, g)α(h, g, g)α(g, g, h)

α(g, g, h)α(h, g, g)α(g, h, g)

= 1Moreover if α is normalized then β beomes normalized. Thus for every α ∈
Z3(G, k⋆) :

TVS3(S
1 × S1 × S1) =

1

6

∑

g,h,k∈S3,[g,h]=[g,k]=[h,k]=1

β(g, h, k)

=
1

6

∑

g∈S3

∑

h∈Z(g)

∑

k∈Z(g)∩Z(h)

β(g, h, k)

=
1

6
(
∑

h∈S3

∑

k∈Z(h)

β(1, h, k) +
∑

g 6=1

(♯Z(g))2)

=
1

6
(
∑

h∈S3

♯Z(h) +
∑

g 6=1

(♯Z(g))2)

= ♯
Hom(Π1(S

1 × S1 × S1), S3)

conj7.4. Examples of TQFTs.



THE INVARIANT OF TURAEV-VIRO FROM GROUP CATEGORY 217.4.1. α = 1. Let Σ a losed and onneted surfae and T a triangulation of Σ, forall c ∈ Col(T ):
V (Σ × I, T )(c) =

∑

c′∈Col(T )

TV n((Σ, T ) × I)c,c′c
′

=
∑

c′∼=c

♯stab(c)

♯Λn0

C

c′

=
1

♯Oc

∑

c′∼=c

c′Thus : V(Σ) = k[Col(T )]
∼=

≃ Hom(Π1(Σ),ΛC)
conj

.7.4.2. G = Zn, and α is given by (1). The vetor spae V(Σ) doesn't depend onthe hoie of the triangulation. Thus we an onsider the following triangulation :
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where (a1, b1, ..., ag, bg) is an admissible oloring. Thus for the ylinder Σg × I wehave the following triangulation :
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where (a1, b1, ..., ag, bg) is an admissible oloring of the inward surfae, (a′1, b′1, ..., a′g, b′g)is an admissible oloring of the outward surfae and e is a gauge. In this ase we



22 JÉRÔME PETIThave :
VZn,α(Σg × I, T )(c) =

∑

c′∈Col(T )

TVi(Σg × I)c,c′c
′

=
∑

c′∼=c

n−1nc′

= cThus V(Σg) = k[Col(T )] = k[Λ2g
C ]Appendix A. Some omputation of H3(g, k⋆)Let G a �nite group and G′ a subgroup suh that :
G′ p

→ G→ {1}and s is a setion of p. Let A an abelian group and G ats trivially on A, then forevery appliation : < > : G′ ×G′ → A whih verify :(i) <xy,z>=<x,z>+<y,z>(ii) <x,yz>=<x,y>+<x,z>we an de�ne the following appliation :
α : G×G×G→ A

(x, y, z) 7→ α(x, y, z) =< s(x), s(y)s(z)s(yz)−1 >(A.1)Proposition A.1. If < ker(p), ker(p) >= 0 then α ∈ Z3(G,A).Proof : For all x, y, z, t ∈ G we have :
δ(α)(x, y, z, t) = α(y, z, t) − α(xy, z, t) + α(x, yz, t) − α(x, y, zt) + α(x, y, z)

=< s(y), s(z)s(t)s(zt)−1 > − < s(xy), s(z)s(t)s(zt)−1 > + < s(x), s(yz)s(t)s(yzt)−1 >

− < s(x), s(y)s(zt)s(yzt)−1 > + < s(x), s(y)s(z)s(yz)−1 >

=< s(y)s(xy)−1, s(z)s(t)s(zt)−1 > + < s(x), s(z) > + < s(x), s(t) > − < s(x), s(zt) >

=< s(y), s(z)s(t)s(zt)−1 > + < s(x), s(z)s(t)s(zt)−1 >

=< s(x)s(y)s(xy)−1, s(z)s(t)s(zt)−1 >

= 0 �A.1. Example.A.1.1. G = Zn. If we onsider the following appliation :
Z → Zn

x 7→ x

s : Zn → whih assigns for all x ∈ Zn its representative element in {0, ..., n− 1} isa setion of p. We de�ne :
< > Z × Z → C

(x, y) 7→ exp(
2iπ

n2
s(x)s(y)),
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< > veri�es (i) and (ii) and if x ∈ ker(p) then s(x) = 0 thus if x and y areelements of ker(p) then < x, y >= 0. It de�nes a 3-oyle :(A.2) α(x, y, z) = exp(

2iπ

n2
s(x)(s(y) + s(z) − s(y + z))),we reover the 3-oyle de�nes in [14℄.A.1.2. G = Sn.

p : Bn → Sn

σ̃ 7→ σand the setion s whih assigns for all permutation in Sn an elementary braid
< > : Bn ×Bn → C

(σ, τ) 7→ exp(
2iπ

4
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